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Abstract: The recent recovery processes of electric arc furnace dust (EAFD) include stabilization
within materials with potential uses in the construction sector. The stabilization of EAFD by alkaline
activation of different alumina-silicates, resulting in low-cost and environmentally friendly materials.
The leaching standards within the different European regulations allow evaluating waste materials
and products. This work aims to study the introduction of EAFD in FA–clay geopolymers, assessing
the environmental and geochemical behavior in two different scenarios, disposal, and utilization.
For it, the compliance equilibrium-based batch test (EN 12457-2) and pH dependence test (EN 14429)
have been used. The dosages of EAFD in the geopolymeric matrix are 5% to 20% with curing
temperatures of 75 ◦C and 225 ◦C. The introduction of EAFD favors the development of the flexural
strength. From the environmental point of view, metals related to EAFD, such as Zn, Pb, or Cu,
are retained in the matrix. While As or Se, comes mainly from clay, present a high concentration.
Therefore, the role of clay should be analyzed in future research. As expected by the high iron content
in the EAFD, the iron complexes on the surface of the material are responsible for immobilization of
metals in this type of matrix.

Keywords: electric arc furnace dust; fly ash; ceramic geopolymer; leaching behavior; geochemi-
cal modeling

1. Introduction

Electric arc furnace dust (EAFD) is generated from the electric arc furnace production
of steel in amounts of approximately 1–2% (by weight) of the steel produced. More than
30% of steel production now uses electric arc furnaces [1] and approximately 6 million
metric tons of EAFD are generated on an annual basis worldwide, and of that amount,
only an estimated 2.5 million metric tons are recycled, mainly in the United States, Europe,
Taiwan and Japan [2,3]. EAFD is identified as a hazardous waste in the European Waste
List and by the US-EPA, as it contains high quantities of Cd, Cr, Pb, and Zn [4–9]. The
“Best Available Techniques (BAT) Reference Document for Iron and Steel Production” [10]
includes as EAFD recycling option the pyrometallurgical or hydrometallurgical processes
or hybrid of both (Waelz Process). These processes aim, on the one hand, to extract non-
ferrous metals such as zinc and lead that can be incorporated into other processes, and
on the other allow the recycling of the matrix in the steel industry and thus avoid its
disposal in landfills. However, despite the high iron content, for waste with less than 15%
of Zn, the most used management continues to be the landfill of hazardous waste after
solidification/stabilization treatment. In the EU two-thirds of EAFD generated are deposed
in landfills [11,12].

The recent recovery processes of EAFD include stabilization within materials with
potential uses in the construction sector. Due to its ability to assimilate alternative materials
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of different nature (without significant changes in the production process) and without
negative effects on the properties of the final product. This way of management is the
most favorable because of its low cost and environmental benefit of reducing waste, min-
imizing the impact on the environment by avoiding disposal in landfills, and reducing
the amount of natural resources that the activity needs. The stabilization of EAFD is
carried out, by vitrification, obtaining a vitreous material [13], or by cementation, with
hydraulic binders, a cement matrix [6,14,15], and recently by alkaline activation of different
aluminosilicates [16,17], resulting in low-cost and environmentally friendly materials. The
manufacturing process of these new cementitious materials, generate less polluting gas
emissions and significant energy savings. Among these alternative materials, ceramic
geopolymers are a subgroup, where fly ash, with a low calcium content, and calcined
clays are the most common precursors used in the synthesis of geopolymers [18]. Ceramic
geopolymers can be carried out in two temperature ranges, geopolymers at low tempera-
tures, ranging from room temperature to 450 ◦C and those at high temperatures ranging
up to 1200 ◦C. The geopolymers obtained with setting temperatures between 65 ◦C and
450 ◦C, are equivalent to conventional ceramic bricks, stable to water and with medium
mechanical resistance [19–21].

