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Abstract

In this article, the nonlinear integrated positive position feedback (NIPPF) control adds to
a nonlinear dynamical system modeled as the well known Duffing oscillators. This control is
proposed to mitigate system nonlinear vibrations. The whole system mathematical model is
analyzed by applying the multiple time scales perturbation method. The slow-flow modulation
equations that govern the oscillation amplitudes of both the main system and controller are
derived. The stability of the steady-state solution is presented and studied applying frequency
response equations near the simultaneous primary and internal resonance cases. Before and after
(NIPPF) control the nonlinear systems’ steady-state amplitude are examined, the comparison is
made to validate the closeness between the numerical solution and the analytical perturbative
one at time-history and frequency response curves.
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1 Introduction

Many types of controllers are used for suppressing the vibrations of different non-linear dynamical
systems such that, negative linear velocity feedback, negative cubic velocity feedback, non-linear
saturation controllers (NSC), non-linear Integral Positive Position Feedback Controllers (NIPPF),
the Integral resonant controllers (IRC) and time delay control. The technique of multiple time
scales used to investigate the micro-beams non-linear vibrations for two different resonance cases
(super- harmonic and harmonic resonances). From this investigation, there is a clear effect of the
boundary conditions on the micro-beams vibrations [1]. Recently, the vibrations of many vibrating
systems [2-8] has been suppressed using different types of control. Because of the time delayed
and active controls springiness [9-14] in controlling many vibrating system, many papers used time
delay for suppressing the vibrations of non-linear systems. Abdelhafez and Nassar [15], investigated
the effectiveness of time delays when the positive position controllers are used for suppressing the
vibrations of a self-exited non-linear beam. They notified that, the time margin depends on the
overall delays of the system. The authors in [16] investigated the influence of two different delays
the first is displacement delay and the second is velocity delay in a cantilever beam. They used
the method of multiple scales to determine all super-harmonic and sub-harmonic resonance cases.
Since the aim of most studies is to suppress the vibrations, one of the important types of control to
vibrating systems is the NIPPF, which, is used as a novel method that merges the characteristics
of IRC and PPF methods to manage the oscillatory nonlinear systems. The NIPPF controller has
an intelligent result since it decreases the vibration at the correct resonant frequency [17]. Also,
a new novel procedure is presented [18] to overcome vibration of the nonlinear oscillatory active
structures. For different resonance cases the NIPPF control is applied to reduce the vibrations
of duffing oscillator system near primary and super-harmonic resonances [19], through primary
and internal resonance [20]. Omidi et al [21,22] presented three kinds of control to suppress the
vibrations of vibrating systems such that, the Integral resonant controllers (IRC), PPF controllers
and the non-linear Integral Positive Position feedback (NIPPF). The eminent type of decreasing the
vibrations is NIPPF type .The NIPPF controller is used for deceasing the vibrations of the model
of micro-electro- mechanical system near primary resonance and one-to-one internal resonance [23,
24]. The equations of frequency response are in use to investigate the stability of the obtained
solution. The influence of some chosen coefficient is illustrated numerically and analytically. The
rapprochement between numeric and analytic solution is offered.

2 System Modeling

Consider the model of micro-electro- mechanical system

ü+ 2εµ1u̇+ ω2
1u+ ε(α1u

2 + α2u
3)− εα(2u+ 3u2 + 4u3)−

ε(2u+ 3u2 + 4u3)(f1cos(Ωt) + f2cos(2Ωt))−
ε(α+ f1cos(Ωt) + f2cos(2Ωt)) = fc, 0 < ε < 1, (2.1)

This model represented the modified Duffing equation subjected to weakly non-linear parametric
and external excitations, and described the main motions at time scales of the natural vibrations of
the microstructure and fast dynamic at time scales of the high-frequency voltage, µ1 is the coefficient
of viscous damping,ε is a small parameter, ω1 is linear natural frequency , Ω is the frequency of the
external excitation, α is the coefficient of linear term ,α1, α2 are the coefficients of the nonlinear
terms ,f1, f2 are the coefficient of linear and nonlinear parameters excitations, and fc(t) is the
control input. This NIPPF control module is designed in a feedback format for the controller so
that it absorbs some of the vibration energy by increasing System damping, compensates for the
resonance energy using the application of positive feedback. In order to achieve this goal, The
NIPPF controller is described as follows:
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ẍ+ 2εµ2ω2ẋ+ ω2
2x = εγ1u(t),

