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In this paper, using Hamilton-Jacobi ansatz, we investigate scalar particle tunneling radiation in the Demianski-Newman
spacetime. We get the effective temperature with influences of quantum gravity and compare this temperature with the original
temperature of the Demianski-Newman black hole. We find that it is similar to the case of fermions; for scalar particles, the
influence of quantum gravity will also slow down the increase of Hawking temperatures, which naturally leads to remnants left

in the evaporation.

1. Introduction

Hawking proposed that there exists radiation in black
holes. The study of the black hole radiation is one of the
important directions of black hole physics. WKB approxi-
mation is usually used to calculate the tunneling rate of
emitted particles [1].

I o< exp [—Im i; prdr] = exp [—Im (prutdr— inr“drﬂ .

(1)

The closed path above goes across the horizon and
comes back. Related discussion about the tunneling rate
of emitted particles is discussed in detail in [2-4].

The null geodesic method can be used to calculate the
imaginary part of emitted particle action. It was used in the
work of Parikh and Wilczek [5]. In this method, the Painleve
coordinate transformation should be performed. The main
characteristics of these coordinates are that they are station-
ary and nonsingular around the horizon. So one can obtain
the imaginary part by canonical momenta and Hamilton
canonical equations. The other method which can be used

to calculate the imaginary part of emitted particles’ action is
the Hamilton-Jacobi Ansatz [6] which was first proposed in
[7, 8]. In this method, the action of the system accords with
the Hamilton-Jacobi equation. Taking into account the prop-
erty of the spacetime, one can make a separation of variables
on the action I =-wt + W(r) + (¢, z). Then, inserting the
results into the Hamilton-Jacobi equation, one can acquire
the imaginary part. Many researchers extend this work to
the tunneling radiation of fermions. The standard Hawking
temperatures of the spherically symmetric and charged black
holes were discussed in [9]. Other work about fermions’
tunneling radiation is discussed in [10-18]. Reference [19]
discussed a correction to the tunneling probability by taking
into account the back reaction effect. In Ref. [20], features
regarding the variation of the Hawking temperature, entropy,
and tunneling rate were revealed, including corrections due
to noncommutativity and back reaction. References [21, 22]
discussed the quantum tunneling beyond semiclassical
approximation and trace anomaly by the Hamilton-Jacobi
method. Reference [23] discussed the Hawking radiation
due to photon and gravitino tunneling. Topics related to
the entropy-area spectrum of a black hole were discussed
in Ref. [24-26]. Other important advances are discussed
in [27-30].
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Taking into account the theory of quantum gravity, there
exists a minimal observable length [31-35]. Then, there is the
generalized uncertainty principle (GUP)

AxAp > Z [1+BAp*], (2)

where 8= ﬂo(l;/hz), B, is a dimensionless parameter, and [,

is the Planck length. The derivation of the GUP is based on
the modified fundamental commutation relations. Kempf
et al. first modified commutation relations [36] and got
[x;» pj] = ihd;;[1 + Bp?], where x; and p, are operators of posi-
tion and momentum defined by

Xi = Xoj>

3

pi:pOi(1+ﬁp2)’ ©)

and here, x,; and p,; satisfy the basic quantum mechanics
commutation relations [x;, p,,| = ihd;;.

With consideration of the GUP, the cosmological con-
stant problem was discussed, and the finiteness of the con-
stant was derived in [37]. Based on the new form of GUP,
the Unruh effect has been discussed in [38]. The quantum
dynamics of the Friedmann-Robertson-Walker universe
was derived in [39]. Some predictions on postinflation pre-
heating in cosmology were made in [40]. Based on the gener-
alization, the thermodynamics of the black holes were
discussed again in [41-43] .

