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Abstract

In this paper, a deterministic model incorporating social media in controlling tungiasis disease is
considered. The model is shown to be positively invariant as well as bounded. We showed that
the model has two equilibria points: disease free and endemic equilibria points. In both cases,
the steady states are locally asymptotically stable provided the basic reproduction number is less
than unity.
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1 Introduction

Tropical parasitic diseases are experienced by millions of the poorest population of the world.
However, many of them are not listed by the World Health Organisation WHO as Neglected Tropical
Diseases, as a consequence, they are ignored by governments and health care workers alike. These
category of diseases therefore do not receive scientific research interest they merit,tungiasis included
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[1]. According to Kahuru et al [2, 3], tungiasis is a skin disease caused by sand flea called Tunga
Penetrans. The disease is endemic in poor resource communities where various domestic and sylvatic
animals act as reservoirs for this zoonosis. The flea infestation is associated with poverty and
occurs in many poor resource communities in the Caribbean, South America and Sub-Saharan
Africa,[4, 5, 6, 1, 7, 3, 8, 9, 10, 11, 12]. Although a naturally self-limiting diseases, tungiasis causes
considerable morbidity, [6]. Fissures, ulcers,gangrene, lymphedema, deformation and loss of nails
and auto-amputation of digits are known sequels. In a non-immunized individuals tungiasis is a risk
factor for tetanus. Treatment of tungiasis involves identification of the parasite especially through
mechanical removal using a sterile, sharp pointed objects such as needles or pins followed by an
antiseptic dressing. It may also be effectively treated using surgical extraction of the embedded
sand flea under sterile condition in medical facilities, [2]. The fleas may also be deterred by washing
the affected areas with disinfectants like potassium permanganate and even coconut oil. Personal
hygiene and wearing of shoes are key in the control of jigger infection. Children and the elderly
need to be well taken care of through provision of primary and affordable amenities and health care
facilities, [13]

Nyanginja, [13] asserts that transmission of the infectious disease has been of great interest to
both medical practitioners and scholars. It is therefore critical to study epidemic transmission and
take effective strategies to prevent and contain it. Individual response to disease threat depends on
risk perception that is gained largely through information reported by the government to the public.
Public health programs such as public vaccination or immunization, isolation through media and
even education through social media can affect disease transmission during an epidemic contagion.

Mathematical modeling is an important tool used in analysing the dynamics of infectious diseases[14].
Several models have been formulated and analysed to explain the dynamics of tungiasis disease
transmission[15, 2, 16, 13, 9]. Pigler,[10] proposed that control of Tungiasis in a resource - poor
population with interventions target at the human and animal population.. He also mentioned
that high prevalence of tungiasis in endemic area and the important morbidity associated with this
parasitic skin disease call for the implementation of control measure. Pigler, [10]also determined the
impact of repeated rounds of surgical extraction of embedded sand fleas in humans and found out
that interventions were effective in controlling tungiasis for short term but failed in the long run.
He recommended prevention of infestation, rather than surgical extraction of the already embedded
sand fleas. Creating awareness of the disease through social media in this study forms the basis of
prevention of transmission rather than treatment as effective control measure of the disease.

Kahuru et al, [2, 3]constructed a model that investigated the dynamics of tungiasis. He employed a
system of ordinary equations that incorporated interactions between humans, animal reservoirs and
flea infested soil. He aimed at determining the effect of environment in controlling tungiasis disease
and found that reducing on and off-host flea population and effective contact rate is an effective
intervention, however, Kahuru did not consider the impact of social media in controlling the disease.

Nyanginja et at,[13] formulated and analysed a susceptible S, Infected I,and Educated E (SIE)
epidemic model incorporating public health education in control of transmission of tungiasis. His
findings indicated that establishing public health education is an effective measure of controlling
jigger menace as it reduced the spreading threshold. They further recommended proper control
measure to be put in places especially in resources-poor communities where the diseases is usually
endemic, however, they did not consider social media as an intervention strategy.

