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Graded crushed stone (GCS), as a cheap and essential component, is of great importance in road construction.,e irregularity and
variability of particle shape is known to affect the packing characteristics of GCS, such as compactness and void ratio. In this study,
the realistic particle outline is first automatically extracted based on digital image processing and deep learning algorithms. ,en,
the elongation (EI), roundness (Rd), and roughness (Rg) of GCS are quantified by shape evaluation algorithms. Moreover, based
on the establishment of the GCS shape library, the gravity deposition with various elongations is simulated using the discrete
element method to study the packing features of GCS. ,e elongation effects on the macroscopic and microscopic quantities are
explored. Finally, the shear behavior of GCS is studied. ,e results illustrate that elongation has a significant effect on the packing
of GCS.

1. Introduction

With the development of the highway industry and the
deepening of engineering practice, the asphalt pavement
structure used in China has been diversified from the single
semirigid asphalt base, and the graded crushed stone flexible
base asphalt pavement has become one of the main pave-
ment structure forms in China. As a mixture composed of
aggregates of different sizes, the graded crushed stone (GCS)
is widely applied between the asphalt surface and semirigid
base and can effectively weaken the cracks in the top of the
semirigid base and the stress concentration effect. Addi-
tionally, GCS can also reduce the temperature shrinkage and
dry shrinkage stress caused by the change of temperature
and humidity of the semirigid base [1, 2].

Due to the great significance of GCS to highway con-
struction, it is particularly essential to study its mechanical
properties, deformation, and failure mechanism. However, it
is difficult to analyze its mechanical properties quantitatively
and qualitatively by conventional methods because of its

granular structural characteristics and nonlinear mechanical
properties [3]. On the one hand, the conventional laboratory
test for GCS is complex and costly, whichmakes it difficult to
reveal the macro-meso mechanical characteristics of GCS
under load. On the other hand, the granular material such as
GCS has great variability and the data results of different
specimens in the same group are relatively low in correla-
tion, which makes experimental data unreliable [4]. Hence,
it is very necessary to use the numerical test method to study
the mechanical properties of GCS from the microscopic
point of view, to make up for the lack of laboratory tests and
provide a powerful means for the in-depth understanding of
GCS [5, 6].

As a basic road material, the shape of crushed stone
particles has a significant effect on its mechanical properties.
Scholars have done much research on the mechanical
properties of GCS influenced by GCS shape. An [7] carried
out a quantitative analysis on the particle shape of GCS to
explore the relationship between the real particle shape and
particle accumulation porosity. Le Pen et al. [8] set out
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methods for evaluating form and roundness (aspects of
shape) and proposed a new measure for evaluating
roundness, termed ellipses for crushed stone. Zhang et al. [9]
simulated the geometric anisotropy of the GCS using ran-
domly generated models. ,e results showed that the
changes of both friction and anisotropy had a similar trend
with the particle size enlarging in the dense assembly, which
maintains stability when the size is less than 3.0mm.

Numerical simulation methods are often used in ex-
ploring the properties of GCS. Jiang et al. [10] used PFC2D to
establish a numerical test method for California bearing
ratio (CBR) and found that CBR values increase with the
friction coefficient at the contact and shear modulus of the
rocks, while the influence of Poisson’s ratio on the CBR
values is insignificant. Ren et al. [11] proposed a random
calculationmodel for GCS and studied the Direct Shear Tests
(DST) of GCS by PFC2D. Xu et al. [12] proposed Plastic
Deformation Index (PDI) as the evaluation indicator and
founded that the PDI should be less than or equal to
1900mm number for expressway and first-grade highway.
Jiang et al. [13] established a numerical model of dynamic
triaxial test of GCS based on PFC2D and founded that the size
of the specimen has a slight influence on the simulated value
of axial strain when specimen height is greater than 40 cm
and diameter is greater than 20 cm.

In this study, the particle outlines are firstly extracted based
on deep learning algorithms. ,e U-NETmodel is trained for
contour extraction. ,en, the shape evaluation indexes in-
cluding elongation, roundness, and roughness are quantified. In
addition, the gravity deposition with a distinct EI value is
simulated by the discrete element method to explore the
elongation effects on the macroscopic and microscopic quan-
tities. Finally, the shear behavior of GCS is studied. Overall, this
study lays a foundation for future research about GCS.