Geopolymers that use industrial waste or by-products have the potential to introduce
pollutants into the environment. Laboratory leaching tests are applied by different authors
to evaluate the degree of immobilization of hazardous materials, as well as to estimate
the elimination of toxic trace elements during the beneficial reuse of secondary materials
on the ground [22,23]. In this way, leaching tests are basically carried out for the purpose
of providing information on material/water contact conditions and their influence on
potential release of pollutants to the water of the soil, being an essential stage in the
absorption by plants and also in the elimination to water resources. The most used tests
are the toxicity characteristic leaching procedure (TCLP, 1992), and the equilibrium batch
leaching test (UNE-EN 12457, 2002). Results from these tests are compared respectively, to
the threshold limits established by the Environmental Protection Agency (EPA, Washington,
WA, USA) and those summarized in the 2003/33/EC Council Decision (EU, 2003), where
in the criteria for acceptance of waste at landfill are established. However, logically,
a single test cannot provide all the information that is sometimes required, but a few
carefully selected tests will be sufficient [24]. Many leaching tests have been designed
within different fields with slightly different purposes for different materials. Currently,
there is a trend to harmonize leaching standards and test methods within the different
European regulations for evaluating waste materials and products-beneficial use according
Construction Products Regulations in each Member State [25]; Disposal according with
Landfill Decision [26], and future regulation on End of Waste criteria [24]. In this way, in
order to link the leaching behavior of the residual material and the exposure conditions,
the European standardization organization has developed a framework for application of
leaching tests, EN 12920 “Characterisation of waste-Methodology for the determination of
the leaching behavior of waste under specified conditions”. It is applied in a disposal or
utilization scenario within a specified time frame. The methodology is designed to ensure
that the specific properties of the waste and the conditions of the scenario are taken into
account. The methodology contains several stages, in some of them leaching tests are used.
The selection of tests is carried out depending on the objective, that is, the definition of the
problem and the search for the solution, the waste under consideration and the scenario to
evaluate [27].

In this context, the different leaching tests for the basic characterization of residual
material have been selected based on previous recommendations and are important for
assessing the release of pollutants into ground and surface water [28]. The leaching
behavior depends on several variables such as leachant composition, contact time, and
the liquid-to-solid ratio [29]. Equilibrium-based batch tests are low cost because they are
relatively simple and rapid and they are normally used as a simple tool for compliance
and/or quality control. If leaching under equilibrium-based batch tests occurs at levels
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of potential environmental concern, pH dependent testing can also be conducted [30].
Total availability for leaching is an important parameter that depends on the matrix and
mineralogical phases [31]. The pH dependent leaching test is a valuable tool to characterize
the basic chemical leaching behavior over a wide range of pH values (much broader than
the typical intended use conditions). The pH dependent leaching test provides data on the
behavior of pollutants in relation to pH and the results can be used in geochemical modeling
to identify solubility controlling processes [32,33]. Identifying the chemical processes that
occur in leaching will allow considering different options to improve quality and also
making a prior estimate of the effects of changes in pH, such as carbonation, on the emission
of pollutants [34]. The majority of pollutants show amphoteric behavior, while in some
cases oxyanions may also be present and show a different behavior [22,35]. Understanding
the mechanisms of leaching and the speciation of individual contaminants is essential for
predicting the long-term immobilization of pollutants in waste materials [36]. Modeling
and numerical simulation has become essential for environmental risk assessment.

There are few studies in the literature on the effect of EAFD on the properties of
OPC and blended cement concrete, with satisfactory results [6,14] unless the objective is
to develop a concrete set retarder, as shown in the work recently published [15]. Due to
the hazardous nature of EAFD, its use in civil construction should be based on solidifica-
tion/stabilization technologies. In this way, there are some studies that show the results
of incorporating EAFD in processes of geopolymerization of coal fly ash [16,17,37]. On
the other hand, it should be noted that there is a significant number of published studies
that evaluate the environmental implications of geopolymeric systems based on indus-
trial waste through leaching behavior, but exclusively using a leaching test, mostly the
TCLP [38–42]. Although geochemical modeling of inorganic waste and stabilized waste
has been extensively used, only limited research has determined the chemical species
and leaching of oxyanions [32,35,43,44], and only some authors studied the geochemical
modeling of FA based geopolymer [23,38,45]. It is important to note that there are no
published studies where EAFD is incorporated into ceramic geopolymers, based on coal
fly ash and quarry clay as precursors. Therefore, there is no research regarding environ-
mental assessment based on different leaching tests for such kind of ceramic geopolymers
incorporating EAFD.

