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Abstract 

 
Bayesian inference is to find posterior probabilities, but since it is difficult to find analytical solutions, it is 

often the case that approximate solutions are found. The variational Bayesian method is a powerful method 

for finding an approximate solution. It is a variational method in a stochastic system. Variational methods 

have been developed for the deterministic system since old times, and are one of the most powerful 

foundations for numerical solutions of a wide range of problems defined by partial differential equations. A 

detailed comparison and explanation of the classical variational principle and the variational Bayesian 

method are given, and the basic application examples of the variational Bayesian method are also given. 

Programming codes written in C are also shown to aid the readers’ understanding. 

 

 

Keywords: Variational method; bayesian inference; posterior probability; stochastic system; ritz method. 

 

1 Introduction  

 
Since the advent of deep learning, the neural network has brought a big innovation in the world. However, deep 

learning might be far from perfect, because of “the inference is a black box”, “unexpected answer due to the 

overfitting”, and “large scale of the network and long time learning”. The earliest answer to them should be 

given. Among them, the black box nature would be a fundamental problem. 

 

Bayesian inference performs inference similar to neural networks. Bayesian inference, like neural networks, 

learns and infers based on data, but it is more deductive and less data-dependent than neural networks. The 
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difference appears as a difference in the number of unknown variables. Neural networks have a much larger 

number of unknown variables. Although it can be said that the flexibility is high, overlearning is likely to occur 

and the basis of reasoning becomes incomprehensible. 
 

On the other hand, the learning of Bayesian inference is to find the likelihood function from the frequency 

distribution, and to find the posterior probability from the likelihood function and the prior distribution. 

Therefore, it can be said that the learning and reasoning of Bayesian inference are highly deductive. However, it 

is powerless when the relationship between cause and effect cannot be clearly mathematically modeled, such as 

when discriminating figures. Humans can easily discriminate figures and understand languages. However, it is 

extremely difficult to clearly mathematically model the process of judgment and understanding for these. Human 

judgment and understanding in this regard is a black box. 
 

Neural networks make learning decisions while remaining in the black box. In other words, neural networks are 

extremely flexible because they can be learned simply by giving input data and teacher data. In comparison, 

Bayesian inference requires some modeling, so it must be said that it is less flexible. From another point of view, 

it can be said that the mechanism of neural networks is closer to human learning and reasoning than to Bayesian 

reasoning. The price is that human learning, like neural network learning, takes a lot of time. 
 

Bayesian inference is to find posterior probabilities, but since it is difficult to find analytical solutions, it is often 

the case that approximate solutions are found. The variational Bayesian method is a powerful method for finding 

an approximate solution. The variational Bayesian method is a variational method in a stocastic system. 

Variational methods have been developed for the deterministic system since old times, and are one of the most 

powerful foundations for numerical solutions of a wide range of problems defined by partial differential 

equations. It is none other than the basis of the finite element method, which is one of the most influential 

numerical solutions that have made great progress in recent years. 
 

In this paper, we compare the variational principle of the deterministic case and the stocastistic case, and describe 

in detail the variational Bayesian method of the stocastistic case, which is comparable to the Ritz method of the 

deterministic case. 
 

Recently, the variational Bayesian method has been attracting attention in the field of information processing of 

the cerebrum, which is called the principle of minimum free energy, strictly speaking, the principle of minimum 

variational free energy [1-4]. Information processing in the brain is considered to be information processing that 

infers recognition from sensory information that is a stimulus from the outside world by sensory organs. Then, the 

idea is to regard it as a mathematical model for finding posterior probabilities by Bayesian inference. Friston 

introduces the variational Bayesian method into this reasoning process. Friston pointed out that the variational 

Bayesian method corresponds to Helmholz's principle of minimum free energy in thermodynamics, and that 

improving the accuracy of the sensory organs greatly contributes to improving the accuracy of inference. He calls 

it active reasoning [5-8]. 
 

2 Variational Principle in Deterministic System 
 

The variational principle has long been used for deterministic systems. First, the variational principle of a 

deterministic system will be explained by taking the Dirichlet problem, which is a boundary value problem of 

partial differential equations well known in fluid mechanics, and the Dirichlet principle, which is an equivalent 

variational principle, as an example. 

 

The Dirichlet problem is defined as follows: 
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The Dirichlet principle is given by: 
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Dirichlet's principle is obtained as follows: 
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This is proved by 
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The key to moving from a deterministic system to a stochastic system is what to think instead of Eq. (3). 