ż + σz = εγ2u(t), (2.2)

with the control law of: fc = λ1x(t) + λ2z(t). so the closed loop system equations are

ü+ 2εµu̇+ ω2
1u+ ε(α1u

2 + α2u
3)− εα(2u+ 3u2 + 4u3)−

ε(2u+ 3u2 + 4u4)(f1cos(Ωt) + f2cos(2Ωt))− ε(α+ f1cos(Ωt) + f2cos(2Ωt)) =

ελ1x(t) + ελ2z(t),

ẍ+ 2εµ2ω2ẋ+ ω2
2x = εγ1u(t),

ż + σz = εγ2u(t), (2.3)

where x(t) is the second-order section variable for the NIPPF controller and z(t) is the integrating
section variable for the NIPPF controller. µ2 , ω2 are the damping factor and internal frequency
for the controller, respectively.γ1 > 0 and γ2 > 0 are the gains of controller, λ1 is the positive scalar
feedback gain of the second- order section, λ2 is the positive scalar feedback gain of integrating
section, σ is the lossy integrator’s frequency.

3 Mathematical Analysis

The multiple scales method is applied to get the asymptotic first-order approximate solutions for
the system (2.3) which we use the multiscale perturbed method

u(T0, T1, ε) = u0(T0, T1) + εu1(T0, T1) +O(ε2),

y(T0, T1, ε) = y0(T0, T1) + εy1(T0, T1) +O(ε2), Tn = εnt, (3.1)

where T0 = t and T1 = εt are the fast and slow time scales, respectively. The time derivatives
became

d

dt
= D0 + εD1 + ...,

d2

dt2
= D2

0 + 2εD0D1 + ... (3.2)

where Dj = d
dTj

, j = 0, 1. Substituting (3.1) and (3.2) into (2.3), and equating the coefficients of

equal power of ε lead to:

O(ε0) :

(D2
0 + ω2

1)u0 = 0,

(D2
0 + ω2

2)y0 = 0,

(D0 + σ)z0 = γ2u0, (3.3)

O(ε1) :

(D2
0 + ω2

1)u1 = −2D0D1u0 − 2µ1D0u0 − α1u
2
0 − α2u

3
0 + α(2u0 + 3u2

0 + 4u3
0) +

(2u0 + 3u2
0 + 4u3

0)(f1cosΩt+ f2cos2Ωt) + α+ f1cosΩt+ f2 cos 2Ωt+

λ1x0(t) + λ2z0(t),

(D2
0 + ω2

2)x1 = −2D0D1x0 − 2µ2ω2D0x0 + γ1u0,

(D0 + σ)z1 = γ2u0 −D1z1, (3.4)
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The solution of system of equations(3.3) are

u0(T0, T1) = A1(T1)eiω1T0 + c.c.,

y0(T0, T1) = A2(T1)eiω2T0 + c.c.

z0(T0, T1) = A3(T1)e−σT0 +
γ2(σ − iω1)

(ω2
1 + σ2)

A1(T1)eiω1T0 , (3.5)

Where A1, A2 are unknown complex function in T1 and c.c. denotes the complex conjugate of the
previous terms, insert eq.(3.5) into eq.(3.4) we get

(D2
0 + ω2

1)u1 = α+A1Ā1(6α− 2α1) +

[−2iω1D1A1 − 2iA1µ1ω1 + 2αA1 + 12αA2
1Ā1 − 3α2A

2
1Ā1 +

γ2(σiω1)A1

(ω2
1 + σ2)