2. Materials and Equipment

In construction projects, GCS are transported by large-scale
transport equipment. To simulate the real conveyance cases,
a conveyor belt is used to carry GCS obtained from the
laboratory of civil engineering materials in Shenzhen Uni-
versity. ,e GCS is first screened and the stone with a
particle size of 4.75mm∼25mm is selected for preparation.
,en, in order to obtain the data set with images of GCS in
batches, the equipment shown in Figure 1(a) is used. ,e
specific components are illustrated as follows:

Component (1): A Fujinon X-T20 camera as shown in
Figure 1(b) with a resolution of 24 million pixels
(6000× 4000 pixels) and two lenses: Fujinon XF60mm
F2.4 R Macro and Fujinon XF35mm F2 RWR. At least
90 pixels are used to represent the smallest diameter of
the particle.
Component (2): A conveyor belt as shown in
Figure 1(c) used to carry GCS to simulate the real
transport of GCS.
Component (3): Two lamps composed of 256 LEDs as
shown in Figure 1(d) provide controllable lighting
conditions. ,e light is scattered uniformly so the

lamps have good color rendering. ,e LED lamp arm is
installed on the copy stand and is perpendicular to the
plane of each LED lamp. In addition, the lamp is placed
45 cm above the transparent plastic plate. Besides, the
side of the lamp is parallel to the side of the base of the
copy stand. ,e color temperature is 5600K at the
maximum brightness value.

3. Automated Extraction of GCS Contours

3.1. Implementation of Algorithms. For image processing,
convolutional neural network (CNN) and full convolutional
network (FCN) are the main frames for image segmentation.
However, CNNhas two obvious drawbacks: (1) slow training
process because of too much redundancy and (2) asyn-
chronism between obtaining sensing field and positioning
accuracy. Mostly, CNN is used for image classification at the
image level. By contrast, FCN can classify images at pixel
level with good training results. In order to avoid these
defects as much as possible, in this study, according to Liang
et al. [14] a lightweight U-NET [15] method of a fully
convolutional neural network is adopted for image
segmentation.

3.1.1. Lightweight U-NET and Operation. In this study, a
U-NET deep neural network is introduced. Firstly, the light-
weight U-NET particle image is converted into a 3D matrix
W×C× h as the input data, whereW and h are the width and
height of the input image, respectively;C is the number of color
channels of input images, where C� 3 represents RGB image
and C� 1 represents gray/binary image. ,e gray images are
input data, and binary images are output data. ,en, the
network generates a mask by a matrix with a size ofW× h× 1
to record the pixels on the projection of GCS. For clarity, three
parts of the operation of lightweight U-NET are briefly
explained: convolution, Maxpool, and deconvolution.

,e kernel of convolution used in this study is defined as
a square matrix. And the overwritten elements in the input
matrix are transformed into feature mapping elements (yij)
by multiplying elements:

yij � AF 􏽘
i+s

m�i−s

􏽘

j+s

n�j−s

XmnWmn + b( 􏼁⎛⎝ ⎞⎠,

s �
kn

2
􏼠 􏼡,

(1)

where kn is the size of the kernel matrix; xmn is the element at
position (m, n) of the input matrix; wmn is the element of the
nuclear matrix overlapping with xmn; b is the bias term of the
output feature graph, and AF(·) is the activation function.
During the training process, both parameters wmn and b are
the targets of training. According to the recommended
values [16], the default value of kn is 3 and the default ac-
tivation function is ReLu (AF(x)�Max(0, x)) in this study.
,e principle of convolution is shown in Figure 2.

,e Maxpool and Upconv operations use different
kernels and computations to downsample and upsample the
input matrix, respectively. But they are both executed by
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sliding Windows, just like convolution operations. ,e
Maxpool operation can be regarded as a special convolution
operation, with kn � 2 and S� 2, and the function of formula
yij which outputs the maximum element covered by the
kernel. Deconvolution, as opposed to convolution, has
different interpretations like upsampling or transposed
convolution. In this study, we used a UpSampling2D built-in
Keras to implement the upsampling operation.