 

We describe the Ritz method, which is an important idea for applying the classical variational principle to 

numerical calculations. We approximate   in Eq. (2) is as follows: 

 

0
1

( , , ) ( , , ) ( , , )
N

i i
i

x y z x y z A x y z


    ,                                                                                                   (5a) 

 

where 

 

0 ( , , ) ( , , ) , ( , , ) 0, 1,2, ,ix y z g x y z on x y z i N on       .                                                    (5b) 

 

Substituting Eq. (5a) into F defined in Eq. (2) yields: 

 

From this, we obtain a system of linear algebraic equations for the following unknown coefficients 

1,2, ,iA i N : 
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Swapping the subscripts i  and j  yields the following equation: 
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By solving this, an approximate solution of   can be obtained. 

 
Next, we describe the least squares method that spans both deterministic and stocastistic systems. Suppose the 

observation equation is given below 

 

, 1,2, ,i iu i N    ,                                                                                                                  (9a) 

 
where 
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.                                                                                                                   (9b) 

 

The least squares method yields 
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Since the exponential function is a monotonically increasing function, the magnitude relationship does not 

change even if the exponential of S  is taken. If you take a minus, the minimum becomes the maximum: 

 

In summary, the following relationship can be obtained: 
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This is nothing but the maximum likelihood method. 

 

3 Variational Principle in Stochastic System: Variational Bayesian 

Principle 

 

3.1 Derivation of variational Bayesian principle 

 
The unknown variable in the stochastic case is the probability distribution, and whether the two probability 

distributions 1( )q   and 2 ( )q   are equal or not is measured by Kullback-Leibler divergence (KLD) 

1 2( ( ) || ( ))KL q q   of 1( )q   and 2 ( )q  ： 

 

1
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  .                                                                                              (13) 

 

KLD has the following properties: 
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Appendix A shows the proof of Eq. (14). However, since it is not symmetric, it is not a distance. It is a scale that 

shows the difference between the probability distributions 1( )q   and 2 ( )q  . 

 



 

 
 

 

Isshiki; AJPAS, 18(1): 57-78, 2022; Article no.AJPAS.88127 
 

 

 
61 

 

The equation corresponding to Eq. (3) in the case of the deterministic is: 

 

( )
( ( ) || ( | )) ( ) ln

( | )

q
KL q p q d

p


    

 
  .                                                                                         (15) 

 

Considering the non-negativeness of KLD, KLD is minimized when ( ) ( | )q p   . However, even if Eq. (15) 

itself is used as the minimum value problem for finding ( | )p   , a meaningful answer cannot be found. 

Variational Bayesian Principle (VBP) can be obtained by rewriting Eq. (15). Firstly, we have 
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                  (16) 

 

and rewrting further, we finally derive the functional F  of the the variational Bayesian principle: 

 

( )
( ( ) || ( , )) ( ) ln ( ( ) || ( | )) ln ( )
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F KL q p q d KL q p p
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    .                                  (17) 

 

At first glance, the unknown variable of the minimum value problem of F  seems to be only  , but   is also 

an unknown variable. Since both of the two terms on the right-hand side of Eq. (17) are non-negative (Appendix 

A), q  that minimizes F  is ( | )p   , but it can be seen that F  also has the effect of minimizing ( )p  . 

 

The variational Bayesian principle (VBP) is called the minimum principle of free energy in the fields of 

information processing in the brain. Strictly speaking, the free energy is the variational free energy (VFE). The 

principle of minimum free energy, which is proposed by Friston, concerns sensation and cognition. Since the 

sensation and the physical movement (action) are directly connected, the action causes a change in the sensation 

 , which improves the accuracy of reasoning. Improving the accuracy of reasoning through actions is called 

active reasoning. Active reasoning was demonstrated first by the principle of minimal free energy by Friston [1] 

clearly. 

 

For the reader's understanding, the model of information processing in the brain is shown in Fig. 1 and Fig. 2. In 

the following,   may be called sensation and   may be called recognition. 

 

 
 

Fig. 1. Information flow in environment and brain 
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Fig. 2. Bayes theorem 

 

4 Approximation of Variational Free Enerdy 

 

4.1 The simplest approximation (Estimation of the mean value of the posterior 

distribution) 

 
Replacing Bayesian inference with the Variational Bayesian Principle (VBP), and using Gaussian distribution 

approximation and the steepest descent method, can lead to calculations also feasible in the brain. For simplicity, 

we consider the case of one variable. First, we consider a Gaussian approximation of the likelihood function and 

prior distribution: 
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From this, in the VBP of Eq. (17), the joint distribution is approximated as follows: 
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An approximation of the posterior distribution ( | )p    can be obtained by approximating ( )q   under the 

condition of minimum VBP. Therefore, let us assume q in the following form, which means a normal 

distribution with a mean   variance of 0: 

 

( ) ( )q      ,                                                                                                                                   (20) 

 

where, ( )  is a Dirac delta function. The unknown variable is  . Substituting Eqs. (21) and (22) into Eq. (17) 

yields the following equation: 

 

2 2
2

2 2
2

[ ] ( ) ln ( ) ( ) ln ( , )

1 ( ( )) ( )
ln (0) ( ) ln 4

2

1 ( ( )) ( )
~ ln 4 .