]eiω1T0 + (3α− α1)A2
1e

2iω1T0 + (4α− α2)A3
1e

3iω1T0 +

f1(0.5 + 3A1Ā1)eiΩT0 + f2(0.5 + 3A1Ā1)e2iΩT0 +

1.5f1A
2
1e
i(Ω+2ω1)T0 + 1.5f2A

2
1e
i(2Ω+2ω1)T0 +

f1(A1 + 6A2
1Ā1)ei(Ω+ω1)T0 + f2(A1 + 6A2

1Ā1)ei(2Ω+ω1)T0 +

2f1A
3
1e
i(Ω+3ω1)T0 + 2f2A

3
1e
i(2Ω+3ω)T0 +

A2λ1e
iω2T +A2γ1e

iω2T0 +A3λ2e
−σT0 , (3.6)

(D2
0 + ω2

2)x1 = A1γ1e
iω1T0 − (2iA2µ2ω2 + 2iD1A2ω2)eiω2T0 + c.c., (3.7)

the solutions of equations (3.6),(3.7) after eliminating the secular terms

u1 = α+A1Ā1(6α− 2α1) + E1e
2iω1T0 + E2e

3iω1T0 + E3e
iΩT0 + E4e

2iΩT0 +

E5e
i(Ω+ω1)T0 + E6e

i(2Ω+ω1)T0 + E7e
i(Ω+2ω1)T0 +

E8e
i(Ω+3ω1)T0 + E9e

i(2Ω+2ω1)T0 +

E10e
i(2Ω+3ω1)T0 + E11e

iω2T0 + E12e
−σT0 + c.c. (3.8)

x1 =
A1γ1

(ω2
2 − ω2

1)
eiω2T0 + c.c., (3.9)

z1 = − iγ2ω1(σ − iω1)2

(σ2 + ω2
1)2

eiω1T0DA1 + α+A1Ā1(6α− 2α1) +

N1e
2iω1T0 +N2e

3iω1T0 +N3e
iΩT0 +N4e

2iΩT0 +

N5e
i(Ω+ω1)T0 +N6e

i(2Ω+ω1)T0 +N7e
i(Ω+2ω1)T0 +

N8e
i(Ω+3ω1)T0 +N9e

i(2Ω+2ω1)T0 +

N10e
i(2Ω+3ω1)T0 +N11e

iω2T0 + c.c. (3.10)

where Ei,i=1,2,....,12 and Nj ,j=1,2,...,11 are presented at appendix.
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4 Stability Analysis

In this paper, the case of the simultaneous primary and internal resonance (Ω = ω1, ω1 = ω2) which
is the worst resonance case, is considered to study the stability of the system of equations (2.3) .
Introducing the detuning parameters σ1 and σ2 according to:

Ω = ω1 + εσ1, ω2 = ω1 + εσ2, (4.1)

and write

(Ω− 2ω1)T0 = (ω1 + εσ1 − 2ω1)T0 = (εσ1 − ω1)T0 = −(ω1T0 − σ1T1),

(2Ω− ω1)T0 = (2ω1 + 2εσ1 − ω1)T0 = ω1T0 + 2σ1T1,

(2Ω− 3ω1)T0 = ((2ω1 + 2εω1 − 3ω1)T0 = −(ω1T0 − 2σ1T1). (4.2)

Substituting equations (4.1) and (4.2) into equations (3.6) and (3.7) and eliminating the secular
terms, leads to the solvability conditions for the first order approximation, hence the following
differential equations are obtained:

2iω1D1A1 = −2iA1µ1ω1 + 2αA1 + 12αA2
1Ā1 + (0.5f1 + 3A1f1Ā1)eiσ1T1 +

A2λ1e
iσ2T1 + f2(Ā1 + 6A1Ā2)e2iσ1T1 +

3f1A
2
1e

−iσ1T1

2
− 3A2

1α2Ā1 +

2f2A
3
1e

−2iσ1T1 +
γ2λ2(σ − iω1)

(ω2
1 + σ2)

A1, (4.3)

2iω2D1A2 = A1γ1e
−iσ2T1 − 2iA2µ2ω2, (4.4)

The solution of equations (4.3) and (4.4) can be analyzed by putting A1(T1), A2(T1) in polar form,

A1(T1) =
a1(T1)

2
eiφ1(T1), A2(T1) =

a2(T1)

