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Abstract: Simultaneous reduction of biodiversity and forage nutritive value after grazing aban-
donment represents a critical agroecological problem observed in temperate mountain grasslands.
However, how both processes affect each other after the exclusion of large grazers is not well un-
derstood. To address this knowledge gap, we used four Atlantic grassland sites in the Aralar masif
(northern Iberian Peninsula) to ask whether floristic composition mediates change in forage nutritive
quality after grazing exclusion, and, if so, how much of the effect on forage quality is mediated. To ex-
amine the effects of grazing exclusion on forage quality and floristic composition a repeated-measures
(2005–10) randomized complete block experiment was used. Then, the direct effects of grazing exclu-
sion on forage quality were disentangled from the indirect effects mediated by concurrent change in
floristic composition. Grazing exclusion deteriorated forage mineral content, phosphorus content,
neutral detergent fiber and, especially, crude protein and enzymatic digestibility. Concurrent floristic
change mediated change in crude protein (80%), enzymatic digestibility (55%) and forage content
in calcium (31%). Our study shows that plant diversity and forage quality are intimately linked
features of Atlantic mountain grasslands and highlights the importance of preserving leguminous
and dicotyledonous species to maintain the nutritive value of these grasslands.

Keywords: Iberian Peninsula; mediation analysis; mixed modelling; repeated-measures randomized
complete block experiment

1. Introduction

Atlantic and Pyrenean mountain grasslands located below 2000 m.a.s.l. (meters above
sea level), preserved by extensive multispecific (sheep, cattle, horses) livestock grazing
in local transhumance, are among the most biodiverse habitats in Europe [1]. Decreasing
plant diversity in these grasslands might cause negative consequences on ecosystem
functioning, stability, and services [2,3]. For instance, plant diversity enhanced quality-
adjusted yield and revenues, independently on management intensity, in a large-scale
biodiversity experiment in semi-natural grasslands [4]. Many studies have reported that
grazing contributes the maintenance of several ecosystem functions and services, especially
in historically grazed temperate grasslands; among others, landscape heterogeneity [5],
suitable habitat for wild vertebrates [6], plant diversity [7], forage quality [8–10], soil
microbial activity [11], nutrient cycling [12–14], pollinator networks [15] and invertebrate
diversity [16,17].

In addition to being a reservoir of biodiversity, semi-natural managed grasslands are
also an essential food resource for herbivores and prevent the consumption of supplemen-
tary feed (and the consequent economic cost) during the growing season (which could
last from four to six months), contributing to the sustainability of the grazing system [18]
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and GHG mitigation [19]. However, the future of the traditional management of these
ecosystems is under constant threat due to socio-economic and market changes [20]. Simi-
lar to most extensively managed European grassland systems [21], the use of mountain
grasslands by domestic livestock has declined slowly in most of the Pyrenean-Basque-
Cantabrian grasslands [22,23].

Grazing can influence forage quality (i.e., palatability and nutritional value) directly,
for instance, by promoting the growth of younger plant tissues [24]. This is expected in
historically grazed grasslands [10] with several livestock species exerting a non-selective
grazing pressure, where plants respond with a tolerance strategy [25]. Grazing may also
affect forage quality indirectly, through changes in floristic composition (e.g., [10,26,27]).
Non-selective shoot herbivory exerted by mixed livestock equalizes the ability of plant
species to compete for light [28], thus allowing the co-existence of short-statured highly
palatable legumes and nutrient-rich forbs [29,30], together with tall competitive grasses [31].
After grazing abandonment tall grasses tend to out compete remaining short-statured
species [7,32], reducing forage quality and plant diversity altogether. These effects vary
both in time and in space, but long-term manipulative studies that explore them are rare,
and the relative contribution of direct and indirect effects of grazing abandonment on
forage nutritive value are hardly known.

