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Study of charged particle multiplicity distribution in high-energy interactions of particles helps in revealing the dynamics of particle
production and the underlying statistical patterns, by which these distributions follow. Several distributions derived from statistics
have been employed to understand its behaviour. In one of our earlier papers, we introduced the shifted Gompertz distribution to
investigate this variable and showed that the multiplicity distributions in a variety of processes at different energies can be very well
described by this distribution. The fact that the shifted Gompertz distribution, which has been extensively used in diffusion theory,
social networking and forecasting, has been used for the first time in high-energy physics collisions remains interesting. In this
paper, we investigate the phenomenon of oscillatory behaviour of the counting statistics observed in the high-energy
experimental data, resulting from different types of recurrence relations defining the probability distributions. We search for
such oscillations in the multiplicity distributions well described by the shifted Gompertz distribution and look for retrieval of
additional valuable information from these distributions.

1. Introduction

The simplest observable in high-energy interactions is a
count of charged particles produced in a collision and its
mean value. Its distribution measured in full or partial phase
space forms both a tool for studying models and a probe for
particle dynamics. A large number of statistical probability
distribution functions (PDF) have been used to understand
its behaviour. These include Koba, Nielsen, and Olesen
(KNO) scaling [1], Poisson distribution [2, 3], binomial and
negative binomial [4–6] distributions, lognormal distribu-
tion [7], Tsallis distribution [8, 9], Weibull distribution
[10], modified forms of these, and several other distributions.
NBD has been one of the most extensively used. It was very
successful until the results from UA5 collaboration [11, 12]
were published. A shoulder structure was observed in the
multiplicity distribution in p�p collisions, showing its viola-
tions. It is also well established by various experimental
results that NBD fails with increasing deviations with the
growing number of charged particles produced. In order

to improve the agreement with data, 2-component or 3-
component NBD fits [13, 14] were also used.

In one of our recent papers, we introduced the shifted
Gompertz distribution [15], henceforth named as SGD, to
investigate the multiplicities in various leptonic and hadronic
collisions over a large range of collision energies. The distri-
bution was first introduced by Bemmaor [16] as a model of
adoption of innovations. The two nonnegative fit parameters
define the scale and shape of the distribution. This distribu-
tion has been widely studied in various contexts [17–19]. In
our earlier work [15], we proposed to use the SGD for study-
ing the charged particle multiplicities in high-energy particle
collisions and showed from a detailed study for collisions
in full phase space and also in limited phase space that
this distribution explained the experimental data very well
in high-energy particle collisions using leptons and hadrons
as probes. Subsequently, we also used it to calculate the
higher moments of a multiplicity distribution which also
serve as a powerful tool to unfold the characteristics and cor-
relations of particles [20]. We also used 2-component shifted
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Gompertz distribution, named as modified shifted Gompertz
(MSGD), to successfully improve the agreement between
data and fit. The details are given in our paper [15].

Wilk and Wlodarczyk, in one of their recent publica-
tions [21, 22], pointed out that the 2-component or multi-
component fits improve the agreement only at large N
(number of charged particles) but not at small N . They
showed that the ratio data/fit deviates significantly from
unity for small N . In a pursuit of retrieving additional
information from measured probability of producing N
particles PðNÞ, they have proposed the multiplicity distri-
bution (MD) by a recurrence relation between the adjacent
distributions PðNÞ and PðN + 1Þ. This corresponds to the
assumption of a connection existing only between the pro-
duction of N and N + 1 particles:

N + 1ð ÞP N + 1ð Þ = g Nð ÞP Nð Þ: ð1Þ

The multiplicity distribution is then determined by the
function form of gðNÞ, the simplest being a linear relation:

g Nð Þ = µ + νN , ð2Þ

where µ and ν are the parameters of the linear dependence.
The more general form of recurrence relation introduced in
Reference [21, 22] which connects the multiplicity N + 1
with all smaller multiplicities has the form

N + 1ð ÞP N + 1ð Þ = Nh i〠
N

j=0
CjP N − jð Þ: ð3Þ

All multiplicities are then connected by means of some
coefficients Cj, which redefine the corresponding PðNÞ in
the way such that the coefficients Cj connect the probability
of particle N + 1 with probabilities of all the N − j previ-
ously produced particles. These coefficients can then be
directly calculated from the experimentally measured PðNÞ
by exploiting the relationship. It is shown that Cj shows a
very distinct oscillatory behaviour which gradually dimin-
ishes with increasing N and nearly vanishes. The details are
given in Section 3.