2

F p

g
d

g

 

 

 

 

           

   
     

   


     

  
           

  
    

   

                                             (21) 

 

The term ln (0)  is a constant term and can be omitted. The integral for   is done in    . Also, [ ]F   

is used to indicate that   is an unknown variable. Therefore, the minimum VBP should be simplified and the 

following minimum value problem should be solved: 
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2 2

21 ( ( )) ( )
arg min ln ( , ) arg min log 4

2

g
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.                              (22) 

 

What should not be forgotten here is that the effect of the action on improving the accuracy of the sensations is 

not forgotten. Eq. (22) includes effect of actions: 
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To solve Eq. (23) by the steepest descent method, it becomes: 

 

( , ) ( , ) ,t t t

F F d
a a k t

da



  

 


  
   

  
.                                                                                             (24) 

 

Here, t  is a sequential step, t is a sequential unit, and k  is a sequential parameter. Since the algorithms of Eqs. 

(9.25) and (9.26) are simple, it is considered that they can be implemented in vivo. 

 

4.2 A second simplest approximation (estimation of mean value   and variance   of 

posterior distribution ... with the assumption of a sharp peak in joint distribution) 
 

We consider the Gaussian approximation for the likelihood function ( | )p    and the prior distribution ( )p   

are given by Eq. (18), so the joint distribution remains ( | )p    in Eq. (19). And ( )q  , which is an 

approximation of the posterior distribution ( | )p   , is replaced by Eq. (26) with mean   and variance  . Let 

us consider the case of approximation by the Gaussian distribution [2]. That is, 
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and 
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This time,   and   are unknown variables. 

 

Substituting Eqs. (25) and (26) for the functional F  of the VBP gives the following equation: 
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where 
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( , )E    is called energy. In the following discussion, the last constant on the right side is omitted. 
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Now, for the sake of simple results, assume that ( , )E    has a sharp peak at   : 
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.                                                             (29) 

 

Approximating the last term on the right-hand side of Eq. (27) using Eq. (26), we obtain 
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Substituting Eq. (30) into Eq. (27) yields the following equation: 
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To minimize F , the derivative of F  by   should also be 0, so let *  be   that satisfies this condition, then 

*  is: 
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Substituting Eq. (9.34) into Eq. (9.33) yields the following equation: 

 

1
( , ) ln(2 *)

2
F E     .                                                                                                                    (33) 

 

In the calculation of the mean  , the second term on the right side can be omitted in the calculation of Eq. (33): 

 

[ ] ( , )F E   .                                                                                                                                    (34) 

 

After all, the mean of ( )q  , which is an approximation of the posterior distribution ( | )p   , can be calculated 

by minimizing Eq. (34), and the variance can be calculated by Eq. (32). 

 

4.3 The most accurate approximation (Estimation of mean value   and variance   of 

posterior distribution ... no assumption of sharp peak in joint distribution) 
 

Without assuming the assumption of Eq. (29) that the joint distribution ( , )p    has a sharp peak, we consider 

the functional  F  of  the VBP without introducing any approximation other than the Gaussian approximation: 
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If we consider the minimum value problem by the steepest descent method, the mean   and variance   of the 

posterior distribution ( | )p    are the solutions to the following problem: 

 

( , )

( , ) arg min ( , )F
 

    .                                                                                                                    （36） 

 

Specifically, it becomes the following equation: 
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F F
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.                                                                                            （37） 

 

As can be seen from Eq. (35), F    and F    appear to be too complex to be implemented in vivo. 

 

Now, we consider a calculation that uses the VBP itself given by Eq. (35) from a mathematical interest. In 

preparation for that, the posterior distribution ( | )p    is derived from the joint distribution ( , )p   : 
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Integrating ( , )p    with   gives the following equation: 
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Using this, ( | )p    can be found as follows: 
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In the case of linear, that is, ( )g   , Eqs. (38) and (39) are as follows: 
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This is the correct answer for posterior probability ( | )p    when the joint probability is given by Eq. (25) and 

( )g   . The mean   and variance   are given by: 
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,
   

   

 
 

   
 

   
.                                                                                                          (42) 

 