This study aims at addressing this knowledge gap by using the results of a repeated-
measurements (2005–2010) randomized complete block design experiment (RCBD) im-
plemented to test for the effects of ungulate grazing exclusion, via experimental fencing,
on both forage nutritive quality and species composition. After testing for the effects of
grazing exclusion over time on forage nutritive quality and floristic composition, we asked
whether simultaneous change in floristic composition mediates change in forage quality
and, if so, how much of the effect of grazing exclusion on forage quality is direct and how
much is mediated by concurrent change in floristic composition. For that purpose, we used
mediation analysis [33] with the aim to disentangle the direct effects of grazing exclusion
(X) on forage quality (Y) from those (indirect) effects mediated by change in floristic com-
position (M), as outlined in Figure 1. Thus, the direct effects of grazing exclusion on forage
quality (i.e., the path XY), as they are here framed, include any effect that is not mediated
by floristic composition but that may, in fact, be either truly direct or rather mediated by
factors other than floristic composition, such as the accumulation of an increasingly thick
organic layer that provides insulation to the soil [8]. Mediation analysis, though, must
consider the possible existence and influence of variable(s) Z (Figure 1), sometimes called
moderators, acting as potential confounders of the relationship between the mediator
M and the outcome Y [34]. In this work, Z is represented by the physical and chemical
properties of the topsoil. The importance of soil characteristics in determining species
composition has been highlighted in previous studies [35–37], and although the influence
of such characteristics on floristic composition is more pronounced in arid environments
compared to temperate grasslands, where species richness and diversity strongly respond
to grazing [38], it can also affect the floristic composition and should not be ignored.
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Figure 1. Directed acyclic graph representing direct and indirect (via concurrent change in floristic
composition) effects of grazing exclusion (X) on forage nutritive quality (Y). Floristic composition
acts as a mediating variable (M). The variable(s) Z denotes potential confounders of the mediator M
and the outcome Y. Grazing exclusion (X) is a randomized experimental factor, and so stands as a
parent node with no incoming arrows. The path from X to Y (X→ Y) represents the direct effects and
the path from X to Y through M (X→M→ Y) represents the indirect effects, once that the potential
confounding effects of the Z variables have been controlled for.

2. Materials and Methods
2.1. Study Area

The study area is located in the Aralar Natural Park (42◦59′48′′ N and 2◦06′51′′ W),
an 11,000-ha Special Area of Conservation (part of the European Natura 2000 network)
located in the Atlantic Basque Country (Northern Iberian Peninsula, see Supplementary
Figure S1). The area has oceanic climate, with mean annual temperature equal to 7 ◦C
and annual precipitation of about 1330 mm. A mixture of calcareous and acid substrates
is present in the area, but its oceanic climate with abundant precipitation throughout the
growing season has led to the development of acidic soils. In these soils, the average
of Kjeldahl total nitrogen is 6534 ppm, available phosphorus 8.3 ppm, mean soil water
content at 10-cm depth 46.3%, and pH 4.8 ppm [7]. The vegetation in the park comprises
a mosaic of gorse-heather shrublands and semi-natural grasslands, which are located
between 800 m.a.s.l and 1400 m.a.s.l. This area is managed as a communal land, called
Enirio-Aralar, and native grasslands included in the Habitat Directive are dominant: the
most relevant is the Jasiono-Danthonietum grassland (code 6230, subtype a, 92/43/EEC,
European Commission, 2013), located in relatively flat terrain (slope range: 0–20◦) and
primarily comprising perennial graminoids such as Festuca nigrescens subsp. microphylla
(St-Yves) Markgr.-Dannenb. (chewings fescue), Agrostis capillaris L. (common bent), Luzula
campestris (L.) DC. in Lam. & DC. (field woodrush) in Lam. & DC., and herbaceous
dicotyledons such as Galium saxatile L. (heath bedstraw), Trifolium repens L. (white clover)
and Cerastium fontanum Baumg. (starweed) [7,11]. The mean aboveground net primary
production (ANPP) of Jasiono-Danthonietum grassland is 1.97 t dry mass ha−1 year−1 with
standard error of 0.39 [39]. Livestock herds (sheep, cattle and horses) are managed in short
transhumance, using the lowland farms (below 700 m.a.s.l.) in winter, and extensively
using the upland grasslands (up to 1400 m.a.s.l.) from May to October–November. In Enirio-
Aralar communal land, the number of grazing animals has remained almost stable, with
18,000 dairy ewes, 800 beef cattle and 700 mares [11]. The stocking rate varies from 2.3 to
4.5 LU ha−1d−1 along the growing season [8]. The most common size of the transhumance
flocks is between 200 and 500 lactating ewes. Lactating ewes’ milk is destined mainly to the
production of the local Idiazabal Protected Denomination of Origin (PDO) cheese, awarded
worldwide, and sold mainly in local market or directly on farms.
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2.2. Experimental Design and Sampling Procedure