In the present work, we use shifted Gompertz distribu-
tion and its modified forms using the data at high energies
from p�p and pp interactions to understand the existence of
such oscillatory behaviour and to check if we obtain the
results consistent with the ones from [21, 22].

In Section 2, we provide the essential formulae for the
probability distribution function of the shifted Gompertz dis-
tribution and modified 2-component shifted Gompertz dis-
tributions, in brief. A very brief description of how the
oscillations have been estimated in the multiplicity distribu-
tions by Wilk and Wlodarczyk [21, 22] is included for the
sake of completeness.

Section 3 presents the analysis of experimental data, the
fitted shifted Gompertz distributions, the fitted modified
shifted Gompertz, and the distributions giving out the oscil-
latory behaviour. Discussion and conclusion are presented
in Section 4.

2. Shifted Gompertz Distribution (SGD)

Let X be any nonnegative random variable having the shifted
Gompertz distribution with parameters b and ζ, where b > 0
is a scale parameter and ζ > 0 is a shape parameter. The value
of the scale parameter determines the statistical dispersion of
the probability distribution. The larger the value of the scale
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distributions for data on pp collisions at different
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s
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obtained by

the CMS experiment for jηj < 2:4.
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parameter, the more the distribution spread out, and the
smaller the value, the more concentrated the distribution.
The shifted Gompertz density function can take on different
shapes depending on the values of the shape parameter ζ. It is
a kind of numerical parameter which affects the shape of a
distribution rather than simply shifting it or stretching or
shrinking it. The multiplicity distribution is measured as
the probability distribution of a number of particles being
produced in a collision at a particular energy of collision
and follows certain phenomenological and statistical models.
The probability distribution function of X is given by

PX x ; b, ζð Þ = be− bx+ζe−bxð Þ 1 + ζ 1 − e−bx
� �� �

, x > 0: ð4Þ

The mean value ðE½X�Þ of shifted Gompertz distribution
is given by

E X½ � = 1
b

γ + log ζ½ � + 1 − e−ζ

ζ
+ Γ 0, ζ½ �

 !
, ð5Þ

where γ ≈ 0:5772156 stands for the Euler constant (also
referred to as the Euler-Mascheroni constant). It is well
established that at high energies, the most widely adopted,
negative binomial distribution [4–6], fails and deviates signif-
icantly for the high multiplicity tail, from the experimental
data. To extend the applicability of NBD, another approach
was introduced by Carruthers and Shih [4–6]. In this case,
a weighted superposition of two independent NBDs, one cor-
responding to the soft events (events without minijets) and
another to the semihard events (events with minijets), is
obtained. These distributions combine merely two classes of

events and not two different particle-production mecha-
nisms. We used the same method to obtain the superposed
distribution and call it 2-component shifted Gompertz distri-
bution (2-component SGD) as given by equation (6). The
multiplicity distribution of each component is independent
SGD. The concept of superposition originates from purely
phenomenological considerations. The two fragments of the
distribution suggest the presence of the substructure. Each
component distribution has two fit parameters, namely, scale
and shape parameters. The best fit overall distribution to the
experimental data, with optimised parameters, also gives an
estimate of fraction, α, of the soft collisions, at a given
c.m.s. energy. The dynamics of particle production is under-
stood in terms of weighted superposition of soft and semi-
hard contributions. Though these superimposed physical
substructures are different, the weighted superposition mech-
anism is the same. The physical substructures are described
by the same SGD multiplicity distributions and correspond-
ing correlation functions, which are QCD inspired genuine
self-similar fractal processes [4–6]. Same as NBD, SGD
allows to describe the multiplicity distribution on purely phe-
nomenological grounds. This may help in differentiating
between different phenomenological models. Details are
included in our earlier publication [15]:

PN α : b1, ζ1 ; b2, ζ2ð Þ = αPshGomp
soft Nð Þ

+ 1 − αð ÞPshGomp
semihard Nð Þ,

ð6Þ

where α is the fraction of soft events and ðb1, ζ1Þ and ðb2, ζ2Þ
are, respectively, the scale and shape parameters of the two
distributions.