Next, consider a method for calculating ( | )p    numerically from Eq. (35). first, we use 
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and simplify Eq. (35): 
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From Eq. (44), 0M F      and 0Z F      are given by the following equation using numerical 

differentiation: 
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Using Newton-Raphson's method to solve Eq. (45) gives a two-dimensional simultaneous algebraic equation for 

d  and d : 
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The derivative of M  and Z  is also calculated by numerical differentiation. Solving this, we can find d and 

d : 
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Z M M Z
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.                                                                    (47) 

 

Therefore, the convergence value of the iterative calculation that updates   and   according to the following 

equation is the solution: 

 

,new old new oldd d                                                                                                               (48) 

 

By substituting this into Eq. (37), the functional F of  the VBP can also be obtained. 
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The calculation code in C language is shown in Appendix B. Numerical calculations were actually performed, 

and the result by Eq. (41) and the result by the minimum VBP were compared. The following equation was 

assumed in the calculation: 

 

( )g   .                                                                                                                                              (49) 

 

The parameter values used in the calculation are shown below: 

 

1, 1.5, 2.5, 0.000001d d          .                                                                          (50) 

 

In Fig. 3, the initial values of   and   are set only for the minimum value of  , and   is sequentially 

increased while the previous convergence value is used as the initial value of the next calculation. For the initial 

value at the start, refer to Eq. (42). Figs. 3 and 4 show a comparison between the correct answer given in Eqs. 

(42) and (41) and the approximate solution by solving Eq. (45) numerically, and sufficient accuracy is 

obtained. 

 

 
 

Fig. 3. Mean and variance of ( | )p    

 

 
 

Fig. 4. Posterior probability ( | )p    at 0   
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5 Conclusion 

 
The variational Bayesian method is a variational principle in a stocastistic system. Using the variational 

Bayesian method, it is possible to obtain an approximation of unknown parameters contained in posterior 

probabilities, similar to the Ritz method in the classical variational principle applied to a deterministic system. 

 

In this paper, we gave a detailed explanation of the classical variational principle and the variational Bayesian 

method, and the basic application examples of the variational Bayesian method. 

 

C language code is also included to deepen the reader's understanding. Numerical calculations would be very 

useful, when the stochastic system is nonlinear. 

 

Recently, the variational Bayesian method has been attracting attention in the field of information processing in 

the cerebrum, which is called the principle of minimum free energy. 
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Appendix A. Non=Negativity of Kullbacl-Leibler Dibergence 
 

The natural logarithm has the following properties: 

 

ln 1x x  .                                                                                                                                          (A.1) 

 

If the probability distribution is continuous, then if   is the set of all   where ( )q   is not zero, then the 

following equation holds: 

 

ln 1 1 0
p p

q d q d pd qd pd
q q

    
    

 
               

 
.                                             (A.2) 

 

Therefore, we obtain: 

 

ln lnq pd q qd 
 

    .                                                                                                                (A.3) 

 

Even if 0 is added to both sides, the magnitude relationship does not change, so the following equation holds: 

 

ln lnq pd q qd 
 

 
  .                                                                                                                  (A.4)  

 

Therefore, in the case of continuous probabilities, the non-negativeness of Kullback-Leibler divergence is 

derived: 

 

ln 0 ln 0
p q

q d q d
q p

 
 

 
    .                                                                                                 (A.5) 

 

If the probability distribution is discrete, let I  be the set of all i  whose 
iq  is not zero. 

 

ln 1 1 0i i

i i i i i
i I i I i I i I i I

i i

p p
q q p q p

q q    

 
               

 
.                                                            (A.6) 

 

Therefore, we obtain: 

 

ln lni i i i
i I i I

q p q q
 

    .                                                                                                                     (A.7) 

 

Even if 0 is added to both sides, the magnitude relationship does not change, so the following equation holds: 

 

1 1

ln ln
n n

i i i i
i i

q p q q
 

  .                                                                                                                          (A.8) 

 

Therefore, in the case of discrete probabilities, the non-negativeness of Kullback-Leibler divergence is also 

derived: 

 

1 1

ln 0 ln 0
n n

i i

i i
i i

i i

p q
q q

q p 

    .                                                                                                          (A.9) 
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Appendix B. C-language Code for Numerical Calculation of Posterior 

Probability Using Variational Bayesian Method 
 

(1) Code file: PostProbNCalByVFE.c 

 

// -------------------------------------------------------------------------------------  // 

//                                                                                       // 

// File Name: PostProbNCal.c                                       2022.04.25-2022.04.28 // 

// File Name: PostProbNCalByVFE.c                                  2022.04.28-2022.05.08 // 

//                                                                                       // 

//    Numerical Cal. of Posteriro Prob.                                                  // 