Experimental sites were selected using a GIS application, intersecting slope and veg-
etation maps and obtaining a new map with suitable areas for establishing exclusion
fences. Four field sites were selected randomly into this map to conduct the experi-
ment in the Jasiono-Danthonietum temperate grassland (Supplementary Figure S1): Oidui
(42◦59′16.6′′ N, 2◦5′59.4′′ W; 876 m.a.s.l), Uzkuiti (43◦0′50” N, 2◦4′3” W; 1300 m.a.s.l);
Igaratza (42◦59′9.25′′ N, 2◦2′9.7′′ W; 1247 m.a.s.l); and Alotza (43◦0′10.6′′ N, 2◦5′22′′ W;
1223 m. a.s.l). The minimum and maximum distance between any of these sites was
2175 m and 4720 m respectively and all sites were located on relatively flat terrain. In
order to simulate grazing cessation, one permanent fenced plots (50 m × 50 m each) was
installed in May 2005 at each experimental sites. Next to each fenced plot (‘exclosure’ level),
we delineated a grazed plot (‘grazing’ level), where dairy sheep, beef cattle and horses
were allowed to graze continuously during the vegetative period (from May–November).
Additionally, 3–4 temporary moveable cages of 1.5× 1.5 m were randomly allocated within
the grazing plot at the beginning of each growing season. Each month, quadrats outside
permanent fences were clipped inside temporary moveable cages that were randomly
relocated in grazed plot after biomass measurements. This procedure was carried out every
month. The sequential use of such temporary cages prevented that the plant biomass inside
the cage was eaten by grazing animals, and allowed us to estimate accurately the nutritive
quality of forage consumed by herbivores. Each month, three 1 m2-quadrats were clipped
per site and treatment at ground level. Unfortunately, in some cases it was not possible to
sample all quadrats due to problems with temporary cages and meteorological conditions,
so the total number of samples per growing season varied from 46 to 71 quadrats.

The experiment was implemented according to a repeated-measurements randomized
complete block (RCB) design [40]. The field sites acted as blocks (categorical random factor
‘Site’ with four levels). Grazing exclusion represented the experimental manipulation
(fixed factor ‘Treatment’ with three levels: grazing, cage, and exclosure). The factor
‘Time’, understood as a fixed but otherwise quantitative variable, constitutes a second
fixed factor. Time is indexed in months, starting in June 2005 (month number 1) and
ending in October 2010 (month number 65). Thereby, the basic RCB design converts into a
repeated-measurements RCB design. Therefore, the statistical model corresponding to this
experimental design is (using ‘effects’ model parameterization):

yijk = µ + τi + bij + δk + (τδ)ik + εijk (1)

where yijk corresponds to the response measured in treatment i in site j at time k; µ is the
level of reference (grazing, in this application); τi corresponds to the effect of treatment
i (with respect to the level grazing); bij is the term for the random factor ‘site’, i.e., for site
j under treatment i; δk corresponds to the effect of time k; (τδ)ik is the interaction between
the fixed effects; finally, εijk corresponds to the error. bij is independently and identically
distributed as normal (0, σb

2); likewise, εijk is independently and identically distributed as
normal (0, σ2).