2
eiφ2(T1) (4.5)

D1A1 =
1

2
(ȧ1 + ia1φ̇1)eiφ1T1 , D1A2 =

1

2
(ȧ2 + ia2

˙φ2)eiφ2T1 , (4.6)

where a1, a2 are the amplitudes of steady state, φ1, φ2 are the motions phases. By substituting
equations (4.5),(4.6) into equations (4.3) ,(4.4), we get

(ȧ1 + ia1φ̇1) =
−iαa1

ω1
− µa1 −

3iαa3
1

2ω1
+

3iα2a
3
1

8ω1
− i

ω1
(
1

2
f1 +

3

4
a2

1f1)ei(σ1T1−φ1) −

ia2λ1

2ω1
ei(σ2T1−φ1+φ2) − i

2ω1
(
f2a1

2
+

3f2a
3
1

4
)e2i(σ1T1−φ1) −

3i

8ω1
f1a

2
1e

−i(σ1T1−φ1) − if2a
3
1

4ω1
e−2i(σ1T1−φ1) − i γ2λ2(σ − iω1)

ω1(ω2
1 + σ2)

a1, (4.7)

(ȧ2 + ia2φ̇2) = −a2µ2 −
γ1a1i

2ω2
e−i(σ2T1−φ1+φ2), (4.8)

compare the imaginary part and the real terms

ȧ1 = −µ1a1 −
λ2γ2a1

2(σ2 + ω2
1)

+
1

2ω1
(a1f2 +

3

2
a3

1f2)sin2θ1 +
a2λ1

2ω1
sinθ2 +

1

2ω1
(f1 +

3

2
a2

1f1)sinθ1 −
3a2

1f1

8ω1
sinθ1 −

f2a
3
1

4ω1
sin2θ1,

a1φ̇1 =
−αa1

ω1
+

λ2γ2σa1

2ω1(σ2 + ω2
1)
− 3αa3

1

2ω1
+

3α2a
3
1

8ω1
− 1

2ω1
(a1f2 +

3

2
a3

1f2)cos2θ1 −

a2λ1

2ω1
cosθ2 −

1

2ω1
(f1 +

3

2
a2

1f1)cos θ1 −
3a2

1f1

8ω1
cosθ1 −

f2a
3
1

4ω1
cos2θ1, (4.9)
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ȧ2 = −µ2a2 −
γ1a1

2ω2
sin θ2,

˙a2φ2 = −γ1a1

2ω2
cos θ2, (4.10)

where

θ1 = σ1T1 − φ1, θ2 = σ2T1 − φ1 + φ2, θ̇1 = σ1 − φ̇1, θ̇2 = σ2 − φ̇1 + φ̇2. (4.11)

5 Stability Investigation

The steady-state solution of our dynamical system corresponding to the fixed point of equations
(4.9) , (4.10) is obtained when ˙am = 0, ˙φm = 0,m = 1, 2,

µ1a1 = − λ2γ2a1

2(σ2 + ω2
1)

+
1

2ω1
(a1f2 +

3

2
a3

1f2)sin2θ1 +
a2λ1

2ω1
sinθ2 +

1

2ω1
(f1 +

3

2
a2

1f1)sinθ1 −
3a2

1f1

8ω1
sinθ1 −

f2a
3
1

4ω1
sin2θ1, (5.1)

σ1a1 =
λ2γ2σa1

2ω1(σ2 + ω2
1)
− αa1

ω1
− 3αa3

1

2ω1
+

3α2a
3
1

8ω1
− 1

2ω1
(a1f2 +

3

2
a3

1f2)cos 2θ1 −

a2λ1

2ω1
cosθ2 −

1

2ω1
(f1 +

3

2
a2

1f1)cos θ1 −
3a2

1f1

8ω1
cosθ1 −

f2a
3
1

4ω1
cos2θ1, (5.2)

µ2a2 = −γ1a1

2ω2
sinθ2,

(5.3)

(σ1 − σ2)a2 = −γ1a1

2ω2
cosθ2. (5.4)

