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Abstract

Mathematical models are invaluable tools for describing and understanding disease dynamics.
In this study, we propose and analyse a mathematical model for HIV/AIDS in order to assess
the impact of interfered interventions on the disease dynamics. The model enables us to
study the role of treatment in the presence of interfered interventions, as a control strategy for
reducing the HIV pandemic. We performed thorough qualitative analysis on the reproduction
number of the model, R0. The global and local dynamics of the system are also considered,
that is, we analyse the two equilibria states of the model,namely; the disease-free equilibrium
and a unique disease-persistent equilibrium. The disease-free steady state is shown to be
globally asymptotically stable whenever R0 < 1 and the endemic equilibrium is globally
asymptotically stable whenever R0 > 1. We conducted numerical simulations to support the
analytical results. The results of the model analysis indicate that interference has the effect of
reducing treatment uptake and increasing the rate of drop-outs. The results have implications in
the designing of policies in countries with war, economic turmoil or any other form of disturbance.
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1 Introduction

HIV virus which causes AIDS still poses a serious public health threat in various parts of the globe
especially in the Sub-Saharan Africa. According to [1], approximately 36.9 million individuals
globally were living with the HIV virus in 2017, of whom about 21.7 million were on antiretroviral
therapy (ART). In an attempt to combat the onward transmission of HIV, UNAIDS implemented
prevention strategies in 2014 with an ambitious goal of reducing new infections to less than 500,000
by year 2020 [2]. The control mechanisms proposed and implemented by the World Health Organiza-
tion (WHO) and UNAIDS include the use of female and male condoms, antiretroviral treatment to
suppress the viral load in HIV patients, pre-exposure prophylaxis (PrEP) for those who are at risk
of acquiring the infection, voluntary male circumcision, educational campaigns, provision of opiate
therapy, use of clean syringes and needles among others.

However, according to [1], the new infections recorded in 2015 were about four-times the 2020
target despite the implementation of the WHO guidelines, indicating that more effort is still
required in the war against the HIV epidemic. The high HIV incidences can be attributed to
some situations that make the implementation of these HIV interventions difficult. For instance,
conditions such as war and conflicts, political instability, poverty, migration and economic challenges
limit the implementation of prevention mechanisms hence fuelling the transmission of the disease
[1]. Occurrence of disasters such as wars and conflicts subject people to harsh conditions which
makes them vulnerable to human rights abuses such as rape and mass displacement. Furthermore,
such calamities also interrupt the access of health care services making it difficult for HIV/AIDS
victims and other patients to access treatment services [3].

According to UNAIDS, there is no single control mechanism that has a powerful impact in lowering
HIV prevalence and incidence levels, but a combination of several intervention strategies can
significantly reduce new infections. However, failure to implement some of the proven HIV interven-
tions systematically and consistently have slowed down the reduction in new HIV infections [2]. The
cases of drop outs or failure to adhere to antiretroviral treatment enhances HIV transmission since
it has been established that routine monitoring of the viral load is an effective HIV prevention tool
[1]. Adherence to antiretroviral drugs suppresses the viral load in HIV patients to undetectable
levels and such patients cannot transmit the virus to others [2]. Therefore, poor adherence to
antiretroviral therapy will not only facilitate HIV transmission but also increases the mortality
rates of the infected individuals.

2 Literature Survey

Mathematical models have played an important role in understanding and describing the epidemi-
ological patterns for the proliferation and control of HIV. Incorporation of HIV interventions in these
model systems has attracted significant attention recently. A combination of early diagnosis followed
by immediate treatment to suppress the viral load have been proposed as effective interventions
in minimizing the HIV incidence in numerous models. For instance, Okosun et al. [4] presented
a mathematical model to determine the effects of prevention intervention strategies on the spread
of HIV. Furthermore, [5] proposed a compartmental model to examine the impact of treatment
and screening of individuals who are unaware of their HIV status. It was noted that screening and
enrollment of treatment for HIV positive individuals is beneficial in mitigating HIV/AIDS infection.
More work on mathematical modelling of HIV transmission, prevention, testing and treatment can
be found in the following works; [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

Considering that emergency crises do not only subject affected individuals to the risk of acquiring
HIV virus but also disrupt the existing HIV/AIDS programmes [1]. There is need to develop a
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mathematical model that assesses the impact of situations such as war, political instability, poverty,
economic challenges, drought, nutritional challenges and other factors on the HIV disease dynamics.
In this study, we propose a mathematical model for HIV that focuses on the factors that can hinder
smooth implementation of prevention strategies. The primary focus of this study is to model
HIV/AIDS infection dynamics in presence of interfered interventions where the effect of factors
that hamper HIV prevention strategies are considered in detail. This work forms an initial attempt
to explicitly capture the role of interference in HIV disease dynamics not considered in past models.