//                                                                                       // 

// -------------------------------------------------------------------------------------  // 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

 

#define PI     3.14159265358979323846    // 円周率の定義 

 

// ----- function -------------------------------------------------------- // 

 

void main(); 

void pushKey(); 

 

double F(double, double, int);                   // F(myu,zeta) 

double M(double, double, int);                   // M(myu,zeta) 

double Z(double, double, int);                   // Z(myu,zeta) 

 

double DMmyu(double, double, int);               // DM/Dmyu(myu,zeta,m) 

double DMzeta(double, double, int);              // DM/Dzeta(myu,zeta,m) 

double DZmyu(double, double, int);               // DZ/Dmyu(myu,zeta,m) 

double DZzeta(double, double, int);              // DZ/Dzeta(myu,zeta,m) 

 

// ----- 変数 ----------------------------------------------------- // 

 

char title_memo[5000]; 

 

int Ntht;                         // number of divisiob of theta 

int Nphi;                         // number of divisiob of phi 

 

int ITR;                          // number of iteration in Newton-Raphson method 

 

double Tht;                       // -Tht <= tht <= Tht 

double tht[2001];                 // theta 

double dtht;                      // dtheta 

double Phi;                       // -Phi <= tht <= Phi 

double phi[101];                  // phi 

double dphi;                      // dphi 

 

double myu;                       // mean of probability q(tht) 

double zeta;                      // variance of probability q(tht) 

double myu_ini;                   // initial value of myu 

double zeta_ini;                  // initial value of zeta 

double dmyu;                      // dmyu 
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double dzeta;                     // dzeta 

double myub;                      // myyu_bar 

double Sphi;                      // variance of liklihood functio p(phi|tht) 

double Stht;                      // variance of prior probability p(tht) 

double delm;                      // delm 

double delz;                      // delz 

double alp;                       // parameter for iteration 

 

double myuRec[101];               // mean of p(tht|phi); 

double zetaRec[101];              // variance of p(tht|phi); 

 

double p_phiBtht[20001][101];      // p(tht|phi): liklihood function 

double p_tht[20001];               // p(tht)    : prior probability 

double p_tht_phi[2001][101];      // p(tht,phi): joint probability 

double p_phi[2001];               // p(phi)    : marginal distribution 

double p_thtBphi[2001][101];      // p(tht|phi): posterior probability 

 

double p_thtBphi_VFE[2001][101];  // p(tht|phi): posterior probability by VFE 

  

FILE *fp_inp;                     // file pointer of input file 

FILE *fp_out;                     // file pointer of output file 

 

char InputDataFile[80];           // input file name 

char OutputDataFile[80];          // output file name 

 

char buf[5000];                   // buffer 

 

int prt_ctrl;                     // print control; if prt_ctrl = 1, then print 

 

// ---------------------------------------------------------------- // 

 

void main() 

{ 

    int i, m, itr; 

    double sum; 

 

    //// open input file for parameters 

    sprintf(InputDataFile, "PostProbNCalByVFE_inp.dat"); 

 

    if ((fp_inp = fopen(InputDataFile, "r")) == NULL) { 

        printf("Failed in Reading Input Data File! ... %s\n", InputDataFile); 

        exit(1); 

    } 

 

    //// open output file 

    sprintf(OutputDataFile, "PostProbNCalByVFE_out.csv"); 

 

    if ((fp_out = fopen(OutputDataFile, "w")) == NULL) { 

        printf("Failed in Reading Output Data File! ... %s\n", OutputDataFile); 

        exit(1); 

    } 

 

    //// input from file 

    fscanf(fp_inp, "%s", title_memo); 

 

    fscanf(fp_inp, "%s %d", buf, &Ntht); 

    fscanf(fp_inp, "%s %d", buf, &Nphi); 
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    fscanf(fp_inp, "%s %d", buf, &ITR); 

 

    fscanf(fp_inp, "%s %lf", buf, &Tht); 

    fscanf(fp_inp, "%s %lf", buf, &Phi); 

 

    fscanf(fp_inp, "%s %lf", buf, &myub); 

    fscanf(fp_inp, "%s %lf", buf, &Sphi); 

    fscanf(fp_inp, "%s %lf", buf, &Stht); 

 

    fscanf(fp_inp, "%s %lf", buf, &myu_ini); 

    fscanf(fp_inp, "%s %lf", buf, &zeta_ini); 

 

    fscanf(fp_inp, "%s %lf", buf, &delm); 

    fscanf(fp_inp, "%s %lf", buf, &delz); 

    fscanf(fp_inp, "%s %lf", buf, &alp); 

 

    fscanf(fp_inp, "%s %d", buf, &prt_ctrl); 

    fclose(fp_inp); 