3.1.2. Model Optimization. Considering the limited size and
computing power of the model, the size of the network was
reduced by half; thus, the number of channels (c) of all
operations was reduced to half of the original number except
for the number of channels at the end and the beginning. At
the same time, in order to prevent overfitting, part of neural
network units are temporarily dropped from the network
according to a certain probability, which is equivalent to

Covered elements
Input m

atrix

Featu
re map

Kernel

Figure 2: Convolution operation [14].

(1) Camera

(2) LED light(2) LED light

(3) Conveyor belt(4) Graded crushed stone

(a)

(b) (c) (d)

Figure 1: Materials and equipment for GCS images capture. (a) ,e equipment to photograph GCS. (b) Fujinon camera. (c) Conveyor belt.
(d) LED light.
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finding a thinner network from the original network.
Dropout [17] should be performed after the fourth Maxpool
operation with the parameter keep_prob_(the probability of
which part of the network would not be dropped) set to 0.6.
It is a parameter of the dropout method. ,e overall
structure of U-NET is shown in Figure 3.

,e commonly used optimization method Adam of deep
learning is used to dynamically adjust the learning rate of
each parameter by using the first-order moment estimation
and second-order moment estimation of the gradient. For
the loss function, cross-entropy was used in this study.

3.2. Training of the Model

3.2.1. Data Set Preparation. For the collected pictures, the
“labelme” image marking tool was used to manually mark
the GCS. A total of 400 pictures is collected as the training
set. Meanwhile, 50 pictures are collected as the validation set.

3.2.2. Data Enhancement. Image enhancement is a widely
used training sample expansionmethod. In order to improve
the diversity of training samples and enhance the antinoise
performance of the model, image enhancement technology
was used to expand the obtained samples. A total of 4
categories and 8 image enhancement technologies were
used, including (1) image rotation; (2) image flipping; (3)
random brightness transformation; and (4) random pepper
and salt noise, as shown in Figures 4.

3.2.3. Recognition Effect. Parameters are adjusted manually.
,rough multiple experiments of different parameter setting,
the best parameter is chosen. By adjusting the parameters, the
learning rate was set to 1× 10−4, the scale of the U-NET
network was reduced, and the effect of the data set was en-
hanced.,e performance of U-NETmodel is validated by the
validation data set. After each iteration of 30 times and 300
rounds of epochs training, the accuracy of the validation set
reached a value of 96%, which shows a strong generalization
ability of this U-NETmodel.,e loss function reached a value
of about 0.01. ,e curves of accuracy and loss value of the
trained model are shown in Figures 5 and 6, respectively.

,e particle identification effect is shown in Figure 7.

3.3. Segmentation of GCS. Generally, images obtained
through the trained network still have some defects. ,e red
marked area in Figure 8 shows the adhesion between particles,
which affects further morphological analysis and calculation.

,e binary image output by the neural network often
contains some defects, and postprocessing technology is
needed to improve the accuracy. Among all the defects, the
two most obvious problems are as follows: (1) there are holes
in the particles. (2) ,ere are interconnected particles. To
solve the problem of holes, a relatively mature pore filling
algorithm can be used [18]. For the segmentation of con-
nected particles, algorithms based on image morphology,
such as the watershedmethod [19] and the corrosion-flooding
method [20] are mostly adopted. Among them, the classic
corrosion-floodingmethod used by Liu et al. [20] has a simple
concept and has a good effect on the segmentation of objects
with small contact sizes.,emain steps are shown in Figure 9.

(1) ,e corrosion algorithm is used to separate the
connected particles into several independent parts,
and each part is labeled as the expanded seed of the
flooding method.

(2) ,e seed is taken as the base point and expanded
outward in the way of coloring. When the pixel
meets the boundary of other seeds or particles, freeze
the pixel and stop the expansion of this part.

(3) When the expansion of all seed pixels stops, the
segmented particles are obtained.