Vegetation sampling took place from June 2005 to October 2010, using the quadrat
cover method [38,41]: once per month from May/June–October, floristic composition
was estimated visually within three randomly placed, non-overlapping 1-m2 quadrats
per plot. For estimating species cover, we used the following semi-quantitative indices:
+ (<1%), 1 (1–10%), 2 (11–20%), 3 (21–30%), 4 (31–40%), 5 (41–50%), 6 (51–60%), 7 (61–70%),
8 (71–80%), 9 (81–90%), 10 (91–100%). All vascular plants present within each quadrat
were identified at the species level. These semi-quantitative indices were transformed to
quantitative ones, replacing each index by the middle value of the cover range (for instance:
index 1 was replace by 5%). The index ‘+’ was converted to 0.5%. After composition
determination, standing plant biomass of the same 1-m2 quadrat was clipped in order to
measure forage quality variables. Each sample was stored in plastic bags, labelled, and
processed in the Eskalmendi Agricultural Laboratory, drying them in an oven at 60 ◦C for
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48 h. The nutritional variables thus measured were the following: macrominerals (calcium,
Ca; phosphorus, P; potassium, K; and magnesium, Mg), crude protein (CP, calculated as
nitrogen × 6.25), neutral detergent fiber (NDF), enzymatic digestibility (NDF cellulase, and
NDFcel). All analytical procedures follow standard protocols [42].

Topsoil properties were measured at the end of the experiment. Soil samples were
collected from a depth of 0–10 cm, using a 3-cm-diameter soil core sampler. Each soil
sample comprised a pool of 10 cores (subsamples) per 1-m2 quadrat. The measured soil
variables were as follows: pH, effective cation-exchange capacity (cmolc kg−1), effective
aluminium cation-exchange capacity (%), oxidable organic matter (%), and macronutrients,
including Kjeldahl total nitrogen (mg L−1), available phosphorus (mg L−1), available
potassium (mg L−1), available sodium (mg L−1), available calcium (mg L−1), and available
magnesium (mg L−1), and texture (percentages of gross and fine sand, silt, clay). All
analytical procedures were conducted in Fraisoro Agricultural Laboratory following ADAS
standard procedures [43].

2.3. Mixed Modelling

After exploratory data analysis [44], we applied mixed effects modeling [45] to test for
the effects of the treatment and time factors. Mixed models were fitted with function lme()
of package nlme [46] in R software [47]. Restricted maximum likelihood was employed
for parameter estimation. Including a correlation structure was needed in some cases,
albeit a simple structure of the type autoregressive process of order 1 (corAR1) sufficed.
The packages MuMIn [48] and sjPlot [49] were used to obtain R2 statistics and graphs,
respectively.

2.4. Mediation Analysis

To disentangle the direct effects of grazing exclusion on forage quality from the effects
mediated by concurrent change in floristic composition, mediation analysis was applied
using the model-based approach implemented in the R package mediation [50]. We used
data from only the end of the experiment (year 2010) to fit sets of linear models accord-
ing to our experimental design; then mediation effects were estimated from these fitted
models [51,52], via function mediation. Three variables derived from species composition
(legume-to-grass ratio, proportion of dicots, and Simpson’s index of diversity) were tried as
mediators, simultaneously controlling for potential confounding due to topsoil properties
(variables Z in Figure 1). Simpson’s index of diversity [53], which indicates the probability
that any two individuals in the sample will belong to different species, was computed as
follows:

Simpson’s index of diversity = 1−∑ p2
i (2)

where pi represents the proportional abundance of species i in the sample.
The value of the Simpson’s index ranges between 0 (minimum diversity) and 1 (maxi-

mum diversity). Observed Simpson’s index of diversity and Shannon index (H’) are often
correlated, even though the latter is upper-unbounded. Both direct and mediation effects
are defined according to [54]’s concept of potential outcomes (See also [55]). Significance of
mediation effects was assessed via quasi-Bayesian Monte Carlo tests [51].