 

    //// output to display 

    printf("memo: %s\n", title_memo); 

 

    printf("Ntht  = %d\n", Ntht); 

    printf("Nphi  = %d\n", Nphi); 

 

    printf("ITR  = %d\n", ITR); 

 

    printf("Tht   = %12.6f\n", Tht); 

    printf("Phi   = %12.6f\n", Phi); 

 

    printf("myub  = %12.6f\n", myub); 

    printf("Sphi  = %12.6f\n", Sphi); 

    printf("Stht  = %12.6f\n", Stht); 

 

    printf("myu_ini  = %12.6f\n", myu_ini); 

    printf("zeta_ini = %12.6f\n", zeta_ini); 

 

    printf("delm     = %12.6f\n", delm); 

    printf("delz     = %12.6f\n", delz); 

    printf("alp      = %12.6f\n", alp); 

 

    printf("prt_ctrl = %d\n", prt_ctrl); 

    printf("\n"); 

 

    //// output to file 

    fprintf(fp_out, "memo: %s\n", title_memo); 

    fprintf(fp_out, "\n"); 

 

    fprintf(fp_out, "Ntht =, %d\n", Ntht); 

    fprintf(fp_out, "Nphi =, %d\n", Nphi); 

 

    fprintf(fp_out, "ITR =, %d\n", ITR); 

 

    fprintf(fp_out, "Tht =, %12.6f\n", Tht); 

    fprintf(fp_out, "Phi =, %12.6f\n", Phi); 
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    fprintf(fp_out, "myub =, %12.6f\n", myub); 

    fprintf(fp_out, "Sphi =, %12.6f\n", Sphi); 

    fprintf(fp_out, "Stht =, %12.6f\n", Stht); 

 

    fprintf(fp_out, "myu_ini =, %12.6f\n", myu_ini); 

    fprintf(fp_out, "zeta_ini =, %12.6f\n", zeta_ini); 

 

    fprintf(fp_out, "delm =, %12.6f\n", delm); 

    fprintf(fp_out, "delz =, %12.6f\n", delz); 

    fprintf(fp_out, "alp =, %12.6f\n", alp); 

 

    fprintf(fp_out, "prt_ctrl =, %d\n", prt_ctrl); 

    fprintf(fp_out, "\n"); 

 

    pushKey(); 

 

 

    ///////////////////////////// 

    //                         // 

    //   Analytical Solution   // 

    //                         // 

    ///////////////////////////// 

 

    dtht = 2.0*Tht/(Ntht+0.0); 

    for (i = 0; i < Ntht; i++) 

        tht[i] = -Tht+(i+0.5)*dtht; 

 

    dphi = 2.0*Phi/(Nphi+0.0); 

    for (m = 0; m < Nphi; m++) 

        phi[m] = -Phi+(m+0.5)*dphi; 

 

 

    // p(phi|tht): liklihood function 

    for (m = 0; m < Nphi; m++) 

        for (i = 0; i < Ntht; i++) 

            p_phiBtht[i][m] = 1.0/sqrt(2.0*PI*Sphi)*exp(-(phi[m]-tht[i])*(phi[m]-tht[i])/2.0/Sphi); 

 

 

    fprintf(fp_out, "**********\n"); 

    i = Ntht/2; 

    fprintf(fp_out, "i, m, tht[Ntht/2], phi[m], p_phiBtht[Ntht/2][m]\n"); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "%d, %d, %lf, %lf, %lf\n",  

                i, m, tht[i], phi[m], p_phiBtht[i][m]); 

    fprintf(fp_out, "\n"); 

 

 

 

    fprintf(fp_out, "p(phi|tht):, liklihood function\n"); 

    fprintf(fp_out, "phi, "); 

    for (i = 0; i < Ntht; i++) 

        fprintf(fp_out, "tht=%6.3f, ", tht[i]); 

    fprintf(fp_out, "\n"); 

    for (m = 0; m < Nphi; m++) { 

        fprintf(fp_out, "%lf, ", phi[m]); 

        for (i = 0; i < Ntht; i++) 

            fprintf(fp_out, "%lf, ",  p_phiBtht[i][m]); 
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        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

    // p(tht): prior probability 

    fprintf(fp_out, "p(tht):, prior probability\n"); 

    fprintf(fp_out, " i, tht, p_tht\n"); 

    for (i = 0; i < Ntht; i++) { 

        p_tht[i] = 1.0/sqrt(2.0*PI*Stht)*exp(-(tht[i]-myub)*(tht[i]-myub)/2.0/Stht); 

        fprintf(fp_out, "%d, %lf, %lf\n", i, tht[i], p_tht[i]); 