This work aims to study environmental and geochemical behavior of FA–clay geopoly-
mers incorporating EAFD, using leaching tests, compliance equilibrium-based batch (EN
12457-2) and pH dependence (EN 14429:2015), simulating different scenarios, disposal
and utilization respectively. The results of leaching of toxic trace elements, As, Ba, Cr, Cu,
Mo, Ni, Pb, Sb, Se, Zn, and Cd, will be used to predict the long-term release behavior as a
function of pH and chemical speciation modeling for this type of matrices.

2. Materials and Methods
2.1. Raw Materials

Raw materials used in this study were obtained from different sources of the same
region (Cantabria, Spain), most of them from waste flows. Low calcium fly ash (ASTM
class F) were supplied by Reciclados De Cabezon S.l. – (Cabezón de la Sal, Cantabria,
Spain) and was used as the main silicoaluminate agent. Quarry clay was collected from
an industrial brickwork and was used as secondary silicoaluminate source. EAFD were
produced by a steel production company, which uses scrap in an electric arc furnace to
produce steel of different qualities and supplied by FCC Ámbito S.A. (Guarnizo, Cantabria,
Spain) a waste treatment company.

The composition of FA, clay, and EAFD were determined by inductively coupled
plasma atomic emission spectrometry (ICP-AES) and X-ray fluorescence (XRF) in Activa-
tions Laboratories (Ancaster, ON, Canada). The elemental major and minor oxides and
trace element concentrations in raw materials are given in Table 1. Both precursors, FA
and clay, are mainly constituted by SiO2 and Al2O3 while, the EAFD show a predominant
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presence of Fe and Zn, and to a lesser extent Pb and Cr, with similar values to those
reported by other authors [17,37,46].

Table 1. Major, minor oxides and trace elements in Fa, clay, and EAFD.

Raw Materials FA Clay EAFD

Composition (wt %)

SiO2 52.38 64.22 4.18
Al2O3 21.32 16.93 0.98
Fe2O3 6.88 5.94 33.36
K2O 2.50 3.03 1.40
CaO 6.23 0.52 6.71
MgO 2.48 0.89 2.38
Na2O 2.02 0.58 1.88
TiO2 0.92 0.86 0.09
MnO 0.07 0.06 2.42
P2O5 0.82 0.08 0.97
LOI 5.39 5.78 11.33

Composition (mg/kg)

As 44 30 39.50
Ba 2662.25 483 477
Cd 1.10 0.50 260
Cr 76.25 46 2040
Cu 85.75 27 2030
Hg n.d. n.d. n.d.
Mo 18 2 35.10
Ni 129 29 150
Pb 52.50 28 23,000
Sb 7.80 2.5 136
Se 0.55 0.02 38.70
Zn 291.25 139 259,000

n.d. not determined.

Figure 1 shows the FA and clay mineralogical results obtained by XRD Bruker D8
advance equipment fitted with a Cu tube with a wavelength of 1.5418 10-10 m. The X-ray
powder diffraction pattern have been fitted using the pattern matching routine in the
DIFFRACplus EVA program supplied by Bruker. A halo is observed between 20◦ and 35◦

due to the vitreous nature of FA sample. However, this halo is not observed in the clay
sample, which means that the amount of amorphous silica that can react is very small due
to the mineralogy of its components is mainly crystalline.

Fly ash and quarry clay was activated by an alkaline solution prepared by mixing
Na2SiO3 and NaOH solutions. Sodium silicate solution (Na2O = 8.5%, SiO2 = 28.5%, and
density of 1.4 g/cm3) was a commercial water glass supplied by Panreac AppliChem,
Santander, Spain, and sodium hydroxide solution was obtained by dissolving solid NaOH
pellets (99% purity) in deionized water.
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2.2. Sample Preparation

Samples were prepared by mixing weighted solid precursor, an alkali activator and
deionized water in a mixer. The geopolymer matrix was formed by an aluminosilicate
source, FA, and clay, with an FA/clay ratio of 0.7. Liquid phase corresponds to the activator
solution mixture of sodium hydroxide and sodium silicate, with a NaOH concentration of
6 M and Na2SiO3/NaOH ratio of 0.4. Liquid/FA ratio used was 0.6. However, the water
content was adjusted to achieve the same workability in all the mixtures. EAFD was added
to the starting mixtures replacing clay content in quantities of 0%, 5%, 10%, 15%, and 20%,
while keeping constant the amount of FA. Curing temperatures were 75 ◦C and 225 ◦C for
48 h and the test were conducted after 14 days.