Social media has been known to greatly influence an individuals behaviour as well as government
policies on prevention and control of infectious diseases. In this paper,we seek to understand the
effects of social media in transmission of tungiasis disease.
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2 Model Formulation and Description

The human population is subdivided into classes of susceptible SN , individuals exposed to social
media SE , the infected population I, individuals who are chronically infected C and the recovered
population R.
We make the following assumptions:

1. Human birthrate and natural death rates takes place at different rates

2. Both susceptible and exposed individuals get infested but at different level.

3. The recovered group can also become susceptible

4. Chronically infested individual die from natural death or from disease induced death.

The recruitment into susceptible population SN takes place at the rate of (1−π)Λ, while recruitment
into the exposed class occurs at πΛ where π is the proportion of susceptible exposed to social media.
Natural death rate occurs in SN , SE , I, C and R classes at the rate µ. Individuals in compartment
C suffer an additional death due to the disease at the rate σ. Individuals leave SN to SE when
they become exposed to health information via social media at the rate ξ. We assume that the
mass action incidence transmission is defined by βSNI where β is the effective contact rate for the
disease transmission. Dissemination of information via social media may not be very effective due
to either political or economic reasons and so the exposed individuals will get mildly affected at
the rate (1 − δ)βSEI where δ is the success rate of control and preventive efforts through social
media and (1− δ) is the failure rate of the control efforts. Classes I and C recover at the rate κ and
λ respectively due to treatment or other interventions. Recovered individuals revert back to the
class SN at the rate ω. Individuals in class I move to class C at the rate α due to highly infested
environment.

The figure below gives the schematic diagram of the model.

Fig. 1. The flow chart showing dynamics of Tungiasis transmission
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From the flow chart in Fig.1 we obtain the following system of ordinary differential equations

dSN
dt

= (1− π)Λ + ωR− βSNI − µSN − ξSN
dSE
dt

= πΛ + ξSN − (µ+ (1− δ)βI)SE

dI

dt
= βSNI + (1− δ)βSEI − (µ+ κ+ α)I

dC

dt
= αI − (λ+ µ+ σ)C

dR

dt
= κI + λC − (ω + µ)R (2.1)

with initial conditions

SN (0) ≥ 0, SE(0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0, R(0) ≥ 0 (2.2)

3 Basic Qualitative Analysis of the Model

3.1 Positivity of Solutions

The nonnegativity property of the model is explored in the following theorem

Theorem 3.1 Suppose that condition (2.2) holds, then the solutions of the system (2.1) remain
non-negative for all t ≥ 0.

Consider the first equation of the model system (2.1) at time t

dSN
dt

+ βSNI − µSN − ξSN ≥ (1− π)Λ

This is like a first order differential equation in SN which has the solution

SN (t) ≥ SN (0)e−
∫ t
0 (βI(s)+µ+ξ)ds + e−

∫ t
0 (βI(s)+µ+ξ)ds ×

∫ t

0

(1− π)Λe
∫ u
0 (βI(w)+µ+ξ)dwdu ≥ 0

for all t ≥ 0 since et > 0 for all t.

Similarly, it can easily be shown that

SE(t) ≥ 0, I(t) ≥ 0, C(t) ≥ 0, R(t) ≥ 0 (3.1)

Therefore the solutions remain non-negative for all t ≥ 0.

3.2 Boundedness of Solutions

Theorem 3.2 (Invariant Region) Let N(t) = SN (t)+SE(t)+ I(t)+C(t)+R(t). Then the feasible
region of the model

Ω =

{
(SN , SE , I, C,R) ∈ R5

+ : N(t) ≤ π

µ

}
is positively invariant.
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By adding the equations in the system (2.1) we obtain

dN

dt
= Λ− µN − σC

from which we have

dN

dt
+ µN ≤ Λ (3.2)

This is a first order differential equation in N whose solution is given by

N(t) ≤ Λ

µ
+

(
N0 −

Λ

µ

)
e−µt (3.3)

from which it follows that lim supt→∞N(t) ≤ Λ
µ

. Hence N is bounded and all feasible solution
sets of the model system approach or stay in Ω. The region Ω is therefore positively invariant and
the model system is epidemiologically meaningful and Mathematically well posed in the domain
Ω. Hence it is sufficient to consider the dynamics of the flow it generates in a proper subset
Ω = {(SN , SE , I, C,R) ∈ R5