3 Model Formulation and Analysis

3.1 System Description

We formulate a new mathematical model based on a susceptible-infected (SI) deterministic model
to understand and describe HIV transmission dynamics in presence of interfered interventions.
We present a model that partitions the total human population N(t) into four mutually-exclusive
classes: S(t), I(t), T (t) and A(t). We assume that the total human population N(t) at any given
time t is denoted by Equation (3.1)

N(t) = S(t) + I(t) + T (t) +A(t). (3.1)

The first class S(t) represents the susceptible individuals, I(t) consists of HIV-positive patients
at asymptomatic stage of the infection, T (t) comprises of HIV-positive individuals receiving ART
treatment and lastly A(t) represents patients at the symptomatic stage of HIV infection. We
categorize the stages of HIV/AIDS infection into two, that is, infected people in the asymptomatic
stage (I and T ) of the infection and those in pre-AIDS stage or full-blown AIDS (A).

Interfered interventions have devastating impact on the spread of HIV/AIDS. In this study, we will
utilize the standard incidence to model HIV/AIDS transmission dynamics. Therefore, the total
number of new HIV infections triggered by infected individuals at the asymptomatic stage of HIV
infection and HIV victims under treatment are obtained by using the force of infection λ, which
can be modified as

λ =


(βmax + ε1ω)(I + ηT ),

βmaxe
−ε2ω(I + ηT ),

βmax

1+Ke−ε3ω (I + ηT ),

where βmax represents the effective transmission rate for the HIV virus, K represents the scale
parameter, ε1, ε2, ε3 represents the shape parameters that determine how fast the impact of the
disease can be felt, ω is the impact of any process that interferes with interventions and η is the
relative infectivity of T with respect to I, η ∈ (0, 1). The forms of λ presented here, present the
various possibilities or probable function that can used to measure the increased infection rate due
to interference.

In this paper, we propose a force of infection λ, that is dependent on the presence of interfered
interventions given by,

λ = C(ω)(I + ηT ),

where the function C(w) describes the effective contact rate given by

C(ω) =
βmax

1 +Ke−εω
. (3.2)
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In the model, when ω = 0 then there are no processes that can hamper HIV interventions and the
disease spreads normally in the population at a rate βmax/(1+K). However, maximum interference
on HIV interventions is experienced when ω = 1. We choose parameters K and ε carefully such
that maximum HIV transmission rate, βmax occurs when ω = 1. Therefore transmission dynamics
of the disease depends on the value of ω as described in Fig. 3.1.

From Fig. 3.1, it can be observed that there is a functional relationship between C(ω) and ω.
Therefore, Equation (3.2) predicts that as the factors that hinder HIV interventions increases then
the HIV infection rate in the population increase gradually initially, then rapidly, slows down again
as ω approaches 1 and reaches its maximum value when ω = 1.

A schematic representation of HIV/AIDS transmission dynamics in the presence of interfered
interventions is shown in the Fig. 3.1

Fig. 1. Graphical representation of HIV infection rate in presence of processes that
limit interventions with (βmax = 1× 10−7,K = 9, ε = 7)

Fig. 2. A model for HIV/AIDS infection dynamics in presence of processes that
limit interventions
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3.2 Model Assumptions

The key assumptions made in the model include:

1. There is homogeneous spatial distribution (mixing) of infected and HIV-negative individuals.

2. HIV virus is transmitted via heterosexual means.

3. HIV patients at the symptomatic stage of the HIV infection (class A) are at the terminal
stage of the HIV infection and they do not contribute to the spread of the disease since they
are unable to transmit the virus via sexual activity.