From equations (5.1) to (5.4) the amplitude and phase modulating equations take the form

ȧ1 = −µ1a1 −
λ2γ2a1

2(σ2 + ω2
1)

+
1

2ω1
(a1f2 +

3

2
a3

1f2)sin2θ1 +
a2λ1

2ω1
sinθ2 +

1

2ω1
(f1 +

3

2
a2

1f1)sinθ1 −
3a2

1f1

8ω1
sinθ1 −

f2a
3
1

4ω1
sin2θ1, (5.5)

θ̇1 = σ1 +
λ2γ2σ

2ω1(σ2 + ω2
1)

+
α

ω1
+

3αa2
1

2ω1
− 3α2a

2
1

8ω1
+

1

2ω1
(f2 +

3

2
a2

1f2)cos 2θ1 +

a2λ1

2a1ω1
cosθ2 +

1

2ω1
(
f1

a1
+

3

2
a1f1)cos θ1 +

3a1f1

8ω1
cosθ1 +

f2a
2
1

4ω1
cos2θ1, (5.6)

ȧ2 = −µ2ω1a2 −
γ1a1

2ω1
sin θ2, (5.7)

θ̇2 = σ2 +
λ2γ2σ

2ω1(σ2 + ω2
1)

+
α

ω1
+

3αa2
1

2ω1
− 3α2a

2
1

8ω1
+

1

2ω1
(f2 +

3

2
a2

1f2)cos 2θ1 +

a2λ1

2a1ω1
cos θ2 +

1

2ω1
(
f1

a1
+

3

2
a1f1)cosθ1 +

3a1f1

8ω1
cosθ1 −

γ1a1

2a2ω2
cosθ2 +

f2a
2
1

4ω1
cos2θ1, (5.8)
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To determine the stability of the nonlinear solution, one lets

a1 = a10 + a11, a2 = a20 + a21, θ1 = θ10 + θ11, θ2 = θ20 + θ21, (5.9)

where am0, θm0 are the solutions of equations (5.5)-(5.8) and am1, θm1 are perturbations which are
assumed to be small compared to am0, θm0 . Substituting equation (5.9) into equations (5.5)-(5.8)
and keeping only the linear terms in am1, θm1 , we obtain that

˙a11 = [−µ1 +
3a10f1sinθ10

4ω1
+

(f2 + 3a2
10f2)sin2θ10

2ω1
− λ2γ2

2σ2 + ω2
1

]a11 +

[
cosθ10(4f1 + 3a2

10f1)

8ω1
+

(4f2a10 + 3a3
10f2)cos2θ10

4ω1
]θ11 +

[
sinθ20λ1

2ω1
]a21 + [

a20λ1cosθ20

2ω1
]θ21, (5.10)

˙θ11 = [
σ1

a10
+

α

a10ω1
+

3a10α

ω1
− 3a10α2

4ω1
+

9f1cosθ10

8ω1
+

2f2a10

ω1
cos2θ10 +

λ2γ2σ

2a10ω1(σ2 + ω2
1)

]a11 + [−(
f1

2ω1a10
+

9f1a10

8ω1
)sinθ10 −

(4f2 + 9a2
10f2)

4ω1
sin2θ10]θ11 +

[
λ1cosθ20

2a10ω1
]a21 − [

λ1a20sinθ20

2a10ω1
]θ21, (5.11)

˙a21 = [−γ1sin(θ20)

2ω2
]a11 + 0θ11 − µ2a21 − [

γ1a10

2ω2
cosθ20]θ21, (5.12)

˙θ21 = [− γ1

2a20ω2
cosθ20 +

σ1

a10
+

α

a10ω1
+

3a10α

ω1
− 3a10α2

4ω1
+

9f1cosθ10

8ω1
+

2f2a10cos2θ10

ω1
+

λ2γ2σ

2a10ω1(σ2 + ω2
1)

]a11 + [−(
f1

2ω1a10
+

9f1a10

8ω1
)sinθ10 −

(4f2 + 9a2
10f2)