,e radius rero of the corrosion mask is a decisive pa-
rameter in the corrosion operation, and a fixed value is often
used in the existing research. Liu et al. [20] suggested the
value of rero as follows:

rero � 0.3
��
S0

􏽰
. (2)

4. Quantitatively Analysis of GCS Shapes

4.1. Methods for Quantifying the Particle Shape Indexes

4.1.1. Quantification of Elongation. To reflect the particle
contour, elongation (EI) is often used:

EI �
Dminor

Dmajor
, (3)

where Dminor is the width along the minor principal axis and
Dmajor is the length along the major principal axis. Ap-
parently, a smaller EI value represents the greater slender-
ness of the particle. ,rough a second-order tensor matrix
based on the normal vector of particle contour, the two
principal axes can be determined by

Ωij �
1

Lp

􏽘
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

λa 0

0 λb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

cos θ sin θ

−sin θ cos θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 4: Data enhancement techniques: (a) initial image; (b–d) rotated image; (e) flipped image; (f-g) brightness transformed image;
(h-i) image with salt and pepper noise.
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Figure 5: Accuracy of the validation set.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 50 100 150 200 250 300

Lo
ss

 V
al

ue

Epoch

Figure 6: Loss value of loss function.

(a) (b)

Figure 7: (a) Grayscale. (b) Recognition effect.

connected particles

holes

Figure 8: Problems existing in neural network output images.
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where Tk
i is the component of the unit normal vector Tk and

the kth micro arc in i direction and Tk
j is the counterpart in j

direction; Lk is the length of the kth micro arc; LP is the
circumference of the particle contour, which is the sum of
lengths of n micro arcs; and λa and λb are eigenvalues of
matrix C, λa ≥ λb. ,e value of λb is the minimum percentage
of the arc length in particle contour circumference along the
major principal axis direction of Ωij. ,e value of λa is the
maximum percentage along the minor principal axis di-
rection of Ωij. After having two principle axis directions,
Dminor and Dmajor can be calculated in a rectangular
boundary containing the particle contour (Figure 10).

4.1.2. Quantification of Roundness. Roundness (Rd) reflects
the sharpness and smoothness of the particle corners. Rd can
be calculated by the ratio between the mean curvature of
particle corner and the radius of the maximum inscribed
circle of particle contour, as shown below:

Rd �
1
N

􏽘

N

i�1

ri

Rinsc

, (5)

where N is the number of corners; ri is the curvature radius
of the ith corner, and Rinsc is the radius of the maximum
inscribed circle of the particle contour.

Wadell [21] presented that a point belongs to the corner
region when the curvature radius of the point is less than
Rinsc. ,us, the curvature radius of all contour points should
be calculated to classify the corner region. For Fourier-
presented contour curve, the curvature radius of the contour
point can be calculated as

r(θ) �
r(θ)

2
+(dr(θ)/dθ)

2
􏼐 􏼑

3/2

r(θ)
2

+ 2(dr(θ)/dθ)
2

− r(θ) d2r(θ)/dθ2􏼐 􏼑
, (6)

where r(θ) is the curvature radius.
,e contour point P(θ, r(θ)) can be seen as a corner point

when r(θ)<Rinsc.,us, the corner region is the contour of all
corner points (Figure 11(a)). ,e ODEC algorithm [22] can
be used to calculate the radius of the inscribed circle of
corner points, as shown in Figure 11(b). To be specific, the
inner normal vector Ni

�→
of the ith corner point is first

calculated. ,en, the inscribed circle along the direction of
Ni

�→
is determined, by starting from the ith corner point with

a radius of ∆r. After that, whether the inscribed circle is
tangent to any other contour point is determined. If not, the
radius ∆r is increased and the last two steps are repeated;
otherwise, terminate the process and take ∆r as the radius of
the inscribed circle of the ith corner point.

,e optimal inscribed circle of the corner can be de-
termined by having the inscribed circles of all corner points.
To value the fit performance of the inscribed circle of a
corner point relative to other corner points, efit is defined:

efit � 􏽘

ncp

i�1

������������������

xi − xc( 􏼁
2

+ yi − yc( 􏼁
2

􏽱

− rc

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

ncp

, (7)

where ncp is the number of corner points; (xi, yi) are the co-
ordinates of the ith corner point; (xc, yc) are the center co-
ordinates of the inscribed circle; and rc is the radius of inscribed
circle radius. Particularly, the minimum value of efit represents
the optimal inscribed circle of the corner. ,rough the optimal
inscribed circles of all corners shown in Figure 11(c), the
curvature radius of each corner and Rd can be calculated.