+}

4 Existence of Equilibria Points of The Model

To obtain equilibria points of the model system in equation (2.1), we equate the right hand side of
(2.1) to zero and solve for the variables. That is,

(1− π)Λ + ωR∗ − βS∗NI∗ − µS∗N − ξS∗N = 0

πΛ + ξS∗N − (µ+ (1− δ)βI∗)S∗E = 0

βS∗NI
∗ + (1− δ)βS∗EI∗ − (µ+ κ+ α)I∗ = 0

αI∗ − (λ+ µ+ σ)C∗ = 0

κI∗ + λC∗ − (ω + µ)R∗ = 0 (4.1)

From which we have;

S∗N =
(1− π)Λ + ωR∗

βI∗ + µ+ ξ
(4.2)

S∗E =
πΛ + ξS∗N

µ+ (1− δ)βI∗ (4.3)

S∗N =
(µ+ κ+ α)− (1− δ)βS∗E

β
(4.4)

C∗ =
αI∗

λ+ µ+ σ
(4.5)

R∗ =
κ(λ+ µ+ α) + αλ

(µ+ ω)(λ+ µ+ α)
I∗

4.1 Disease Free Equilibrium of the Model

The model system has a steady state at a given period where there is no infestation in the population
under consideration that is I∗ = 0. Hence, the DFE point is given by

E0 = (S0
N , S

0
E , I

0, C0, R0)

=

(
(1− π)Λ

µ+ ξ
,

(µ+ ξ)πΛ + ξ(1− π)Λ

µ(µ+ ξ)
, 0, 0, 0

)
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4.2 Basic Reproduction Number

The basic reproduction number is an important epidemiological parameter. It is denoted by R0

and is the expected number of secondary infection produced by a single infective individual in
a completely susceptible population ,[14]. The basic reproduction number RSE of the model
system equation (2.1) is the number of secondary tungiasis infections caused by a single jigger
infected individual in the presence of social media awareness creation intervention. When no such
programmes are employed, the basic reproduction number is defined by R0. It measures the power
of the disease to invade a population under conditions that facilitate a maximal growth. The basic
reproduction number is important in that it is directly related to the effort required to eliminate
infection. In general, the basic reproduction number depends on the demographic, disease and
morbidity parameters.The basic reproduction number has been obtained using the method in [17],
that is, the effective reproduction number RSE is given by the formula RSE = ρ(FV −1) where
ρ(M) represents the spectral radius of the matrix M , F is the rate of occurrence of new infections
while V is the rate of transferring the individuals outside the original group.

From the model system in equation (2.1), we wee that

F =

 βSNI + (1− δ)βSEI

0

, V =


(µ+ κ+ α)I

(λ+ µ+ σ)C − αI

 and

F =

 (1−π)βΛ
ξ+µ

+ (1− δ) (µ+ξ)πΛβ+(1−π)βΛξ
µ(µ+ξ)

0

0 0


V =

 (µ+ κ+ α) 0

−α (λ+ µ+ σ)


with

V −1 =

 1
µ+κ+α

0

−α
(µ+κ+α)(λ+µ+σ)

1
(λ+µ+σ)


Thus,

FV −1 =


1

µ+κ+α
.

(
(1−π)βΛ
ξ+µ

+ (1− δ) (µ+ξ)πΛβ+(1−π)βΛξ
µ(µ+ξ)

)
0

0 0


The eigenvalues of FV − are

X1 = 0

X2 =
βΛ

µ(µ+ κ+ α)

[
(1− π)µ+ (1− π)(1− δ)ξ + (1− δ)(µ+ ξ)π

(ξ + µ)

]
Therefore, the effective reproduction number is given by

RSE =
βΛ

(µ+ κ+ α)

[
(1− π)

µ+ ξ
+

(1− δ)π
µ

+
(1− δ)(1− π)ξ

µ(µ+ ξ)