2.1. Modified Forms of Shifted Gompertz Distribution. In this
paper, we adopt a different approach and investigate what

Table 1: χ2/ndf for charged multiplicity distribution fitted with shifted Gompertz, 2-component shifted Gompertz, MSGD1, and MSGD2
distributions for pp collisions.

Energy (GeV) Rapidity interval SGD 2-component SGD MSGD1 MSGD2
ηj j < χ2/ndf χ2/ndf χ2/ndf χ2/ndf

900 0.5 3.57/19 0.79/16 0.97/17 0.57/16

900 1.0 17.50/32 11.16/29 3.41/30 6.32/29

900 1.5 66.98/48 12.59/45 13.74/46 11.02/45

900 2.0 55.41/58 8.17/55 19.38/56 17.27/55

900 2.4 72.26/64 12.63/61 21.79/62 22.32/61

2360 0.5 8.13/19 2.75/16 5.41/17 4.24/16

2360 1.0 24.30/34 22.99/31 15.32/32 7.55/31

2360 1.5 28.08/45 3.74/42 7.51/43 6.02/42

2360 2.0 39.83/55 22.71/52 9.77/53 9.76/52

2360 2.4 59.55/66 7.85/63 17.34/64 33.03/63

7000 0.5 117.47/37 13.50/34 8.28/35 8.49/34

7000 1.0 223.71/66 27.11/63 28.33/64 13.27/63

7000 1.5 247.86/88 26.46/85 88.09/86 7.62/85

7000 2.0 164.61/108 25.09/105 35.37/106 10.17/105

7000 2.4 179.74/123 27.45/120 33.91/121 5.57/120
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kind of changes in the structure of the multiplicity distribu-
tion described by the SGD is necessary in order to describe
the same data by a single SGD, with accordingly modified
parameters b and ζ. To describe data using only a single
SGD, we allow the parameter b to depend on the multiplicity
N , as suggested by Wilk and Włodarczyk [21, 22]. To obtain
an exact fit of the distribution to the experimental data, a
nonmonotonic dependence of b on N is introduced. This
way, the scale parameter b remains the same in nature but

varies in accordance with the number of particles produced.
Such a change means that we preserve the overall form of
the SGD:

b = b Nð Þ = c exp a1 N − dj jð Þ, ð7Þ

where a1, d, and c are parameters. This leads to the modifica-
tion of SGD (equation (4)) which describes the data very well.
We call this as the modified-SGD1 (MSGD1). When another
nonlinear term with a coefficient a2 is added [21, 22] to bring
improved agreement with the data:

b = c exp a1 N − dj jð Þ + a2 N − dj jð Þ4� �
, ð8Þ

we call this second modification as MSGD2. Further, we
investigate the possibility of retrieving some additional infor-
mation from the measured PðNÞ.

3. Analysis and Results

Equation (3) can be reversed, and a recurrence formula can
be obtained for the coefficients Cj for an experimentally mea-
sured multiplicity distribution PðNÞ, as below:

Nh iCj = j + 1ð Þ P j + 1ð Þ
P 0ð Þ

� �
− Nh i〠

j−1

i=0
Ci

P j − 1ð Þ
P 0ð Þ

� �
: ð9Þ
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Figure 2: SGD, 2-component SGD, MSGD1, and MSGD2
distributions for p�p collisions at different

ffiffi
s

p
obtained by the UA5

experiment for jηj < 3:0.

Table 2: χ2/ndf for charged multiplicity distribution fitted with
shifted Gompertz, 2-component modified shifted Gompertz,
MSGD1, and MSGD2 distributions for different rapidity windows
in p�p collisions.