The sample development is described below. Solids were mixed for 10 min before the
addition of the activator solution in order to obtain a homogeneous mixture. The 6M NaOH
solution was prepared and cooled to room temperature, then Na2SiO3 was added up to
Na2SiO3/NaOH ratio fixed. At the end, activator solution was added into the mixture of
FA-clay-EAFD, and mixing was continued for additional 10 min. Specimens were obtained
by uniaxial pressing under 50 bar with a Mignon SS/EA (Nanetti) laboratory a hydraulic
press in a rectangular mold with 80 mm in length, 30 mm in width and 16 mm in height.



Appl. Sci. 2021, 11, 810 6 of 17

Samples were stored in ambient temperature (18–20 ◦C) for 48 h. After this time, they were
cured in the oven for 48 h at 75 ◦C and 225 ◦C. Then, the samples were cooled and left for
an additional 14 days at ambient temperature prior to performing any test.

2.3. Geopolymer Characterization

Water absorption was determined with the UNE 67-027 standard by immersing the
piece in water, at atmospheric pressure and room temperature, until saturation occurs.

The UNE-EN 843-1 standard was used to determine the flexural strength of the bricks.
This test was conducted by a servo hydraulic mechanical equipment of pressure cell
Suzpecar MES-150 15-ton capacity equipped with an electronic control module MIC-101
H. The study of both properties has been carried out in triplicate and the results show the
mean and its standard deviation.

Morphological characterization was carried out using a JEOLJSM 840 scanning elec-
tron microscope (SEM) (University of Cantabria, Spain). Samples were studied on SEM
stubs with a sticky carbon cover and then coated with carbon.

2.4. Leaching Tests

The immobilization of metals from EAFD and other raw materials was assessed from
the chemical point of view according to three leaching tests: NEN 7371, UNE EN 12457-2,
and UNE EN 14429.

The availability leaching test NEN 7371:2004 was aimed to determine the maximum
amount of contaminant which can be leached from the material under extreme conditions.
The test was performed on finely ground material (<125 µm) at a high dilution (liquid/solid
50/1) by controlling the pH at 7 for 3 h and subsequently at pH 4 for another 3 h using
NO3H 1 M. Deionized water was used as leachant.

The equilibrium leaching test UNE EN 12457-2:2003 was used to determine the con-
centration of metals leached from the materials in the equilibrium. Samples were milled
to below 4 mm to promote contact and leaching of trace elements. The leaching test was
performed in deionized water as the leachant with liquid/solid ratio = 10 and 24 h stirring.

The pH dependence leaching test UNE EN 14429:2015 was used to characterize the
influence of pH in the leaching of inorganic components of waste. Samples were milled
to below 1 mm. Parallel batch extractions with a liquid/solid ratio = 10 with additions of
acid or base to attain specific endpoint pH values; at least eight different pH points were
reached, ranging from pH 2 to pH 12 by using NO3H (0.1 M to 5 M) or NaOH (0.1 M to
5 M).

At the end of each test, samples were filtered, and the leachates were analyzed. The pH
was measured and metal concentrations in the leachates were determined by inductively
coupled plasma-collision cell-mass (ICP-MS). All leaching test were carried out in duplicate.

2.5. Geochemical Modeling

The geochemical modeling under equilibrium conditions was undertaken for the
interpretation of the contaminant mobilization as a function of pH. The application of
predictive geochemical modeling using Visual MINTEQ 3.0 software (KTH, Sweden) was
performed to explain the pH-dependent leaching behavior of the trace elements. Major
and minor components presented in EAFD, FA, and clay were introduced in the model.
Input files were completed with the maximum leached concentrations of the geopolymers.
Initial species and mineralogical phases were determined based on the literature and the
availability and mobility results.