4.1.3. Quantification of Roughness. Roughness is a shape
index that evaluates the concavity of the particle contour and
it can show the shape difference between the real contour
and the smoothed contour of particles. Fourier transform
can be used to calculate the smoothed contour of a particle.
,e larger Fourier series (N) corresponds to a higher sim-
ilarity between the real contour and the smoothed contour
[23]. In this study, the Fourier seriesN is set to 16 to calculate
the smoothed contour. ,e deviation between the smoothed
contour and the real contour is shown in Figure 12.
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Figure 9: Main steps of the corrosion-flooding process [14].
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Next, the deviation regions and the geometric types are
extracted and determined. For nonintersecting parts be-
tween smoothed contour and real contour, the deviation
region can be calculated as a quadrilateral area. For inter-
secting parts, the deviation region is simplified to two tri-
angles. At the ith microunit, the deviation distance (△di) is
the ratio of the deviation area to the corresponding length.
Based on the average deviation distance of all microunits, Rg
can be expressed as

△di �
Ai

li
,

Rg �
△d

r
�

���
π

Ap

􏽳

·
1

Lp

􏽘

Nd

i�1
△di × li,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where△d is the average deviation distance,Nd is the number
of all microunits, Ap is the area of the particle contour, Ai is
the deviation area, li is the corresponding arc length, and Lp
is the perimeter of the particle contour.

4.2. Statistics of Shape Indexes. ,rough the quantification
algorithms introduced above, the elongation (EI), roundness
(Ed), and roughness (Rg) of 1200 GCS were calculated. ,e
fitting results are shown in Table 1.

Normal distribution tests were implemented on the
probability density of the three shape indexes. ,e results
showed that all three indexes satisfied normal distribution
appropriately. Within the results, the width of the distri-
bution of elongation is the maximum and the width of the
distribution of roundness is the minimum, with ranges from
0.4 to 1 and from 0.2 to 0.5, respectively. Furthermore, the
mean values of the three shape indexes EI, Rd, and Rg are
0.68, 0.33, and 0.0039, respectively.

4.3. Establish ShapeLibrary. To facilitate retrieval and sample
preparation, the shape indicators of the GCS are stored to-
gether with the coordinates, with the storage format [number,
outline, slender length, elongation, roundness, roughness].

,e steps for sample preparation from the particle li-
brary are as follows:

(a)

Ni

(b) (c)

Figure 11: (a) Corner region of the particle contour, (b) determining the inscribed circle of a corner point, and (c) optimal inscribed circles
of all corners.

Figure 12: Smoothed contour and real contour of a particle.
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(1) ,e required shape parameter range is input
(2) According to the range of these values, the two-di-

mensional contour that meets the requirements can
be searched automatically

(3) ,e visualized two-dimensional contour is selected
and is output to the “dxf” file

After establishing the particle library, it will be very
convenient to select the two-dimensional contours of GCS
that meet specific requirements, so as to facilitate the discrete
element modeling of GCS. Moreover, it lays the foundation
for further study on the relationship between the geometric
information and mechanical properties of GCS.

5. Application to DEM Simulation of
GCS Packing

5.1. Simulation of Gravity Deposition. ,e mechanical pa-
rameters of GCS like shear strength and deformation
modulus can be affected by the packing characteristics. ,e
shape index EI is set as the DEM [24] simulation variable to
explore the influence of particle shape on packing properties,
as shown in Figure 13(a). Considering the elongation var-
iable, the GCS were selected and divided into 7 groups where
EI is set from 0.4 to 1.0. In this study, the particles in DEM
are not generated randomly; on the contrary, real GCS were
used as samples to enhance the reliability of the simulations.

Stratified gravity deposition simulation of the natural
packing process of particles is the common way to generate
particle models. In the model, DEM particles fall naturally
with gravity. After completing the previous layer deposition,
a new layer of particles is generated and the deposition
process is repeated until the whole simulation is completed,
as shown in Figure 13(b) [25].,e gravity deposition process
is simulated by PFC2D, and the interparticle contact and the
wall-particle contact are both linear contacts. ,e parame-
ters of the model are shown in Table 2.