When effects of quantum gravity are taken into
account, we investigated fermions’ tunneling from the
charged and rotating black strings [44]. We found that
quantum gravity corrections slow down the increases of
the temperatures, which naturally leads to remnants left
in the evaporation. In [45], we discussed the tunneling of
fermions when effects of quantum gravity are taken into
account. We investigated two cases, black string and Kerr
AdS black hole. We found that for black string, the
uncharged and unrotating case, the correction of Hawking
temperature is only affected by the mass of emitted fer-
mions and the quantum gravitational corrections slow
down the increases of the temperature, which naturally
leads to remnants left in the evaporation, too. For another
case, the Kerr AdS black hole, we found that the quantum
gravitational corrections are not only determined by the
mass of the emitted fermions but also affected by the
rotating properties of the AdS black hole. So with consid-
eration of the quantum gravity corrections, an offset
around the standard temperature always exists.

In this paper, we do not discuss fermions but focus on
scalar particle tunneling radiation in the Demianski-
Newman spacetime with influences of quantum gravity.
The Demianski-Newman black hole is similar to Kerr-
Newman black hole. It is an extension of the Kerr-Newman
black hole [46]. Its expression of metric is more complex than
the Kerr-Newman black hole, so the calculation of rate of
tunneling radiation is not easy relatively. Using the
Hamilton-Jacobi ansatz, we investigate scalar particle tunnel-
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ing radiation in the Demianski-Newman spacetime. With
consideration of quantum gravity, we get the effective tem-
perature and compare this temperature with the original
temperature of the Demianski-Newman black hole. We find
that it is similar to the case of fermions; for scalar particles,
the quantum gravity effects also slow down the increase of
Hawking temperatures.

The rest is organized as follows. In the next section, based
on the modified commutation relations of operators of
position and momentum defined in [36], we will derive the
generalized Klein-Gordon equation in curved spacetime. In
Section 3, we investigate scalar particle tunneling radiation
in the Demianski-Newman black hole. Section 4 is devoted
to our conclusion.

2. Generalized Klein-Gordon Equation in
Curved Spacetime

In this section, to account for the effects from quantum grav-
ity, we first write the minimal length which is generalized
uncertainty principle as

AxAp > Z 1+ BAp?], (4)

then we investigate the Klein-Gordon equation in curved
spacetime with the effects of GUP. We adopt the position
representation and take the effect of quantum gravity into
consideration; the momentum operators are written as

Xi = Xoi>
Po; = ih0;, (5)
p; :pOi(l + ﬁP2)~

Because f3 is a small quantity, so we neglect the high
orders of 3 and get the square of momentum operators

P =pp' =1 |1-pr(3,9') |0, [1- i (9'0;) | &

e [a,.ai Y (afaj) (afai)} . ©

To take into account effects of quantum gravity, general-
ize the frequency as

@=E(1-BE?), (7)
where the energy operator takes the form of E=ihd,.

According to the energy-mass shell condition: p* + m? = E?,
the modified expression of energy can be written as

E=E[1-B(p*+m")]. (8)

So we get the expression of the Klein-Gordon equation in
the curved spacetime

9", =-m*¥. 9)
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To take into account the effects of quantum gravity, the
above equation takes the form

—(ih)20'3,¥ = [(ih)za"ai + mz} . (10)

According to the above expression and keeping the fore-
most order of f3, the generalized Klein-Gordon equation is
rewritten as

—(ih)*3'3,¥ = [(ih)za"ai + mz} [1 - zﬁ((ih)za"a,. + mZ)] '2
(1)

3. Scalar Particle Tunneling Radiation in the
Demianski-Newman Black Hole

In this section, we research the tunneling radiation of scalar
particles in the Demianski-Newman black hole by using the
above generalized Klein-Gordon equation. The metric is
given by [46]

A - a? sin%0 >
d =274 MY e 202 | sde?
> A
2(aB sin’0 — AA B? sin’0 — AA
~ (a sin )dtd(p+ sin ig?,
b3 b3
(12)
where

A=r*—2Mr+a* -,
B=r*+a*+ P,
A =asin’® + 2] cos 6,

S =r*+a® cos’0 + I* — 2al cos 6.