    } 

    fprintf(fp_out, "\n"); 

 

    // p(tht,phi): joint probability 

    for (i = 0; i < Ntht; i++) 

        for (m = 0; m < Nphi; m++) 

            p_tht_phi[i][m] = 1.0/sqrt(2.0*PI*Stht)*1.0/sqrt(2.0*PI*Sphi) 

                              *exp(-(phi[m]-tht[i])*(phi[m]-tht[i])/2.0/Sphi 

                                   -(tht[i]-myub)*(tht[i]-myub)/2.0/Stht); 

 

    fprintf(fp_out, "p(thtCphi):, joint probability\n"); 

    fprintf(fp_out, "tht, "); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "phi=%6.3f, ", phi[m]); 

    fprintf(fp_out, "\n"); 

    for (i = 0; i < Ntht; i++) { 

        fprintf(fp_out, "%lf, ", tht[i]); 

        for (m = 0; m < Nphi; m++) 

            fprintf(fp_out, "%lf, ",  p_tht_phi[i][m]); 

        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

    // p(phi): marginal distribution 

    fprintf(fp_out, "p(phi):, marginal probability\n"); 

    fprintf(fp_out, "m, phi, p(phi)\n"); 

    for (m = 0; m < Nphi; m++) { 

        p_phi[m] = 1.0/sqrt(2.0*PI*(Stht+Sphi))*exp(-(phi[m]-myub)*(phi[m]-myub) 

                                  /2.0/(Stht+Sphi)); 

        fprintf(fp_out, "%d, %lf, %lf\n", m, phi[m], p_phi[m]); 

    } 

    fprintf(fp_out, "\n"); 

 

    // p(tht|phi): posterior probability...analytical 

    for (i = 0; i < Ntht; i++) 

        for (m = 0; m < Nphi; m++) 

            p_thtBphi[i][m] = p_tht_phi[i][m]/p_phi[m]; 

 

    fprintf(fp_out, "p(tht|phi):, posterior probabilityy...analytical\n"); 

    fprintf(fp_out, "tht, "); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "phi=%6.3f, ", phi[m]); 

    fprintf(fp_out, "\n"); 

    for (i = 0; i < Ntht; i++) { 

        fprintf(fp_out, "%lf, ", tht[i]); 

        for (m = 0; m < Nphi; m++) 

            fprintf(fp_out, "%lf, ",  p_thtBphi[i][m]); 
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        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

    fprintf(fp_out, "p(tht|phi):, posterior probabilityy...analytical\n"); 

    fprintf(fp_out, "phi, "); 

    for (i = 0; i < Ntht; i++) 

        fprintf(fp_out, "tht=%6.3f, ", tht[i]); 

    fprintf(fp_out, "\n"); 

    for (m = 0; m < Nphi; m++) { 

        fprintf(fp_out, "%lf, ", phi[m]); 

        for (i = 0; i < Ntht; i++) 

            fprintf(fp_out, "%lf, ",  p_thtBphi[i][m]); 

        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

    ////////////////////////////////// 

    //                              // 

    // Numerical Solution by        // 

    // Variational Basian Principle // 

    //                              // 

    ////////////////////////////////// 

 

    // Newton Raphson 

 

    myu = myu_ini; 

    zeta = zeta_ini; 

 

    for (m = 0; m < Nphi; m++) { 

        if (prt_ctrl == 1) { 

            fprintf(fp_out, "m =, %d, phi =, %lf\n", m, phi[m]); 

            fprintf(fp_out, "itr, dmyu, dzeta, myu, zeta, F\n"); 

            fprintf(fp_out, "%d, %lf, %lf, %lf, %lf\n", 0, 0.0, 0.0, myu, zeta); 

        } 

        for (itr = 1; itr <= ITR; itr++) { 

            dmyu = -(M(myu,zeta,m)*DZzeta(myu,zeta,m) - Z(myu,zeta,m)*DMzeta(myu,zeta,m)) 

                    /(DMmyu(myu,zeta,m)*DZzeta(myu,zeta,m) 

                      - DZmyu(myu,zeta,m)*DMzeta(myu,zeta,m)); 

            dzeta = -(DMmyu(myu,zeta,m)*Z(myu,zeta,m) - DZmyu(myu,zeta,m)*M(myu,zeta,m)) 

                    /(DMmyu(myu,zeta,m)*DZzeta(myu,zeta,m) 

                      - DZmyu(myu,zeta,m)*DMzeta(myu,zeta,m)); 

 

            myu += alp*dmyu; 

            zeta += alp*dzeta; 