2.5. Data Availability

The dataset is available from figshare: ForageQuality.Dataset.xls. To access the dataset,
go to https://doi.org/10.6084/m9.figshare.13336877.

3. Results
3.1. Forage Quality

Exploratory data analysis (Supplementary Tables S1 and S2 and Figure S2) showed
that most forage quality variables were sufficiently symmetrical for linear modeling pur-
poses; besides, they were significantly correlated among them, though, in general terms,

https://doi.org/10.6084/m9.figshare.13336877
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not strongly correlated (the exceptions are the pairs Mg-Ca and NFD-NDFcel, whose
correlations are close to or above |0.5|).

Except for ash and Ca, the interaction between treatment and time was significant in
all cases (Tables 1 and 2), indicating that the effect of treatment on Mg, K, P, CP, NDF, and
NDFcel depends on Time (Figure 2 and Supplementary Figure S3); main tests for time are
not significant in many cases, which is due to the observed crossover interactions (Figure 2a
and Supplementary Figure S3). Tukey’s post-hoc tests (Supplementary Table S3) indicate
that the levels grazing-exclosure and cage-exclosure are significantly different in all cases
but K, and also that the levels grazing-cage are significantly different only in the cases of
Mg, K, and CP.

Table 1. Hypothesis testing results, after linear mixed modelling, for eight forage quality properties and three derived
floristic composition variables measured in a repeated-measurements (2005–2010) RCB experiment, implemented to simulate
the effects of grazing exclusion on forage quality. Columns 2–4 report F-values, together with degrees of freedom (among
parentheses); p-values are indicated with asterisks. Degrees of freedom differ among variables because, in some cases,
there are missing values. Parameter estimation is reported in Table 2 and illustrated in Figures 2 and 3, Figures S3 and S4.
FF = Fixed Factors; RF = Random Factor.

Treatment Time Treat. × Time FF R2 RF R2

Ash 26.40 (2, 333) *** 0.39 (1, 333) n.s. 0.107 0.211
Ca 18.44 (2, 331) *** 28.14 (1, 331) *** n.s. 0.161 0.000
Mg 39.14 (2, 331) *** 0.54 (2, 331) 14.26 (2, 331) *** 0.210 0.130
K 18.77 (2, 331) *** 2.01 (2, 331) 16.49 (2, 331) *** 0.157 0.113
P 26.71 (2, 331) *** 9.45 (1, 331) ** 8.64 (2, 331) *** 0.137 0.285

CP 88.62 (2, 331) *** 2.90 (1, 331) 17.83 (2, 331) *** 0.381 0.022
NDF 16.95 (2, 331) *** 0.35 (1, 331) 8.10 (2, 331) *** 0.128 0.014

NDFcel 18.44 (2, 329) *** 1.59 (1, 329) 13.08 (2, 329) *** 0.156 0.030
Simpson’s index 0.69 (2, 329) 22.84 (1, 329) *** 7.86 (2, 329) *** 0.091 0.140

Legume-to-grass ratio 20.78 (2, 329) *** 7.69 (1, 329) ** 40.20 (2, 329) *** 0.228 0.182
Dicots proportion 21.60 (2, 329) *** 1.50 (1, 329) 27.81 (2, 329) *** 0.149 0.353

n.s., p > 0.05; **, p < 0.01; ***, p < 0.001.
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Table 2. Restricted maximum likelihood parameter estimation for the forage quality properties and floristic composition
measured in four field sites during 2005–2010. The parameter σb corresponds to the variability due to the random factor
Site; the parameter σ corresponds to the residual variability. Cage vs. grazing has been omitted, since, in most cases, these
effects are not significant (Supplementary Table S3). Hypothesis testing is reported in Table 1.