The main steps in geochemical modeling has involve: (i) selection of the interest
elements, major cations, and other ions that have a profound effect on the solubility
on the trace elements; (ii) establishing the mineral set by means of experimental and
other modeling studies; (iii) preliminary simulations to determine the oxidation states of
the elements and the presence of solubility controlling species; (iv) modeling of the pH
dependent leaching behavior through predictive simulations taking into account aqueous
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specification and complexation reactions, mineral dissolution and precipitation reactions,
and surface complexation reactions onto Fe surface (HFO); and (iv) validation the models
by comparing the results with the experimental data [47].

3. Results and Discussion
3.1. Geopolymer Characterization

The technological behavior of the geopolymer with EAFD has been studied based on
its water absorption and flexural strength for the two studied curing temperatures of 75 ◦C
and 225 ◦C. Table 2 shows the evolution of the two properties with the dosage of EAFD
and the temperature.

Table 2. Evolution of water absorption and flexural strength for geopolymers with EAFD at 75 ◦C
and 225 ◦C.

% EAFD
Water Absorption (%) Flexural Strength (MPa)

75 ◦C 225 ◦C 75 ◦C 225 ◦C

0 5.41 ± 0.15 5.89 ± 0.25 11.72 ± 2.83 8.73 ± 2.93
5 5.00 ± 0.26 5.62 ± 0.18 17.02 ± 4.92 8.72 ± 3.19

10 5.00 ± 0.21 5.71 ± 0.24 16.42 ± 1.82 11.67 ± 4.48
15 4.69 ± 0.20 6.64 ± 0.33 16.56 ± 2.12 16.15 ± 7.98
20 4.44 ± 0.22 7.27 ± 0.29 16.06 ± 0.93 18.92 ± 2.49

The water absorption values up to a 10% dosage of EAFD are approximately constant,
and although at 75 ◦C is lower, the difference from 225 ◦C is not significant. From 15%
of EAFD the tendency of the absorption at both temperatures is the opposite, at 75 ◦C
it experiences a small decrease and at 225 ◦C it increases slightly, producing the greater
difference between both, at the dosage of 20% of EAFD.

EAFD favors the development of flexural strength of geopolymers [17], although the
trend differs as a function of the curing temperature. At 75 ◦C the flexural strength is
independent of the amount of added EAFD, whereas at 225 ◦C the increase is gradual, up
to 15% of EAFD the value reached at 75 ◦C is equal, being greater for percentages of 20%.

However, other authors [16,17] reported a decrease in the compressive strength of
the materials with introduction of EAFD in fly ash based geopolymers, respect a reference
without EAFD, for curing temperature below 70 ◦C. This discrepancy in the trend may be
due to the presence of clay, which has influence in the strength development.

In relation to the effect of curing temperature, the samples cured at a higher temper-
ature, show a slight increase of strength for 20% of EAFD. Therefore, a light influence of
the curing temperature on the development of strength when EAFD is introduced into the
clay–fly ash based geopolymer have been observed.

As shown in the images taken by the SEM (Figure 2) geopolymers made from EAFD,
clay and fly ash are heterogeneous materials. On the one hand, they present zones of high
densification, consisting of the aluminosilicate gel formed by the reaction of the amorphous
particles of the raw materials used with the activating solution. On the other hand, within
these densified zones are unreacted spherical particles, which could be particles belonging
to EAFD, fly ash, and clay [16]. Furthermore, as the addition of EAFD is higher it can be
observed that the geopolymers are more porous. However, different authors have observed
that aging influence the morphology of the material, which is considerably denser without
particles [17,48]. Regarding the effect of the curing temperature, in the SEM images, no
significant differences are observed, except in the geopolymers with 20% EAFD, where a
greater densification is observed at a temperature of 225 ◦C. This information confirms the
result obtained from flexural strength.
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3.2. Leaching Tests
3.2.1. Mobilization and Availability of Metals

Only a part of the total content of the elements present in the geopolymeric matrices
is available to be leached, and it depends on the phases of the matrix so the concentration
on the solution may be significantly lower than the total content [29].