Now we consider the movement of populations between compartments in Fig. 3.1 with time. Firstly,
we assume that the population is recruited into susceptible class at a constant rate Λ and µ is the
natural death rate for all compartments. Individuals in the susceptible class can acquire HIV virus
with the force of infection λ. Each newly HIV infected individual progresses to the infected class (I)
at a rate λ and those screened for the virus and put on ART treatment move to compartment (T )
at a rate (1 − ω)θ. Note here that as ω increases the rate of movement from compartment I to T
slows down, that is, interference is assumed to slow uptake into treatment programs. So, we assume
that interference increases the infection rate and reduces the uptake into a treatment program. The
processes that impede HIV treatment have been incorporated in the model and 0 ≤ ω ≤ 1 measures
the impact of any process that hinder HIV treatment. From the model, we can observe that as
ω increases the rate of the infected people accessing medication decreases and no HIV patient can
access treatment services when we have maximum interference, that is, when ω = 1. Persons who
withdraw from ART therapy can either return to the infected class at a rate σ or move to full-blown
AIDS stage (A) at a rate ρ2. HIV patients in the infected class (I) can also move directly to the
symptomatic stage of the HIV infection (A) at the rate ρ1. In addition, we assume that the infected
individuals in the symptomatic stage of HIV/AIDS infection (A) experience an additional mortality
rate δ; due to AIDS unlike the other individuals in the other compartments.

3.3 Model Equations

The dynamics described in the Fig. 3.1 is governed by the following non-linear system of differential
equations 

dS

dt
= Λ− µS − λS,

dI

dt
= λS − (1− ω)θI − (µ+ ρ1)I + σT,

dT

dt
= (1− ω)θI − (µ+ σ + ρ2)T,

dA

dt
= ρ1I + ρ2T − (µ+ δ)A,

(3.3)

with the following initial conditions: S(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0 and A(0) ≥ 0.

NOTE: All parameters and state variables in model system (3.3) are strictly positive for all time
t ≥ 0 since it monitors the population of humans.

A summary of the model parameters are given in Table 1.
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Table 1. Description of parameters

Parameter Description

βmax Effective contact rate (Infection rate)
Λ Recruitment rate
ω Impact of any process that interferes with interventions
θ Rate of treatment

ρ1, ρ2 Progression rates to full-blown AIDS
σ Drop out rate
µ Natural death rate
δ HIV/AIDS related death
η Modification parameter
K Scale parameter
ε Shape parameter

3.4 Model Properties

In this section, we focus on the basic properties of system (3.3). We show that all the state variables
of system (3.3) will remain non-negative and that all its solutions with positive initial conditions
will remain non-negative for all t > 0.

3.4.1 Boundedness of Model Solutions

Theorem 3.1. The invariant region Ω for the given mathematical model defined by

Ω =

{
(S, I, T,A) ∈ R4

+ such that 0 ≤ N(t) ≤ Λ

µ

}
, (3.4)

with initial conditions S(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0, A(0) ≥ 0 is positively invariant for all t ≥ 0.

Proof. The total human population is given by Equation (3.1) and at any given time, the rate of
change in the population is given by

dN

dt
=
dS

dt
+
dI

dt
+
dT

dt
+
dA

dt
= Λ− µN − δA ≤ Λ− µN. (3.5)

Solving (3.5) using the integrating factor technique, we get the solution N(t) such that

N(t) ≤ Λ

µ
+

(
N(0)− Λ

µ

)
e−µt. (3.6)

The solution has the property

0 ≤ N(t) ≤ Λ

µ
+

(
N(0)− Λ

µ

)
e−µt,

where N(0) represents initial human population. From (3.6), we can note that N → Λ
µ

as t → ∞.

Therefore, N(t) is bounded above by Λ
µ

. If N(0) ≤ Λ
µ

, then we can infer that N(t) tends to Λ
µ

as time increases. Conversely, N(t) will decrease to Λ
µ

if N(0) > Λ
µ

. In other words, if N(0) > Λ
µ

then the solutions (S(t), I(t), T (t), A(t)) approaches Λ
µ

asymptotically. Therefore, the solutions of
system (3.3) are bounded.
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3.4.2 Positivity of Solutions

Theorem 3.2. Given that the initial conditions of system (3.3) are S(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0
and A(0) ≥ 0 then it follows that the resulting solutions S(t), I(t), T (t) and A(t) are all non-negative
for all t > 0.