5.2. Analysis of Macro-Meso Parameter. Macro-meso pa-
rameters reflect the particle packing properties, such as void
ratio, compactness, and coordination number. In this sec-
tion, the effect on EI is considered.

5.2.1. Macro Parameter. ,e degree of density of particles
can be described by a macro parameter, void ratio (e), which
is affected by particle shape.

,e change curves of the void ratio with respect to EI are
shown in Figure 14. Void ratio e decreases with the growth of
EI, indicating that the particle packing gets closer with EI
increasing. ,en, the void ratio reaches a bottom value of
0.187 and starts to soar at the point where EI is 0.9.

5.2.2. Micro Parameter. ,e degree of particle contact can
be measured by a micro parameter, the mean coordination
number (Cmean), which can reflect the internal structure of
particle packing [26]:

Cmean �
1

Np

􏽘

Np

i�1
Ci, (9)

where Np is the number of particles and Ci is the contact
particle number of the ith particle.

In the change curve of the mean coordination number
with respect to EI shown in Figure 15, a reflection point also
appears at the point where EI is 0.9. Similar to the curve of
void ratio, Cmean exhibits a decreasing trend with EI in-
creasing. After reaching the bottom of the curve, Cmean stays
stable and has a slight increase.

5.2.3. Fabric Anisotropy. ,e fabric anisotropy is the an-
isotropy between the spatial distribution of particle contacts
and the length of branch vectors. ,e branch vector is the
vector connecting the mass centers of two particles. Fabric
anisotropy coefficients can be used to quantify the fabric
anisotropy properties, including coefficient of contact (ac),
coefficient of normal contact forces (an), coefficient of
tangential contact forces (at), and coefficient of branch
vectors (ad). ,e anisotropy coefficients can be calculated as

a∗ �

������
3
2
a
∗
ija
∗
ij

􏽲

, (10)

where a∗ is the anisotropy coefficients (ac, an, at, and ad)
and a∗ij is the tensors (ac

ij, an
ij, at

ij, and ad
ij) indicating the

directional distribution of ac, an, at, and ad. ,e tensors can
be calculated as

a
c
ij �

15
2
Φc′

ij , a
n
ij �

15F
n′
ij

2fn

,

a
t
ij �

15F
t′
ij

3fn

, a
d
ij �

15D
n′
ij

3d0
,

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(11)

where fn is the average normal contact force, d0 is the
average length of the branch vector, Φc′

ij is the partial tensor
of Φc

ij, Fn′
ij is the partial tensor of Fn

ij, Ft′
ij is the partial tensor

of Ft
ij, and Dn′

ij is the partial tensor of Dn
ij. Φ

c
ij, Fn

ij, Ft
ij, and

Dn
ij can be calculated as

Φc
ij �

1
Nc

􏽘
c∈Nc

n
c
i n

c
j, F

n
ij �

1
Nc

􏽘
c∈Nc

f
n
c n

c
i n

c
j

1 + a
c
kln

c
kn

c
l

,

F
t
ij �

1
Nc

􏽘
c∈Nc

f
t
cn

c
i n

c
j

1 + a
c
kln

c
kn

c
l

, D
n
ij �

1
Nc

􏽘
c∈Nc

d
n
c n

c
i n

c
j

1 + a
c
kln

c
kn

c
l

,

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(12)

Table 1: Fitting function and related parameters.

Shape index Fitting function Mean value Goodness of fit R2 Range
EI Normal distribution 0.68 0.98 From 0.25 to 1
Rd Normal distribution 0.33 0.98 From 0.2 to 0.6
Rg Normal distribution 0.0039 0.97 From 0.002 to 0.006
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where nc
i and nc

j are the ith and jth components of the unit
normal vector of contact c, respectively, and fn

c , ft
c, and dn

c

are the normal contact force, tangential contact force and
normal branch vector of contact c, respectively.