]
(4.6)

In the absence of social media awareness, ξ = 0 and π = 0 and the effective reproduction number
reduces to

R0 =
βΛ

µ(µ+ κ+ α)
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This implies that

RSE = R0

[
(1− π)µ+ (1− π)(1− δ)ξ + (1− δ)(µ+ ξ)π

(ξ + µ)

]
(4.7)

Since 0 < (1− δ) < 1, it follows that(
(1− π)µ+ (1− π)(1− δ)ξ + (1− δ)(µ+ ξ)π

(ξ + µ)

)
< 1

which implies that RSE < R0. When π = ξ = 0, RSE = R0. Thus from equation (4.7), it is
clear that social media creation awareness on transmission of tungiasis has a positive impact on the
reduction of new infections.

4.3 Existence of A Unique Positive Endemic Equilibrium

In the following Lemma, we explore the existence of a unique positive endemic equilibrium for the
model system (2.1).

Lemma 4.1 A unique endemic equilibrium E∗ = (S∗N , S
∗
E , I

∗, C∗, R∗) exists provided that RSE > 1

At disease endemic equilibrium (DEE), I 6= 0 and solving for S∗N , S
∗
E , C

∗, R∗ in (4.1), we obtain

S∗N =
b1(1− π)Λ + b2I

∗

b1(βI∗ + b4)
(4.8)

S∗E =
πΛ(b1βI

∗ + b1b4) + ξb1(1− π)Λ + b2I
∗ξ

(b1βI∗ + b1b4)(µ+ (1− δ)βI∗) (4.9)

C∗ =
α

b3
I∗ (4.10)

R∗ =
b5
b1
I∗ (4.11)

Using equation (4.4), we can also express S∗N as

S∗N =
b6(µ+ (1− δ)βI∗)− (1− δ)βπΛ

[µ+ (1− δ)βI∗ + (1− δ)ξ]β (4.12)

where

b1 = (µ+ ω)(λ+ µ+ σ), b2 = ωα(λ+ µ+ σ) + ωαλ, b3 = λ+ µ+ σ,

b4 = µ+ ξ, b5 = κ(λ+ µ+ σ) + αλ and b6 = µ+ κ+ α

Equating equations (4.8) and (4.12), we obtain after a lengthy computation

A2I
∗2 +A1I

∗ +A0 = 0 (4.13)

Where

A2 = (1− δ)β2{b1b6 − b2}
= (1− δ)β2{µb3(b6 + ω) + αω(µ+ σ)} > 0⇒ b1b6 > b2, i.e.

(µ+ ω)(λ+ µ+ σ)(µ+ κ+ α) > ωκ(λ+ µ+ σ) + ωαλ,

A1 = (1− δ)βb1(b4b6 − Λβ) + β(µb1b6 − b2
[
µ+ (1− δ)ξ]

)
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By definition b4b6 > Λβ and since A2 > 0, we see that µb1b6 > b4b2. Thus A1 > 0 and

A0 = −µb1b4b6[RSE − 1] (4.14)

Where RSE is as given in (4.6).

By the Descartes’ Rule of Signs,[18] existence of a positive root now depends on the sign of A0.
A0 has to be negative for a positive root, I∗ > 0 to exist. But from (4.14) it follows that A0 <
0 if RSE > 1 With this information, one can approximate I∗ using the quadratic equation in (4.13)
as follows

I∗ ≈ 2A2µb1b4b6[RSE − 1]

A1

= M(RSE − 1)

where M = 2A2µb1b4b6
A1

> 0. The endemic equilibrium point E∗ can then be easily obtained using
equations (4.8),(4.9),(4.10),(4.11).