 

            if (prt_ctrl == 1) 

                fprintf(fp_out, "%d, %lf, %lf, %lf, %lf, %lf\n", 

                        itr, dmyu, dzeta, myu, zeta, F(myu,zeta,m)); 

        } 

        if (prt_ctrl == 1) 

            fprintf(fp_out, "\n"); 

 

        myuRec[m] = myu; 

        zetaRec[m] = zeta; 

    } 
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    fprintf(fp_out, "mean and variance of p(tht|phi)\n"); 

    fprintf(fp_out, "m, phi,myuRec, my_ex, zetaRec, zeta_ex\n"); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "%d, %lf, %lf, %lf, %lf, %lf\n", 

                m, phi[m], myuRec[m], (Sphi*myub+Stht*phi[m])/(Stht+Sphi), 

                zetaRec[m], Sphi*Stht/(Stht+Sphi)); 

    fprintf(fp_out, "\n"); 

 

    // p(tht|phi) by VFE) 

    for (i = 0; i < Ntht; i++) 

        for (m = 0; m < Nphi; m++) 

            p_thtBphi_VFE[i][m] = 1.0/sqrt(2.0*PI*zetaRec[m])*exp(-(tht[i]-myuRec[m]) 

                                  *(tht[i]-myuRec[m])/2.0/zetaRec[m]); 

 

    fprintf(fp_out, "p(tht|phi):, posterior probability by VFE...numerical\n"); 

    fprintf(fp_out, "tht, "); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "phi=%6.3f, ", phi[m]); 

    fprintf(fp_out, "\n"); 

    for (i = 0; i < Ntht; i++) { 

        fprintf(fp_out, "%lf, ", tht[i]); 

        for (m = 0; m < Nphi; m++) 

            fprintf(fp_out, "%lf, ",  p_thtBphi_VFE[i][m]); 

        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

 

    fclose(fp_out); 

 

    pushKey(); 

} 

 

// ---------------------------------------------------------------- // 

 

 void pushKey() 

{ 

    printf("\n      Push Return Key! "); 

    getchar(); 

    getchar(); 

} 

 

// ---------------------------------------------------------------- // 

 

double F(double myu, double zeta, int m) 

{ 

    int i; 

    double sum; 

 

    sum = 0.0; 

    for (i = 0; i < Ntht; i++) 

        sum += exp(-(tht[i]-myu)*(tht[i]-myu)/2.0/zeta)*(phi[m]-tht[i]) 

                    *(phi[m]-tht[i])/2.0/Sphi; 

    sum *= dtht; 

    sum *= 1.0/sqrt(2.0*PI*zeta); 

 

    return (-0.5*log(zeta)+0.5*log(Sphi*Stht)+0.5*log(2.0*PI) 
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           +(myu-myub)*(myu-myub)/2.0/Stht) 

           + zeta*(-1.0/2.0/zeta+1.0/2.0/Stht) + sum; 

} 

 

// ---------------------------------------------------------------- // 

 

double M(double myu, double zeta, int m) 

{ 

    return (F(myu+delm,zeta,m)-F(myu,zeta,m))/delm; 

} 

 

// ---------------------------------------------------------------- // 

 

double Z(double myu, double zeta, int m) 

{ 

    return (F(myu,zeta+delz,m)-F(myu,zeta,m))/delz; 

} 

 

// ---------------------------------------------------------------- // 

 

double DMmyu(double myu, double zeta, int m) 

{ 

    return (M(myu+delm,zeta,m)-M(myu,zeta,m))/delm; 

} 

 

// ---------------------------------------------------------------- // 

 

double DMzeta(double myu, double zeta, int m) 

{ 

    return (M(myu,zeta+delz,m)-M(myu,zeta,m))/delz; 

} 

 

// ---------------------------------------------------------------- // 

 

double DZmyu(double myu, double zeta, int m) 

{ 

    return (Z(myu+delm,zeta,m)-Z(myu,zeta,m))/delm; 

} 

 

// ---------------------------------------------------------------- // 

 

double DZzeta(double myu, double zeta, int m) 

{ 

    return (Z(myu,zeta+delz,m)-Z(myu,zeta,m))/delz; 

} 

 

// ---------------------------------------------------------------- // 

 

 

(2) Input file: PostProbNCalByVFE_inp.dat 

 

2022.05.08 

 

Ntht            101 

Nphi            41 

 

ITR             20 
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Tht             5.0 

Phi             4.0 

 

myub            0.0 

Sphi            1.5 

Stht            2.5 

 

myu_ini        -2.5 

zeta_ini        1.0 

 

delm            0.000001 

delz            0.000001 

alp             0.25 

 

prt_ctrl       0 

__________________________________________________________________________________________ 
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