Energy
(GeV)

Rapidity
interval

SGD
2-

component
SGD

MSGD1 MSGD2

ηj j < χ2/ndf χ2/ndf χ2/ndf χ2/ndf
200 0.5 11.66/11 0.43/8 5.38/9 0.63/8

200 1.5 9.11/29 8.79/26 8.89/27 9.82/26

200 3.0 12.62/48 5.23/45 9.69/46 5.69/45

200 5.0 35.33/52 4.40/49 11.57/50 34.19/49

200 Full 3.96/25 2.21/22 3.50/23 17.68/22

540 0.5 26.90/20 21.33/17 19.92/18 20.53/17

540 1.5 17.22/26 10.30/23 15.20/24 8.20/23

540 3.0 176.38/28 147.68/25 130.11/26 124.13/25

540 5.0 69.33/33 26.12/30 54.43/31 35.54/30

540 Full 59.83/49 59.83/46 56.21/47 34.60/46

900 0.5 10.16/20 5.02/17 4.73/18 13.33/17

900 1.5 35.85/46 3.86/43 6.12/44 15.53/43

900 3.0 63.90/72 6.97/69 8.57/70 8.57/69

900 5.0 89.95/95 89.95/92 34.81/93 25.06/92

900 Full 67.16/47 11.23/44 15.67/45 13.69/44
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The errors on the coefficients Cj are calculated from the
variance:

Var Nh iCj

� �
= j + 1ð Þ

P 0ð Þ
� �2

Var P j + 1ð Þ½ �

+ 〠
j−1

i=0
Nh iCið Þ2Var P j − ið Þ½ �

+ 〠
j−1

i=0

P j − ið Þ
P 0ð Þ

� �2
Var Nh iCi½ �:

ð10Þ

Since the coefficients Cj are correlated, the last term of
equation (10) introduces dependence of the error in Cj on

the errors of all coefficients with i < j. This leads to a cumula-
tive effect with a large increase of errors with increasing rank
j. However, despite such large errors, the values of hNiCj lie
practically on the curve and the points do not oscillate in the
limits of errors. Hence, the errors can be estimated reason-
ably well, by neglecting this cumulative effect.

In the present work, calculations are performed using
the data from different experiments and following two col-
lision types:

(i) pp collisions at LHC energies
ffiffi
s

p = 900, 2360, and
7000GeV [23] are analysed in five rapidity windows,
jηj < 0:5 up to jηj < 2:4

(ii) p�p collisions at energies
ffiffi
s

p = 200, 540, and 900GeV
[11, 12] are analysed in full phase space as well as
in rapidity windows, jηj < 0:5 up to jηj < 5:0

The charged hadron multiplicity experimental distri-
butions are fitted with the SGD (equation (4)), the 2-
component SGD (equation (6)), MSGD1 (equation (7)),
and MSGD2 (equation (8)) for all rapidity windows at
all energies. It is observed that data do not show good agree-
ment with fits for the lower and for very high values ofN with
SGD. However, the agreement becomes very good in both the
limits when 2-component fits are performed. A further
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improvement is shown with MSGD1 and MSGD2 fits in
almost every case. To avoid a multitude of similar figures,
we only show the probability distributions in Figure 1, atffiffi
s

p = 7000, 2360, and 900GeV for pp collisions in one
rapidity window, jηj < 2:4. The fitted curves correspond to
the distributions, the SGD, the 2-component SGD, MSGD1,
and MSGD2. For comparison between different fits, Table 1
gives the χ2/ndf for all fits at different energies and rapid-
ities. In case of 2-component SGD, the α values are taken
from Reference [15].

Figure 2 shows the similar distributions at
ffiffi
s

p = 900,
540, and 200GeV for p�p collisions in one rapidity window
jηj < 3:0. The fitted curves correspond to the distributions,
the SGD, the 2-component SGD, MSGD1, and MSGD2. For
comparison between different fits, Table 2 gives χ2/ndf for
all fits at different energies and rapidities. It may be observed
in the cases of pp collisions; MSGD2 fits the data well in com-
parison with other distributions, particularly at higher ener-
gies. However, for the case of p�p collisions, in most of the
cases, 2-component SGD improves the fits and explains the
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data well. For a comparison between pp and p�p collisions at
the same

ffiffi
s

p = 900GeV, the trend is nearly the same and
MSGD2 fit the data best.