All the analyzed elements As, Ba, Cr, Cu, Mo, Ni, Pb, Sb, Se, Zn, and Cd except
for Hg, present a concentration higher than the quantification limit for both, availability
and compliance leaching test (Figure 3). Some of these elements such as Zn, Cd, Cu,
Cr, and Pb, coming mainly from the EAFD, are retained in the geopolymeric matrix
by means of a chemical immobilization in combination with a physical mechanism of
microencapsulation [16]. For others such as As, Mo, and Se, there is evidence that chemical
immobilization is weak, so unless physical microencapsulation is strong and durable over
time geopolymerization is not a suitable treatment for these elements [13].

The elements, which present the greater availability, are Zn—followed by Pb, Ba,
Cu, and Ni—and to a lesser extent As and Cd. In general terms, it can be said that the
availability of the elements decreases with increasing the curing temperature, since, as it
had seen, more densified structures were achieved. There are elements whose availability
is not influenced by the amount of EAFD introduced into the material, as Ba or Ni and
even, in the case of As, it decreases when increasing the dosage of waste. This fact suggests
that the arsenic leaching comes from the clay [23].

The results of the equilibrium test show that curing temperature affects mobility more
than availability. Up to 10% EAFD dosages the leaching behavior with temperature is
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similar, while at higher dosages a difference is observed in the trend, being lower in all
cases, the higher the curing temperature.
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The leachates from the equilibrium tests have alkaline pH, due to the release of free
alkali from the geopolymers when immersed in deionized water. The pH remains constant
regardless of the dosage of the EAFD and the curing temperature of the geopolymers,
between the values 11.75 and 11.99. Due to these high pH values, most of the oxyanionic
elements (as As or Se) leach more in the geopolymeric matrix than in the raw materials.
This means that for both elements, the concentration in the leachate exceeds the limit of the
regulations for non-hazardous landfill [26]. Although the leaching of As is a fact that is
described in several environmental studies of flay ash or clay based geopolymers [23,49–52],
authors who introduce EAFD for their immobilization, do not monitor this element, only
those associated with the steel dust (Zn, Pb, Cr, Cd) [16,17,37]. This also occurs with other
authors who use geopolymers to immobilize another hazardous waste, [34,39,53,54] none
of which studies the behavior of arsenic.

To promote the immobilization of As, Fernandez-Jimenez and Palomo [51] propose the
use of mixed systems together with blast furnace slag, rich in Ca, to help its immobilization.

3.2.2. pH dependence Leaching Behavior

The immobilization of metals in the geopolymeric matrix has been evaluated through
the EN 12457-2 compliance test, comparing the leaching results with the limits of the EU
landfill regulation, as well as through the availability test. However, these tests are not
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sufficient to describe the wide range of conditions in which the developed material can be
used [30].

With the pH-dependent leaching test, the behavior of the immobilized elements of
a waste is studied in very different pH situations (between 2 and 12). Given that, the
mobilization of some metals can change even by orders of magnitude in just one pH unit,
it is important to perform this characterization of the material [47].

The concentrations of each of the leached elements are shown in Figures 4 and 5 with
different dosages of EAFD as a function of the pH, and the curing temperature of the
geopolymer. The elements can be grouped according to their behavior with the pH in two
groups.

The first of the groups is formed by Cd, Cr, Pb, Zn, Ba, Cu, Sb, and Ni (Figures 4 and 5).
These elements leach at acid-neutral pH for a certain pH value are hardly mobilized, a
behavior that is independent of the dosage of waste and the curing temperature of the
geopolymer. For geopolymers without EAFD, leachate concentrations are much lower than
when the waste is introduced. In some cases, there is a pH range where the concentrations
present a minimum. Although the behavior of the elements is similar in different matrices,
that range in which the pH is minimal can vary substantially depending on the sorption
phases and the complexation reactions that occur with the components of the matrix [55].
In this material, the minimum in the concentrations of Cr is between pH 5–6, for Pb and Cu
is 6–7 and for Zn, Cd, and Ni is between 8–9, behaviors similar to those found in [16,23,56].

Ba though leached more at acidic pH does not present a minimum at any pH as occurs
with the rest of the elements mentioned above. The reference sample without EAFD is
the one with the highest concentrations of Ba present in the leachate, decreasing when
introducing EAFD, but without significant variations in the quantity introduced.