4ω1
sin2θ10)]θ11 + [(

σ2 − σ1

a20
+
λ1cosθ20

2a10ω1
)a21 +

(
λ1a10

2a20ω2
− λ1a20

2a10ω1
)sinθ20]θ21, (5.13)

The following linear system is topologically equivalent to the nonlinear system given by Equations
from (5.10) to (5.13) as long as the eigenvalues are hyperbolic

˙a11

˙θ11

˙a21

˙θ21

 =


r11 r12 r13 r14

r21 r22 r23 r24

r31 0 r33 r34

r41 r42 r43 r44




a11

θ11

a21

θ21

 (5.14)

The eigenvalues of the Jacobian matrix can be obtained by resolving the following determinant
λ− r11 r12 r13 r14

r21 λ− r22 r23 r24

r31 0 λ− r33 r34

r41 r42 r43 λ− r44

 = 0 (5.15)

the values of eigenvalues are the roots of the following polynomial

λ4 +R1λ
3 +R2λ

2 +R3λ+R4 = 0, (5.16)

According to Routh–Hurwitz criterion, the necessary and sufficient conditions for the system stability
are: R1 > 0, R1R2 −R3 > 0, R3(R1R2 −R3)−R2

1R4 > 0, R4 > 0.
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Fig. 1. The vibration amplitudes of main system a without control and b with
NIPPF control

6 Time history

we simulated numerically equation (2.1) which introduced the nonlinear dynamical model without
and with involved NIPPF control to show the reduce of vibration after adding this control. After
inserting the values of parameters asµ = 0.01, α = 0.01, α1 = 1.5, α2 = 0.02, γ1 = γ2 = 1.5, ω1 =
ω2 = Ω = 3.5, ξ = 0.003, f1 = 0.05, f2 = 0.5, σ = 3, λ1 = λ1 = 1.5 the time history can be illustrated
as in Fig.(1) a and b which represents the uncontrolled amplitude time history at primary resonance
of the main model and the time histories of both controlled amplitude of the main model with
NIPPF. We study the effects of different parameters by solving the frequency response equations
(5.1) - (5.4). The results are illustrated graphically in Figs. (2 to 14). From the obtained figures, the
steady state amplitudes a1 and a2 are presented against detuning parameters σ1, σ2 for the selected
practical case (a1 6= 0, a2 6= 0). The following curves represent the frequency response of the system
with NIPPF control, where Fig. (a) shows the frequency response curves for the system) and Fig.
(b) shows the frequency-response curves for NIPPF controller. At σ1 = 0 the minimum steady-state
amplitude a1 is zero. Figs. (2), (3) shows that the steady state amplitudes for both the main system
and the NIPPF controller are increased according to the increasing values of the excitation forces
amplitudes f1, f2. The controlled main system amplitudes are inversely proportional to the gains of
the control λ1, λ2 as shown in Figs. 4, 5 and Fig. 6 shown that for increasing γ1 the controlled main
system amplitudes is decreasing and wider. , for increase γ2 the values of amplitude a1, a2 increase.
Figure (8) shows that for increasing values of the damping coefficients µ1 both the main system and
the controller are decreasing. Fig.(9) represent the affect of the damping coefficient of the (NIPPF)
controller for increasing µ2 the amplitude of the main system and control are decreasing.

Fig. (10) show that the increase of linear natural frequency ω1 makes a decrease in the amplitude of
the main system and the vibration reduction frequency bandwidth of the control for the amplitude
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of the main system a1 is wider. The controlled main system amplitudes are inversely proportional to
the lossy integrator’s frequency , the coefficient linear and nonlinear term α, α2 as shown in Figs.11,
12, 13. The fig.(14)shows that when taking different values of the internal detuning parameter σ2

the shape of the frequency response curves for both the main system and the controller are affected
by different values, for example when σ2 = 0.5 the minimum steady state amplitude for the main
system occurs when σ1 = 0.5, for σ2 = 0 the minimum steady state amplitude for the main system
occurs when σ1 = 0, and for σ2 = 0.5 The steady-state widening of the main system of the small
candle occurs when σ1 = 0.5 So, at σ1 = σ2 the lower main system steady-state amplitude occurs.