Variable Level of Reference:
Grazing (<intercept>) Exclosure vs. Grazing Time Exclosure × Time σb σ

Ash 7.96 −1.65 - - 1.16 2.08
Ca 0.62 −0.09 −0.003 - 0.00 0.20
Mg 0.14 −0.01 0.000 −0.001 0.02 0.03
K 0.94 0.18 0.001 −0.008 0.11 0.29
P 0.24 −0.01 −0.0003 −0.0005 0.03 0.04

CP 13.12 −0.82 0.01 −0.06 0.38 2.02
NDF 67.55 0.24 −0.04 0.09 0.59 4.62

NDFcel 42.64 0.51 0.02 −0.11 0.92 4.77
Simpson’s index 0.71 0.05 0.001 −0.001 0.03 0.07

Legume-to-grass ratio 0.14 0.09 0.002 −0.005 0.06 0.11
Dicots proportion 0.31 0.04 0.001 −0.003 0.06 0.08
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Figure 3. (a) Change in Simpson’s (plant) diversity index; (b) change in legume-to-grass ratio content. The observed
patterns for the change in the proportion of dicots is similar to that for legume-to-grass ratio (see Supplementary Figure
S4). Time is indexed in months, starting in June 2005 (month number 1) and ending in October 2010 (month number 65).
Restricted maximum likelihood estimates (ReML) for Simpson’s index and legume-to-grass ratio at the end of each season
(October) over the period 2005–2010 are presented in Supplementary Table S4.

In general, the indicators of forage nutritive quality Mg, K, P, CP, NDF, and NDFcel
under the levels grazing and cage of the treatment factor tend to remain stable or improve
over time, whereas they tend to deteriorate under the exclosure level of treatment. In
the case of Ca (Figure 2b), only both main effects are significant; in the case of ash, only
treatment is significant (Supplementary Figure S3). In summary, all quality descriptors
except ash deteriorated quickly after grazing exclusion (Table 2, Supplementary Figure S3),
with no generalized significant differences between grazing and cage levels of the treatment
factor.

3.2. Floristic Composition

Simpson’s index of plant species diversity remained stable over time within the ex-
perimental exclusions, whereas it improved outside the exclusions (Figure 3a; Tables 1
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and 2), i.e., under grazing and cage levels of the treatment factor. By contrast, whereas
the legume-to-grass ratio and the proportion of dicots deteriorated over time within the
experimental exclusions, they also tended to improve outside the exclusions (Figure 3b
and Figure S4; Tables 1 and 2). The evidence for statistical difference between grazing and
cage levels of the treatment factor, though significant for the legume-to-grass ratio, was, in
general terms, weak (Supplementary Table S3).

3.3. Mediation Analysis

As shown in Figure 4, using only the data corresponding to the end of the experiment
(i.e., after six years of grazing exclusion), either the legume-to-grass ratio or the proportion
of dicots mediated change in crude protein (p = 0.02), enzymatic digestibility (p = 0.02) and
forage content in cation calcium (p = 0.05). Further results (not detailed here) also hint at a
possible mediation effect of species diversity on potassium forage content (p = 0.09), but
no evidence of indirect effects was found regarding magnesium and phosphorus forage
content. Since ash did not change over time, mediation analysis was not applied to this
outcome variable.
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Figure 4. Direct (paths from X to Y) and indirect effects (paths from X to Y passing through M) of experimental grazing
exclusion (X) on descriptors of forage nutritive quality (Y), once that topsoil properties (Z) have been taken into account. (a)
Simultaneous change in the legume-to-grass ratio mediates 80% of change in crude protein content and, (b) 55% of change
in enzymatic digestibility; (c) concurrent change in the proportion of dicots mediates 31% of change in cation calcium forage
content.