For As, Mo, and Se, the behavior is contrary to that described for the previous group of
elements (Figure 5), presenting the highest concentrations in leachate at basic pH. Increasing
the concentration of EAFD in the geopolymer causes that the leaching increase at basic pH.
For Mo at pH between 5.5 and 6, it begins to increase its presence in the leachate but it is
not until pH 7 when the influence of the concentration of EAFD begins to appear until pH
12, an influence that is minimized by increasing the curing temperature at 225 ◦C.

Se present slight variations of concentrations in the leachate, being at pH 6 when it
undergoes a slight increase and from pH 7 to pH 12 when the influence of the concentration
of EAFD becomes evident, the higher concentration the presence of Se in the leachate.

As have a pH range, from 3 to 8 for As, in which their concentration in the leachate is
very low, close to 0, and for pH values outside that range reach leachate concentrations of
up to 15 mg/kg. The dosage of EAFD in the geopolymers does not have a significant effect
on the leaching of this element, because as seen above, arsenic comes mainly from clay.

In the case of these elements, As, Se, and Mo, the natural pH of the material in the
equilibrium test, around 12, coincides with the range of the greatest leaching, for that reason
they are the elements that are closest to or exceed the leaching limits for non-hazardous
waste landfill [51,52].
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3.3. Geochemical Modeling

Leaching of elements from fly ashes are mainly controlled by two different mecha-
nisms that include solubility (dissolution-precipitation) and sorption mechanism [57]. The
elements selected to make the geochemical modeling by means of the Visual Minteq 3.1
software were those related to EAFD, as well as the elements that present greater leach-
ing molybdenum, antimony, lead, cadmium, arsenic, selenium, and zinc. Main species,
considered elements analyzed as well as mineral phases are described in Table 3.

In Figure 6, the experimental and simulated leaching results of each element using
20% of EAFD at 75 ◦C are shown. Prediction models obtained only considering dissolu-
tion/precipitation phenomena differs greatly from experimental results. However, the
models obtained considered adsorption or surface complexation of metal onto Fe (HFO) are
more in accordance with the experimental results. This means that adsorption is controlling
the mobility of all trace elements studied at all pH values. The adsorption due to iron has
a different effect on the elements studied, although it is mainly reflected by retaining the
metal by surface adsorption and decreasing its concentration in the leachate [58]. This
behavior differs from that of other wastes whose Fe content is lower, and whose leaching is
described by solubility-precipitation models [57,59], especially at alkaline pH [60].
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Table 3. Input parameters of the geochemical modeling.

Main Species

MoO4
2−; Sb(OH)3; Sb(OH)2+; Pb2+; Cd2+; AsO4

3−;HSeO3
1−; SeO3

2−; SeO4
2−; HSeO4

1−; Zn2+

Elements

Mo, Sb, Pb, Cd, As, Se, Zn

Mineral Phases *

Powellite (CaMoO4); Senarmontite (Sb2O3); Valentinite (Sb2O3); Antimony (VI) Oxide (Sb2O4);
Lead(II) hydroxide (Pb2(OH)2); Otavite (CdCO3); Arsenic(V) oxide (As2O5); Arsenates

CO3(As2O4)2; Metal Arsenates (Ca3(AsO4)2·4H2O, Pb3(AsO4)2; Zn3AsO4·5H2O); Zincite (ZnO);
Selenium(IV) oxide (SeO2); Selenium(VI) oxide (SeO3).

Mineral Adsorption

Diffuse layer Surface complexation model of Fe- and Al-/hydro) oxides Surface (HFO) mineral
adsorption

* Mineral phase names or formulas as they are entered into Visual Minteq Software are underlined.

Elements that are close to oxygen in electronegativity tend to form oxyanions i.e., the
transition metal Mo which from MoO2−

4 [58]. Looking at Figure 6, the maximum solubility
was found at pH 10. The alkaline V-shape for Mo leaching might indicate binding of
Mo to sulphoaluminates. Considering the geochemical behavior, Powellite (CaMoO4)
precipitated in all cases. Based on the existing findings, Mo was subjected to geochemical
speciation modeling, assuming its presence as oxyanion.