Figure 16 shows the change curves of the fabric anisotropy
coefficients with respect to EI. Among all coefficients, ac, an,
and at slightly decrease with the increase of EI, that is, the
anisotropy degree of the normal contact force and tangential
contact force decreases with EI collapsing. On the contrary, ad
shows a positive correlation with EI, indicating that the
anisotropy degree of branch vector declines with EI in-
creasing. Furthermore, ad slightly stabilizes to 0 with EI

increasing from 0.4 to 1.0, showing that the anisotropy of
branch vector almost disappears. ,us, the degree of fabric
anisotropy decreases with EI decreasing. Note that when

Table 2: Particle number and model parameters.

Parameter Value
Particle number 1000× 3
Particle density (kg/m3) 2650
Interparticle frictional coefficient 0.5
Wall-particle frictional coefficient 0
Effective modulus (Pa) 1× 108

Stiffness ratio 4/3
Damping factor 0.7
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Figure 14: Change curves of the void ratio with respect to
elongation.
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Figure 13: (a) GCS particles with different elongation; (b) stratified gravity deposition model.
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EI≥ 0.8, the fabric anisotropy coefficients stay relatively stable;
thus, the degree of fabric anisotropy is not affected by EI.

6. Application to DEM Simulation of GCS
Shear Behavior

6.1.SimulationofBiaxialCompressionTest. First, five samples
with different elongation (EI� 0.4, 0.5, 0.6, 0.7, 0.9) were
constructed. Each sample has an initial size of 9m ∗ 18m and
contains approximately 5000 GCS particles. ,e linear elastic
model is used as the contact law between particles.,e samples
are compressed by shifting the four rigid boundaries, and the
boundary has a force at 100 kPa (stress boundary condition
controlled by numerical servo). During the shearing process, in
order to make the state of samples quasistatic (to make the
loading process of the sample quasistatic loading), the rate of
shear strain is supposed to be relatively small.,us, the inertial
parameters are introduced as follows:

Iintertia � _ε1
d
����
σ0/ρ

􏽰 < 10− 3
, (13)

where _ε1 is the loading strain rate, d is mean particle size, ρ is
material density, σ0 is the consolidation stress. Previous
studies have shown that the value of the Inertia parameter
should be less than 2.5×10−3. ,us, the shifting speed of the
rigid wall is fixed to 0.05m/s. ,e inertia parameter is less
than 10−4 throughout the tests’ negative correlation.

6.2. Analysis of Macro-Meso Parameter

6.2.1. Analysis of Stress Ratio. ,e mean stress p and de-
viator stress q are calculated to explore the sample shear
strength. In the two-dimensional biaxial shear test, the valid
average stress p’ and deviator stress q are shown as follows:

p′ �
σ1 + σ2( 􏼁

2
, (14)

q � σ1 − σ2. (15)

For different EI values of samples, Figure 17 shows the
variation of the stress ratio q/p’with the axial strain ε1. In the
initial stage, as the axial strain increases, the stress ratio of all
samples rises significantly. After increasing to a peak value,
the stress ratio slightly descends and tends to stabilize.

6.2.2. Analysis of Volumetric Deformation. In this section,
the evolution of volumetric deformation is analyzed. Re-
garding the boundaries of the simulation being rigid walls,
the axial strain and volume strain can be calculated as

ε1 �
h0 − h( 􏼁

h0
,

εv �
v0 − v( 􏼁

v0
,

(16)

where h0 and h are the original height and the current height
of the sample, respectively; v0 and v are the original volume

and the current volume of the sample, respectively; negative
volume strain indicates volume expansion. In order to study
the critical state characteristics of the stabilized sample, all
samples were sheared to the axial strain ε1 � 30%. Under this
deformation, the typical conditions of the critical state are
basically satisfied (i.e., the stress and volume remain con-
stant with strain).

As shown in Figure 18, in the initial stage, the volume
strain descends with the ascent of the axial strain. After the
axial strain reaches about 1%, the volume strain reverses. As
the axial strain increases to a range of 20% to 30% which is a
critical state, the volume deformation of the sample remains
constant, which indicates that all samples show shear-in-
duced dilatancy deformation with strain softening. More-
over, as the sample gets a steady state, the volume strain
shows a negative correlation with the EI value. ,erefore, a
sample with a smaller EI value has stronger dilatancy.