4. Discussion

Discovering causal mechanisms is an essential objective of science [55], for which ran-
domized experiments constitute a primary tool [56]. Very often, though, even randomized
experiments may merely ascertain whether a given factor causes change in another (the
response), but without unveiling how exactly this relationship takes place [57]. By means
of linear mixed modelling [40,45], we found that experimental fencing to recreate exclu-
sion of ungulate grazers in an Atlantic grassland system reduced forage nutrient quality
indicators after just six years of experimental manipulation. These quality indicators were
mineral content, crude protein, phosphorus content, neutral detergent fiber and enzymatic
digestibility. Additionally, by means of mediation analysis [33,34] based on Robins and
Greenlands’ [54] concept of potential outcomes, we found that concurrent floristic change
at the end of our experiment mediates 80% of change in crude protein. Concurrent floristic
change also mediates 55% of change in enzymatic digestibility and 31% of change in forage
content in calcium. Thus, a substantial proportion of the decline in the said three forage
quality descriptors is due to simultaneous change in floristic composition.

Cessation of grazing in productive long-history grasslands, where plant species are
adapted to tolerate grazing, was expected to lead to reduction in forage nutrient content
and palatability [24,58]. Similar results have been, in fact, reported in humid and sub-
humid grasslands [10,26,59,60]. However, the positive temporal trends in forage quality
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found in both grazed treatments were unexpected. In a previous study in these field
sites, we reported an increasing trend of ANPP between 2005–2010 for both grazed and
fenced treatments [39], concurrent with an increase in stocking rate (cattle and, especially,
horses) [61]. Increased stocking rate increases defoliation intensity and fertilization by urine
and feces [62], both of which are known to contribute to improve forage quality. Defoliation
promotes the growth of younger, more palatable plant tissue [24] and fertilization favors a
resource acquisition strategy and may also improve forage quality [63,64]. Nevertheless,
we believe that the increasing trend in forage quality will probably be short-lived, since the
observed increases in stocking rate and ANPP are likely local trends within longer-term
oscillations.

We found significant, albeit small in size, differences between grazing and cage
treatments for a few forage quality indicators. These differences might be due to the fact that
plants collected from cages were complete fully-grown individuals with higher leaf:stem
ratio, whereas the plant samples collected in the grazed plots were necessarily constituted
by basal parts with lower leaf:stem ratio. In grasslands, foliar nitrogen allocation increases
from the bottom to the top of the plant canopy [65]. Grasses contain the leaf sheath and
other lignin-rich components in the basal area and dicots have the youngest (with less
lignified structures) tissues in the aerial part, due to the apical growth meristems. Lignin,
in turn, is the principal factor limiting forage digestibility [66]. Moreover, plant parts also
differ in carbon and nitrogen allocation: leaves are often of a higher quality than stems in
mature stage, due to lower C/N ratio and richer non-cell wall components (i.e., protein
and soluble carbohydrates) [58], whereas the temporal cages represent the forage that
was consumed by livestock in the previous time interval, the grazed plots represent what
remained after the grazing activity. For this reason, we believe that the best measure of
animal-consumed forage quality is the one measured inside the temporal cages.

That tall competitive grasses dominate after grazing exclusion, at the expense of
smaller species (i.e., legumes and forbs), is something known since Tansley and Adam-
son [32] conducted the first-known grazing exclusion experiment. Our results also agree
with the predictions of the general model of grazing for productive grasslands with a
long evolutionary history of grazing [67,68]. However, plant diversity, as measured by
Simpson’s index, remained stable after grazing exclusion. The short time elapsed (6 years.)
since the beginning of the experiment might explain the absence of diversity loss in the
excluded plots. This explanation is based in that a previous study carried out in the same
plots showed that the observed reduction of dicots proportion resulted in plant diversity
loss only after 13 years of grazing exclusion [7]. Thus, the observed steady reduction in
legumes and forbs after grazing exclusion may be an indication of posterior biodiversity
loss.

Dicots proportion and plant species diversity also increased, unexpectedly, under
grazing treatments. The aforementioned increase in stocking rate at the end of the experi-
mental period might also explain floristic changes in grazed plots. Creation of colonization
opportunities is an important mechanism by which herbivory promotes diversity [69].
Enhanced defoliation and trampling by herbivores opens new gaps in the vegetation and
brings about opportunities for ruderal species to become established [70]. Our results
support this hypothesis, since increased diversity is mainly explained by the appearance in
grazed plots of several annual species of ruderal-nitrophile nature such as Trifolium dubium
Sibth., Taraxacum gr. officinale Weber., Sherardia arvensis L., Poa annua L., Malva neglecta
Wallr., Medicago lupulina L., and Stellaria media (L.) Vill.).