5 Stability Analysis of Equilibria

5.1 Local Stability and Disease Free Equilibrium

In this section, we investigate local stability of the DFE, E0

Theorem 5.1 The disease-free equilibrium of the model system (2.1) is locally asymptotically stable
whenever RSE < 1 and unstable whenever RSE > 1

It suffices to show that the eigenvalues of The Jacobian matrix of the mode system (2.1) have real
negative parts. The Jacobian matrix at DFE, E0, is given by

J(E0) =



−(µ + ξ) 0
−β(1−π)Λ

µ+ξ
0 ω

ξ −µ −(1− δ) β(µ+ξ)πΛ+βξ(1−π)Λ
µ(µ+ξ)

0 0

0 0
β(1−π)Λ
µ+ξ

+ (1− δ) β(µ+ξ)πΛ+βξ(1−π)Λ
µ(µ+ξ)

− (µ + κ + α) 0 0

0 0 α −(λ + µ + σ) 0

0 0 κ λ −(ω + µ)


The characteristic equation is given by |(J(E0)−XI)| = 0, which yields

(µ+ ξ +X)(µ+X)

[
(µ+ κ+ α)(RSE − 1)−X

]
(λ+ µ+ σ +X)(µ+ ω +X) = 0

Thus,

X1 = −(µ+ ξ)

X2 = −µ
X3 = (RSE − 1)(µ+ κ+ α)

X4 = −(λ+ µ+ σ)

X5 = −(ω + µ)

Where RSE is as given in (4.6). All eigenvalues are negative provided RSE < 1.If RSE > 1, then
X3 > 0 and therefore DFE is unstable.
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5.2 Global Stability of The Disease Free Equilibrium

In this section, we investigate the global stability of the DFE, E0.

Theorem 5.2 The disease free equilibrium

E0 =

(
(1− π)Λ

µ+ ξ
,

(µ+ ξ)πΛ + ξ(1− π)Λ

µ(µ+ ξ)
, 0, 0, 0

)
of the model system (2.1) is globally asymptotically stable(GAS) if RSE ≤ 1.

Let

S0
N =

(1− π)Λ

µ+ ξ
and S0

E =
(µ+ ξ)πΛ + ξ(1− π)Λ

µ(µ+ ξ)

and consider the following combination of linear functions and Voltera-type Lyapunov function:

L = L(SN , SE , I, C,R) = SN − S0
N lnSN + SE − S0

ElnSE + I + a1C + a2R

where a1 and a2 are constants to be determined. L is defined and continuous. It suffices to show that
dL
dt
≤ 0. Therefore, the derivative of L in the direction of the vector field given by the right-hand

side of the equation (2.1) is

dL

dt
=

dSN
dt

(
1− S0

N

SN

)
+
dSE
dt

(
1− S0

E

SE

)
+
dI

dt
+ a1

dC

dt
+ a2

dR

dt

=
−(µ+ ξ)

SN
(SN − S0

N )2 − µ

SE
(SE − S0

E)2

+
[
βS0

N + (1− δ)βS0
E − (µ+ κ+ α) + a1α+ a2κ

]
I

+ [a2λ− a1(λ+ µ+ σ)]C +

[
ω

(
SN − S0

N

SN

)
− a2(ω + µ)

]
R

+ξSN

(
1− S0

N

SN

)(
1− S0

E

SE

)
Choose a1 and a2 such that

a2λ− a1(λ+ µ+ σ) = 0

ω

(
SN − S0

N

SN

)
− a2(ω + µ) = 0

Thus

a2 =
ω

µ+ ω

(
1− S0

N

SN

)

a1 =
ωλ

(µ+ ω)(λ+ µ+ σ)

(
1− S0

N

SN

)
.

With this in mind, dL
dt

becomes

dL

dt
=
−(µ+ ξ)

SN
(SN − S0

N )2 − µ

SE
(SE − S0

E)2 + (µ+ κ+ α)(RSE − 1)I

+

(
ωλαI

(µ+ ω)(λ+ µ+ σ)
+

ωκI

µ+ ω

)(
1− S0

N

SN

)
+ ξSN

(
1− S0

N

SN

)(
1− S0

E

SE

)
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Since the arithmetic mean exceeds the geometric mean, the following inequalities hold(
ωλαI

(µ+ ω)(λ+ µ+ σ)
+

ωκI

µ+ ω

)(
1− S0

N

SN

)
≤ 0

ξSN

(
1− S0

N

SN

)(
1− S0

E

SE

)
≤ 0

Thus dL
dt
≤ 0 if RSE ≤ 1 with equality if SN = S0

N , SE = S0
E , and RSE = 1.