6.2.3. Analysis of Mean Coordination Number. In this
section, we focus on the mean coordination number (MCN),
which can reflect the microscopic packing structure of the
simulated GCS. ,e evolution of MCN versus axial strain is
illustrated in Figure 19 for samples with various values. In
the beginning stage of shear, the MCN of samples decreases
significantly with axial strain. ,en, MCN declines with a
lower speed when the axial strain is greater than 2%. When
the axial strain is greater than 10%, the MCN is roughly
steady. ,en, as the EI value rises from 0.4 to 0.9, the MCN
collapses from 5.0 to 4.0; thus, a negative correlation with the
EI value can be found.

6.2.4. Analysis of Sliding Contact Percentage. ,e
Mohr–Coulomb law conducts the percentage of sliding
contact. ,e sliding coefficient is shown as follows:

SC �
f

c
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

μf
c
n( 􏼁

, (17)
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Figure 17: ,e evolution of stress ratio versus axial strain.
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where fc
t is the tangential contact force of contact c, f

c
n is the

normal contact force of contact c, and μ is the friction factor.
When SC> 0.9999, it is considered that a contact slip has
occurred. ,e percentage of sliding contact in the particle
system is as follows:

SP �
NSC

NC

× 100%, (18)

where NSC indicates the number of sliding contacts in the
particle system and NC is the total number of contacts.
Figure 20 shows the variation of SP of each sample with axial
strain.,e variation of SPwith an axial strain of all samples is
basically the same. As ε1 increases, SP rapidly increases to a

peak value and then gradually decreases to a stable value.
Figure 20 also indicates that the contact slip rate descends
with EI climbing. As the EI value rises from 0.4 to 0.9, the
maximum value and the stability value of SP descends from
0.36 to about 0.16, and from 11% to approximately 5%,
respectively.

7. Conclusion

Graded crushed stone (GCS) is of great significance in road
construction as an essential material used in the base or
transition layer. ,e packing properties like compactness
and void ratio can be affected by the irregularity and var-
iability of particle shape. In this study, the particle outlines
are firstly extracted based on deep learning algorithms.,en,
the shape evaluation indexes are quantified. In addition, the
gravity deposition with distinct EI value is simulated by the
discrete element method. Finally, the shear behavior of GCS
is studied. ,e specific results are as follows:

(1) ,e realistic particle contour is first automatically
extracted based on digital image processing and deep
learning algorithms. ,e lightweight U-NET model
is trained and the results show the accuracy of the
training set reached a value of 97% and the loss value
is about 0.01.

(2) ,e elongation (EI), roundness (Rd), and roughness
(Rg) of GCS are quantified by shape evaluation
algorithms.

(3) Based on the establishment of the GCS shape library,
the gravity deposition with various elongation is
simulated using the discrete element method to
study the packing properties of GCS. ,e elongation
effects on the macroscopic and microscopic quan-
tities are explored. ,e results illustrate that the void
ratio decreases with increasing elongation before a
reflection point where EI value is 0.9. Similar to the
void ratio, the mean coordinate number Cmean ex-
hibits a decreasing trend with EI increasing. After
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reaching the bottom of the curve, Cmean stays stable
and has a slight increase.

(4) ,e shear behavior of GCS is studied by simulation
of the biaxial compression test. ,e stress ratio of all
samples increases rapidly, and then reaches the peak
stage, after which the stress ratio gradually decreases
and tends to stabilize. ,e volume strain decreases
with the increase of the axial strain, and when the
axial strain reaches about 1%, the volume strain
reverses. ,en, in the range of 20% to 30%, the
volume strain stays constant, indicating a shear-
induced dilatancy deformation accompanied by
strain softening. ,e mean coordinate number of all
samples increases with axial strain at the beginning;
then, after the value of axial strain reaching 2%, the
MCN reaches its peak and decreases to be stable
when the axial strain is greater than 10%. ,e var-
iation of the percentage of sliding contact SP with the
axial strain of all samples is basically the same. As ε1
increases, SP rapidly increases to a peak value and
then gradually decreases to a stable value.
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