In Figures 3 and 4, we show the ratio plots for multiplicity
dependence of the ratio R = PdataðNÞ/PfitðNÞ for the pp data
shown in Figure 1 obtained from the fits SGD and MSGD2.
Figure 5 shows similar ratio plots for multiplicity dependence
of the ratio for the p�p data shown in Figure 2. As can be seen
from Figures 3 and 5, there are systematic deviations from
the fits of SGD from the data at low and high multiplicities.
The deviations get enhanced with increasing energy and high
multiplicity values, as can also be observed in Figures 1 and
2. In addition, a structure at smaller multiplicities can also
be observed. In order to understand this structure, the
modified forms of SGD have been introduced as MSGD1
and MSGD2 in equations (7) and (8). The ratio R calcu-
lated with MSGD2 becomes closer to unity in all the cases,
though the deviations are still present. For the possibility of
retrieving some additional information from experimental
multiplicity distribution, the recurrence relation given in
equation (9) is used to calculate the coefficients Cj. In some
cases, the 2-component SGD fits exceptionally well leading
to the R value around unity, as shown in Figure 4.

The coefficients Cj are calculated for the pp and p�p data at
different centre-of-mass energies and for various pseudora-
pidity windows. Figure 6 shows Cj for pp data in jηj < 2:4
and for the p�p data for jηj < 3:0. The figures show a very dis-
tinct oscillatory behaviour in both the cases. For the case of
pp interactions, oscillations occur with amplitude decreasing
with the rank j at all energies. It shows that the effect of an
increase in centre-of-mass collision energy has minimal
effect on the amplitude and the period of the resulting oscil-
lations. However, for the p�p interactions, the trend is
reversed, with the amplitude of oscillations growing with
the rank j and decrease in collision energy. This intriguing
property has also been observed by Rybczyński et al. [24].
The way Cj oscillates between pp and p�p collisions is clearly
different and may be a characteristic of matter-antimatter
collision. Abramovsky and Radchenko in their paper [25]
have described the particle production in inelastic collisions
in terms of quark and gluon strings. They have described
the multiplicity distributions in terms of 2-NBD and 3-NBD
and have shown how the pp and p�p collisions are fundamen-
tally different, which may lead to the observed differences. In
another interesting study by Ang et al. [26], similar differ-
ences have been observed in p�p (UA5) and pp (ALICE) data.

Figure 7 shows the coefficients Cj calculated for the pp
collision data at 7000GeV c.m. energy and for p�p collisions
at 200GeV, for different pseudorapidity windows. They all
show the distinct oscillatory behaviour with amplitude
increasing with the pseudorapidity window for both pp and
p�p collisions. It is also observed that the oscillations die out
with increasing rank j for all jηj bins for pp collisions,
whereas for p�p collisions, the oscillations grow stronger with
rank j with increasing jηj bin size and somewhat random
only in jηj < 5:0 bin. Similar observations are also observed
by Rybczyński et al. [24] in the CMS and ALICE data [23,
27]. In Figures 6 and 7, the errors on the data points are

not shown for the reason that the error bars intermingle
and blur the figures.

The coefficients Cj are evaluated by fitting the SGD, 2-
component SGD, MSGD1, and MSGD2 distributions to the
data. The variation of these coefficients with j is shown in
Figure 8 for pp data in one pseudorapidity window for differ-
ent energies. We find that Cj evaluated from the SGD fit do
not show this oscillatory behaviour, as compared with the
data. However, with the 2-component fit, they start showing
the oscillatory pattern, which further gets enhanced with
MSGD1 and MSGD2 fits, following the data closely. In case
of MSGD2 fits, coefficients Cj follow almost exactly the
oscillatory behaviour of Cj obtained directly from the data
at

ffiffi
s

p = 7000GeV. For ffiffi
s

p = 2360GeV, it is MSGD1, and
for

ffiffi
s

p = 900GeV, the 2-component SGD follow the experi-
mental values better. Similar results are obtained by analys-
ing the data for different pseudorapidity windows both of
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2:4 (a) and (ii) the UA5 data of p�p collisions at different energies
for pseudorapidity window jηj < 3 (b).