Since it is easy to show that the largest invariant subset contained in the set

L :
{

(SN , SE , I, C,R) ∈ Ω :
dL

dt
= 0
}

is the DFE, E0, it follows from La Salles Invariance Principal [14, 19, 20, 21], that every solution
of the equations in the model system (2.1) with initial conditions in Ω, approaches E0 as t → ∞
for RSE ≤ 1

5.3 Local Stability of The Endemic Equilibrium

Theorem 5.3 If

(2− δ)βM(RSE − 1) + µ+ κ+ α > (1− δ)βS∗E (5.1)

where S∗E is as given in (4.9), then the disease-endemic equilibrium of the model system (2.1) is
locally asymptotically stable

Since N(t)→ Λ
µ

as t→∞ we can express SN as

SN =
Λ

µ
− SE − I − C −R

Thus, it is enough to study the stability of the subsystem

dSE
dt

= πΛ + ξ
(Λ

µ
− S∗E − I∗ − C∗ −R∗

)
− (µ+ (1− δ)βI)SE

dI

dt
= β

(Λ

µ
− SE − I − C −R

)
I + (1− δ)βSEI − (µ+ κ+ α)I

dC

dt
= αI − (λ+ µ+ σ)C

dR

dt
= κI + λC − (µ+ ω)C

The Jacobian matrix at the equilibrium point S∗E , I
∗, C∗, R∗ is

J(E∗) =

( −ξ − µ− (1− δ)βI∗ −ξ − (1− δ)βS∗
E −ξ −ξ

−δβI∗ −2βI∗ + (1− δ)βS∗
E − (µ + κ + α) −βI∗ −βI∗

0 α −(λ + µ + σ) 0
0 κ λ −(µ + ω)

)

Let

c1 = µ+ ξ + (1− δ)βI∗, c2 = −2βI∗ + (1− δ)βS∗E − (µ+ κ+ α)

c3 = αλ+ κb3, c4 = ξ + (1− δ)βS∗E
b3 = λ+ µ+ σ, b4 = µ+ ξ, b6 = µ+ κ+ α, b7 = µ+ ω
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(J −XI) =

∣∣∣∣∣∣∣∣
−c1 −X −c4 −ξ −ξ
−δβI∗ c2 −X −βI∗ −βI∗

0 α −b2 −X 0
0 κ λ −b7 −X

∣∣∣∣∣∣∣∣
The characteristic polynomial is then

X4 +
(
c1 − c2 + b3 + b7

)
X3 + c1(b3 + b7 − c2) +

[
b3b7 − c2b3 − c2b7 + αβI∗ + βκI∗

−δβc4I∗
]
X2 +

[
b3b7 − c2b3 − c2b7 + c1αβI

∗ + c1βκI
∗ − c2b3b7 + αβI∗ + c3βI

∗

−δβI∗c4(b3 + b7)− δβI∗c4αξ − δβI∗c4κξ
]
X + c1αβb7I

∗ − c1c2b3b7 + c1c3βI
∗

−δβI∗c4b3b7 − δβI∗αξb7 − δβI∗ξc3

For negative eigenvalues, it is enough to show that the independent term a4 in

X4 + a1X
3 + a2X

2 + a3X + a4

where
a4 = c1

(
c3βI

∗ + αβb7I
∗ − c2b3b7

)
− δβI∗

(
c4b3b7 + αξb7 + ξc3

)
is positive, see [15]. Rewriting a4 we have

a4 = c1
(
c3βI

∗ + αβb7I
∗ − c2b3b7

)
− δβI∗

(
c4b3b7 + αξb7 + ξc3

)
= (λ+ µ+ σ)(µ+ ω)

{
δβµI∗ + [µ+ ξ + (1− δ)βS∗E ][µ+ κ+ α+ (2− δ)βI∗

−(1− δ)βS∗E ]
}

+
{
ξκ(λ+ µ+ σ)βI∗(1− δ) + αξ(µ+ ω)(1− δ)βI∗ + αλξ +

[µ+ (1− δ)βS∗E ][αλ+ κ(λ+ µ+ σ)βI∗ + α(µ+ ω)βI∗]− αλξδβI∗
}

The sum of in the second curly bracket is clearly positive. The sum in the first curly bracket is
positive if

(2− δ)βI∗ + (µ+ κ+ α) > (1− δ)βS∗E (5.2)

By the results in [15], it follows that the endemic equilibrium point is locally asymptotically stable
provided condition (5.2) is satisfied.