Leaching behavior of Cd and Zn as a function of pH follows a cationic pattern.
For elements controlled by solubility or sorption, cationic pattern involves increasing
dissolution and/or desorption of metal-bearing mineral phases as the pH decreases and
diminishing leaching due to precipitation and/or increasing sorption as the pH increases.
As pH decreases the leaching amount of the cationic elements increase due to increasing
attacking on the metal-bearing mineral phases as acid strength increases [59]. Sulphate
and carbonate minerals are the two main minerals that may precipitate with leached Cd
element. In this case, the carbonate can control the leaching of Cd in the aqueous solution.
In this case, Otavite (CdCO3) precipitates at all pH ranges [33].

Leaching of Pb is controlled by Pb (OH)2 in accordance with previous studies appear-
ing on the literature [57,60]. Such a mechanism corresponds to cationic element mobilizing
in the form of Pb+2.

It is expected that the leaching of Zn be controlled by the dissolution/precipitation
reaction in the soil matrix at any pH condition. In this case, zincite (ZnO) may control the
leaching of the geopolymeric matrix in the pH range of 2–9 (Figure 5).

Oxyanion pattern was remarkable for As which is in accordance with the literature [59].
The same occurs with the Se within the studied pH range. The leaching behavior of both
elements as a function of pH can be explained by the species in the leachate and pH
-dependent surface charge of fly ash. Negatively charged oxyanions, As and Se in the
form of SeO3

2−, HSeO3
1−, and AsO4

3− precludes adsorption onto the negatively charged
surface of the geopolymer contributing to higher As and Se concentrations at alkaline
pH [59].

Apart from the geochemical models plotted in Figure 6, Visual Minteq also provides
information about the speciation distributions in terms of percentage of each specie on a
molar basis. The trace pollutants Cd, Mo, Sb, As, Se, Zn, and Pb speciation was visualized
in Figure 6 for the geopolymers with 20% of steel powder at 75 ◦C in all the studied pH
range. It seems how the cationic elements such as Cd, Zn, and Pb are mainly released
as their respective cations (+2) oxidation state. Nevertheless, oxyanions As, Mo, and Se,
arsenates, molybdates, and selenates are responsible for the As, Mo, and Se leaching at all
pH values.
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4. Conclusions

The immobilization of pollutants from EADF through its introduction into ceramic
geopolymers, for use in construction, has been evaluated in this work. Increasing amounts
of clay have been replaced by EAFD as raw material (from 0 to 20%), and the geopolymers
have been cured at two different temperatures. The impact on technological and environ-
mental properties have been evaluated. The introduction of EAFD into the geopolymer
matrix promotes the development of the flexural strength of the geopolymer regardless of
curing temperature. Furthermore, the best results of water absorption were achieved with
high dosage of dust and at low temperatures.

From the environmental point of view, metals related to EAFD, such as Zn, Pb, or
Cu, are retained in the geopolymer matrix, and the mobility of these elements decreases
at highest curing temperature. However, oxyanionic elements, such as As or Se, due
to the high pH that alkali produces when is introduced into water, present a very high
concentration, which even exceeds the limits for non-hazardous waste disposal. Arsenic
comes mainly from clay, and it barely has a concentration of amorphous silica that can
geopolymerize, so the role played by clay and its possible replacement should be analyzed
in future research.

The use of a speciation model helps to predict the behavior and to understand the
leaching mechanism. As expected by the high iron content in the EAFD, the iron complexes
on the surface of the material play an important role in the immobilization of metals in this
kind of matrix.
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43. Loncnar, M.; van der Sloot, H.A.; Mladenovič, A.; Zupančič, M.; Kobal, L.; Bukovec, P. Study of the leaching behaviour of ladle
slags by means of leaching tests combined with geochemical modelling and mineralogical investigations. J. Hazard. Mater. 2016,
317. [CrossRef]

44. Wang, D.; Wang, Q.; Xue, J. Reuse of hazardous electrolytic manganese residue: Detailed leaching characterization and novel
application as a cementitious material. Resour. Conserv. Recycl. 2020, 154, 104645. [CrossRef]

45. Wang, L.; Chen, Q.; Jamro, I.A.; Li, R.; Li, Y.; Li, S.; Luan, J. Geochemical modeling and assessment of leaching from carbonated
municipal solid waste incinerator (MSWI) fly ash. Environ. Sci. Pollut. Res. 2016, 23, 12107–12119. [CrossRef] [PubMed]
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