Here , a reprents the angular momentum per unit mass
and M represents the black hole mass. Parameter [ in
Demianski-Newman metric is an extended parameter rela-
tive to the Kerr-Newman black hole (when [=0, the
Demianski-Newman black hole reduces to the Kerr-
Newman black hole), it is related to rotation effect, and it
can generate potential field. Reference [46] inferred that it
may be some charge concerning spin. Black holes have inner

and outer horizon; we only consider the outer horizon: r}
=M+ VM?-a?+*. The entropy of the black hole is
defined as S=7(r}. +a* + I*). Because the black hole rotates,

it is not easy to research the particle tunneling directly, so we
take the above metric dragging transformation as follows:

d=¢- 0t (14)
where

aB sin®0 — AA
=277 02 (15)
B* sin“0 — AA

3
Then, we get
ds® = — AX 2 Edrz
("2 +a?+ 12)2 — AA/sin20 A
+ Zd6*—+ (Fra+ 12)2 - (‘;inze + 21 cos 0) ‘A d¢’.

(16)

To solve the generalized Klein-Gordon equation, we
suppose that the wave function of the scalar particle takes
the form

Ve [11.n0.4)| (17)

In the wave function, I represents the action of the scalar
particle. Inserting the wave function into the generalized
Klein-Gordon equation and the metric in Demianski-
Newman black hole, considering the WKB approximation,
keeping the leading order of 8 and #, and neglecting the
higher orders of them, we get

ol =

L o,1= KG(a,I) *?(691 a¢1 ) ]
~<1—2ﬁKG(a 0+ (aez) %(8¢1)2)+m2}>,

(rz +a’+ l2)2 —(a sin?@ + 2I cos 9) A
>

H?=

K?=3.

(18)

To get the solution of the above equation directly is not
easy. In order to take separation of variables easily, we con-
sider the form of the action of the scalar particle as follows:

I=—(w—jQ)t+W(r)+j0,¢), (19)

where w represents the energy of the emitted particle. We
insert the above expression of action I into the generalized
Klein-Gordon equation by using separation of variables;
then, we get

Cy(0,W)* + C,(3,W)* + Cy =0, (20)
where
C, =-2pG?,
C,=G(1-4pm?*), (21)
(€=jO)

C,=m?-2pm* -
0o=Mm pm F



Then, we can get the action of radial direction as follows:

dr [ o 2, glo-jQ)
WiziJ\/% (w=jQ2) —m F<1+ﬁm +ﬁw+>

r.o+a?+ I

= tim(w — j+) p— (1 + &) + (real part).

(22)

In the above equation, +/— represents outward/interior
solution, respectively, where

a
Q =
" 1‘}21++(12+l2
rp =M+ VM —-a+ P
AS (23)
F:

(r2 +a’+ 12)2 — AA%/sin20

G=

bl D>

The expression of & is pretty complicated, so we do not
write it here. Then, with WKB approximation, the tunneling
rate of the scalar particle can be written as

2 4 g2 4 2
=exp 4n(w—th+)L

According to the expression of the Boltzmann factor, we
can get the corrected Demianski-Newman temperature as

_ Tpr = Ty T, ~
e ey SR ey

where the original temperature of the Demianski-Newman
black hole is

rh+ - T’hf

T, (26)

4mry. +a? + 12

4. Discussion and Conclusions

In this paper, we discuss scalar particle tunneling radiation in
the Demianski-Newman spacetime with the effects of quan-
tum gravity. According to the effective Demianski-Newman
temperature, apparently, we can conclude that the corrected
Demianski-Newman temperature is lower than the original
temperature of the Demianski-Newman black hole. Because
B is a small quantity, it is similar to the case of fermions;
for scalar particles, the influence of quantum gravity will also
slow down the evaporation of the Demianski-Newman black
hole, so when the black hole is at the balance point, there are
remnants in the black hole.
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