Fig. 2. Effect of the linear external excitation force f1 on: a the main system (a1),
and b the control (a2)

Fig. 3. Effect of the nonlinear external excitation force f2 on: a the main system (a1),
and b the control (a2)
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Fig. 4. The feedback gain λ1 effectiveness on : a main system and b on the NIPPF
control

Fig. 5. The feedback gain λ2 effectiveness on: a main system and b on the NIPPF
control

Fig. 6. The feedback gain γ1 effectiveness on : a main system and b on the NIPPF
control
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Fig. 7. The feedback gain γ2 effectiveness on: a main system and b on the NIPPF
control

Fig. 8. Effect of µ1 is the coefficient of viscous damping on the amplitudes of main
system and NIPPF control

Fig. 9. Effect of µ2 is the coefficient of viscous damping on the amplitudes of main
system and NIPPF control
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Fig. 10. Effect of linear natural frequency on the amplitudes of main system and
NIPPF control

Fig. 11. Effect of the lossy integrator’s frequency σ on the amplitudes of main
system and NIPPF control

Fig. 12. Effect of the coefficient of linear term α on the amplitudes of main system
and NIPPF control
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Fig. 13. Effect of the coefficient nonlinear term α2 on the amplitudes of main system
and NIPPF control

Fig.14. The effect of damping parameterσ2 on both the amplitudes of main system
and NIPPF control

Fig. 15. Comparison between the numerical solution and the perturbation analysis of
closed loop for the amplitudes a1, a2 of main system and NIPPF control
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7 Comparison between Analytical and Numerical Solu-
tions

Figure (15) represents the comparison between the numerical solution of equations (2.3) and the
analytical solution The solution given by equations (5.1-5.4) for the modified Duffing equation with
the NIPPF controller for chosen values of system parameters. The dashed lines show the analytical
solution and represent the continuous lines numerical solution.

8 Conclusions

In this paper, the modified duffing equation is studied with NIPPF control to reduce the vibration.
We use the simultaneous primary and internal resonance case by the method of multiple scales.
The stability of the system under the simultaneous resonances is studied to drive the frequency
response equations. The effects of the different parameters of the system and the controller are
studied numerically. The numerical results are focused on both the effects of different parameters
and the response of the system.
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APPENDIX

E1 =
(3αA2

1 −A2
1α1)

−3ω2
1

, E2 =
(4αA3

1 −A3
1α2)

−8ω2
1

, E3 =
(0.5f1 + 3A1f1Ā1)

(ω2
1 − Ω2

1)
,

E4 =
(0.5f2 + 3A1f2Ā1)

(ω2
1 − 4Ω2)

, E5 =
(A1f1 + 6A2

1f1Ā1)

(ω2
1 − (Ω + ω1)2)

, E6 =
(A1f2 + 6A2

1f2Ā1)

(ω2
1 − (2Ω + ω1)2)

,

E7 =
1.5A2

1f1

(ω2
1 − (Ω + 2ω1)2)

, E8 =
2A3

1f1

(ω2
1 − (Ω + 3ω1)2)

, E9 =
1.5A2

1f2

(ω2
1 − (2Ω + 2ω1)2)

,

E10 =
2A3

1f2

(ω2
1 − (2Ω + 3ω1)2)

, E11 =
A2(λ1 − γ1)

ω2
1 − ω2

2

, E12 =
A3λ2

ω2
1 + σ2

,

N1 =
γ2E1

2iω1 + σ
,N2 =

γ2E2

3iω1 + σ
,N3 =

γ2E3

iΩ + σ
,N4 =

γ2E4

2iΩ + σ
,

N5 =
γ2E5

i(Ω + ω1) + σ
,N6 =

γ2E6

i(2Ω + ω1) + σ
,N7 =

γ2E7

i(Ω + 2ω1) + σ
,

N8 =
γ2E9

i(Ω + 3ω1) + σ
,N9 =

γ2E8

i(2Ω + 2ω1) + σ
,N10 =

γ2E10

i(2Ω + 3ω1) + σ
,

N11 =
γ2E11

iω2 + σ
, (8.1)
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