7Advances in High Energy Physics



pp and p�p collisions. However, we show the results for 7000,
2360, and 900GeV pp collisions for only jηj < 2:4 and simi-
larly for 900, 540, and 200GeV p�p collisions for jηj < 1:5, in
Figure 9. It may be observed that none of the fits consistently
follow the p�p data trends. This is also seen for other η win-
dows. To avoid too many similar figures, we present only
the representative figures.

The coefficients Cj evaluated from equation (9) depend
on Pð0Þ. In the experimental data from complex detectors,
such as CMS at the LHC, the probability Pð0Þ is very large
as compared to Pð1Þ. Due to large experimental uncertainties
associated with this bin, Pð0Þ is often omitted for the conven-
tional fits to the data. However, Pð0Þ is the only bin which is
very sensitive to the acceptance as explained in References
[21, 22]. To show the sensitivity to the value of Pð0Þ, we show
in Figure 10 the coefficients calculated by using the values P

ð0Þ ± δ for the pp data at
ffiffi
s

p = 900GeV for jηj < 2:4, where
δ is the error on Pð0Þ measurement. The coefficients vary
with different periods of oscillations, around the values calcu-
lated from Pð0Þ, as shown in the figure. Figure 11 shows the
oscillatory behaviour when Pð0Þ is not considered; Cj are
calculated starting with Pð1Þ. Coefficients Cj still show
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the oscillatory behaviour but with much reduced oscillation
amplitude, with oscillations dying out quickly.

In equation (9), the coefficients Cj connect each probabil-
ity, with every other probability. For example, PðN + 1Þ con-
nects to PðN − jÞ, the probabilities of particles produced

earlier. The most important feature of this recurrence rela-
tion is that Cj can be directly calculated from the experimen-
tally measured PðNÞ. In an interesting case study, starting
with the SGD, we make changes in successive probabilities
by 2%: we put Pð10Þ = PSGDð10Þ + Δ and Pð11Þ = PSGDð11Þ
− Δ with Δ = 0:02PSGD and study the variation of Cj as a
function of j. The results are shown in Figure 12 for pp colli-
sions at different energies but within the same jηj bin. Simi-
larly, Figure 13 shows the plots for p�p collisions at

ffiffi
s

p = 900,
540, and 200GeV for jηj < 3. The apparently insignificantly
small changes in probability resulted in rather dramatic
spikes occurring on the original PSGD and with rapidly fall-
ing amplitudes. This points to the sensitivity of the coeffi-
cients Cj. Such a change is then provided by the MSGD,
whereby spike influences then the consecutive coefficients
Cj and brings them to agreement with those obtained from
the experimentally measured PðNÞ. With increasing value of
j, smaller are the values of Cj and hence weakly influencing
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the final distribution. Such behaviour strongly indicates that
particles are produced in clusters.

4. Conclusion

In this paper, we show and reaffirm that the MDs possess a
fine structure which can be detected experimentally and ana-
lysed in terms of a suitable recurrence relation, such as the

one in equation (9). The coefficients Cj in the recurrence rela-
tion, which are directly connected with the combinants, give
a compelling evidence that phenomenon of oscillatory
behaviour of the modified combinants exists in the experi-
mental data on multiplicities. The coefficients Cj have been
calculated from the shifted Gompertz distribution and its
modified forms: weighted superposition of 2-component
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shifted Gompertz parametrizations and modified shifted
Gompertz distributions including nonlinearity to two differ-
ent orders, equations (7) and (8). The shifted Gompertz dis-
tribution, which we introduced in our publication [15], does
not show any oscillatory behaviour. However, its modified
forms show the oscillatory behaviour and agree with the
data very well. The oscillations are large at low multiplici-
ties for the pp data and tend to die out at large multiplici-
ties. In case of p�p collisions, the oscillations follow a reverse
pattern. The behaviour of oscillations observed in present
studies is very similar to what is observed in the case of
negative binomial distribution (NBD), by the authors who
pioneered the concept.
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