6 Numerical Simulation

Numerical simulations were carried using MATLAB R2021a to graphically illustrate the long term
effect of social media intervention on the dynamics Tungiasis infestation. The simulation of the
model above is done using parameter values shown in table below.

7 Discussion

From Fig.4 we see that the population of the susceptible individuals immediately begins to drop
because of the highest degree of Tungiasis infestation, consequently the removed individuals starts
to rise. The number of tungiasis infested individuals increase then come to a decrease. At the
same time, the population of those who are removed rises swiftly then reaches the peak showing
the biological reality that tungiasis infestation can be fatal. The model is realistic to show the
situation. therefore, the medical practitioners, health departments and stakeholders should focus
on this moment. Moreover the population of the susceptible also decreases at this time as more
people get infected showing that the spread of the disease is high and should be controlled.
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Table 1. Detailed description of the state variables and relevant parameters of the
proposed [SN ,SE,I,C,R] Tungiasis Model

Detailed Description Symbol Value Source

Susceptible Population SN (t) 5.478× 107 [22]

Mildly Infected Population I(t) 6.75× 104 [4]

Chronically Infected Population C(t) 1.0× 101 [4]

Fraction Exposed to Social Media π 3.995× 102 Assumed

Mildly Infected Recovery Rate κ 6.975× 10−1 Assumed

Chronic Infection Rate α 1.5× 10−8 Assumed

Susceptible Recruitment Rate Λ 1.245× 10−6 [5]

Natural Death Rate µ 5.2× 10−8 [22]

Infestation Death Rate σ 2.607× 10−9 [22]

Recovered Reverting Rate to Susceptible κ 6.75× 10−1 Assumed

Effective Contact Transmission Rate β 3.2398× 10−9 [22]
Success Rate of Social Media Intervention δ [0,1] Assumed

Dissemination Rate of Control Strategies ξ 5.99× 10−3 Assumed

Chronically Infested Recovery Rate λ 1.375× 10−1 [22]

Recovered Reverting to Susceptible Population ω 3.75× 10−4 Assumed

Fig. 2. Effects of Social Media on Control of Tungiasis δ = 0.18

Fig. 3. Effects of Social Media on Control of Tungiasis δ = 0.23
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Fig.4. Effects of Social Media on Control of Tungiasisδ = 0.32

From Fig.4, Fig.3 and Fig. 2 with δ = 0.32, δ = 0.23 and δ = 0.18 respectively shows that the
number of infested individuals reduces from 5.0× 107 to 2.0× 107.

δ Infested Population

0.18 5.075× 107

0.23 4.303× 107

0.32 2.05× 107

From the graphs, we see the relation between social media intervention and the population infested
with tungiasis. It is clear that when the social media intervention success rate is increased, the
number of those infected with tungiasis decreased.

8 Conclusion

In this study,a mathematical model for tungiasis transmission incorporating social media intervention
as control strategy was formulated. The stability of the disease free and endemic equilibrium have
been analysed. The results of the disease free equilibrium showed that the model is both locally
and globally stable when RSE < 1 thus reducing RSE to less than unity reduces the spread of the
disease. Endemic equilibrium has also been analysed and was found to be locally asymptotically
stable when RSE < 1. Numerical simulation shows that in the presence of social media intervention,
the disease dies out faster while lack of social media intervention in the disease and other preventive
measures greatly increases the number of the infested individuals. The study has not carried out
optimal control and cost effectiveness of the different tungiasis intervention strategies which can be
explained in future to find out the best strategy.
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