Changes in floristic composition mediated the effect of grazing on several forage
quality indicators. In particular, the legume-to-grass ratio explained most of the variation
in crude protein (80%) and digestibility (55%). These results indicate that preserving
nitrogen-fixing legumes linked to extensive grazing is of paramount importance to preserve
the nutritional quality of Atlantic mountain grasslands. This is so because reducing the
proportion of fiber and increasing the proportion of protein of forage are key factors to
increase livestock production [71,72]. Moreover, dicots proportion mediated a significant
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part of the grazing effect on forage content in calcium (31%), but the significance of the
effect of Simpson diversity index in potassium content was marginal. Our results agree
with previous findings indicating that dicots are richer than grasses in minerals [29,30],
which are essential to meet the nutritional requirements of grazing animals. The abundance
of legumes and forbs also contributes to enhance the nutritive quality of milk produced
by lactating ewes: it correlates with higher fat content, richer in α-linolenic acid and
its biohydrogenation intermediates, as well as long-chain saturated branched-chain and
cis-monounsaturated fatty acids [73,74].

Our results show that preserving plant diversity is required in order to maintain
high forage nutritive value in Atlantic mountain grasslands. In a recent experiment on
biodiversity and ecosystem function, carried out in semi-natural grasslands, increasing
plant diversity promoted quality-adjusted yield [4]. However, opposite to our findings,
found that only biomass yield increased, whereas forage quality remained stable [4].
However, whereas in our experiment plant diversity is correlated with the abundance
of nutrient rich legumes and forbs, in Schaub et al.’s experiment, plant diversity was
uncorrelated with the presence of specific functional groups. This was because diversity
was experimentally augmented by randomly adding plant species. Thus, the link observed
in our study between conservation of biodiversity and forage nutritive quality is likely
applicable to only natural grassland systems where plant diversity correlates positively
with the presence of nutrient-rich plant functional groups.

5. Conclusions

Grazing is a pivotal process for mountain grasslands that links economic use with
emphasis on forage productivity and quality with conservation and management for
maintaining biodiversity. By unveiling and quantifying mediation mechanisms by which
changing plant diversity influences forage quality in Atlantic mountain grasslands, our
findings shed light on the precise nature of that link. Thus, in terms of grassland manage-
ment within the context of global change, our results underline the practical importance of
preserving, by means of extensive grazing, high leguminous-to-grass ratio and proportion
of dicotyledonous species to maintain the high nutritive value of these grasslands. Our
findings indicate that the traditional management of Atlantic mountain grasslands, with
livestock grazing in local transhumance regimes, promotes the sustainability of the grazing
system (by reducing the need of supplemental feed and consequent reduction on GHG
emissions), the production of high-quality local products with much-needed added eco-
nomic value and the conservation of biodiversity with all the ecosystem services linked
to this diversity. For Atlantic grasslands, and possibly for almost every grassland type,
sustainable economic use and biodiversity conservation are not opposed management
objectives.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-439
5/11/1/25/s1, Figure S1: Study area and experimental plots; Figure S2: Bivariate plots, histograms
and Kendall correlations for forage nutritive quality descriptors; Figure S3: Change in descriptors
of forage nutritive quality, Figure S4: change in dicots proportion, Table S1: Definition of forage
nutritive quality and floristic composition descriptors; Table S2: descriptive statistics of forage quality
properties and floristic composition; Table S3: Post-hoc (Tukey) tests; Table S4: Restricted maximum
likelihood estimates (ReML) for cation calcium content (% of dry matter, DM), crude protein (% of
dry matter, DM), Simpson’s index and legume-to-grass ratio at the end of each season (October) over
the period 2005–2010.
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