Proof. To prove theorem 3.2 we need to show that each of the trajectories of system (3.3) is positive
for all t > 0. We let

t̄ = sup{t > 0 : S > 0, I > 0, T > 0, A > 0} ∈ [0, t].

So t̄ > 0 and from the first equation of the system (3.3), it follows that

dS

dt
= Λ− (µ+ λ)S ≥ −(µ+ λ)S. (3.7)

Solving (3.7) and integrating both sides with respect to t over the interval [0, t] leads to

S(t) ≥ S(0)e−(µ+λ)t ≥ 0.

Thus, S(t) is non-negative.
Similarly, we obtain from the second, third and fourth equation of system (3.3) that

I(t) ≥ I(0)e−(µ+ρ1+(1−ω)θ)t ≥ 0, T (t) ≥ T (0)e−(σ+µ+ρ2)t ≥ 0, A(t) ≥ A(0)e−(µ+δ)t ≥ 0.

Thus, I(t), T (t) and A(t) are non negative.
Therefore S(t) ≥ 0, I(t) ≥ 0, T (t) ≥ 0 and A(t) ≥ 0 for all t ≥ 0.

The model is well-posed epidemiologically and mathematically since all solutions of system (3.3)
remain non-negative and bounded in the invariant set Ω. Therefore, it is sufficient to analyse the
dynamics of the proposed model in Ω.

3.5 Disease-free Equilibrium (DFE) and Reproduction Number (R0)

At DFE, we assume that the total population has not experienced HIV virus infection, the
community remains free of the virus. Then, it follows that the entire population becomes susceptible
to the infection. Therefore, to obtain the DFE we allow all the infected classes to be zero, that is,
I = 0, T = 0 and A = 0. Hence, the disease-free equilibrium of system (3.3) is given by

E0 =
(
S0, I0, T 0, A0) =

(
Λ

µ
, 0, 0, 0

)
.

In this model, we assume that the new HIV infections are generated by infected individuals in
compartments I and T . Reproduction number R0 represents the average number of new infections
generated by an infectious individual in the population of wholly susceptible individuals [16]. The
next-generation matrix technique defined in [16] is used to compute R0.
We consider the compartments that contribute to new HIV infections. We have that the matrix of
new infections F and the matrix of transitions V are given by

F =

(
C(ω)Λ
µ

I + C(ω)Λη
µ

T

0

)
and V =

(
(µ+ (1− ω)θ + ρ1)I − σT
−(1− ω)θI + (σ + µ+ ρ2)T

)
.

Now evaluating the matrices for the states at the DFE yields

F =

(
C(ω)Λ
µ

C(ω)Λη
µ

0 0

)
and V =

(
H1 −σ
−H2 H3

)
.
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Here,

H1 = µ+ (1− ω)θ + ρ1, H2 = (1− ω)θ and H3 = µ+ σ + ρ2.

We have that

FV −1 =

(
C(ω)Λ

µ(H1H3−σH2)
(H3 + ηH2) C(ω)Λ

µ(H1H3−σH2)
(σ + ηH1)

0 0

)
.

The dominant eigenvalue of the matrix FV −1 gives the reproduction number R0 of system (3.3).
Thus,

R0 = ϕ(FV −1) =
C(ω)Λ

µH1H3 (1− φ)

(
H3 + ηH2

)
(3.8)

where

φ =

(
σ

H3

)(
(1− ω)σ

H1

)
< 1.

Substituting for the values of C(ω), H1, H2 and H3 in Equation (3.8) gives

R0 =
βmaxΛ

µ(µ+ (1− ω)θ + ρ1)(µ+ σ + ρ2)(1 +Ke−εω) (1− φ)
((µ+ σ + ρ2) + η((1− ω)θ))

=
βmaxΛ

J

[
(µ+ σ + ρ2) + ηθ(1− ω)

]
, (3.9)

where J = µ [µ+ (1− ω)θ + ρ1] (µ+ σ + ρ2)(1 +Ke−εω) (1− φ).
From Equation (3.9), we note that

R0 = RI +RT

where

RI =
βmaxΛ(µ+ σ + ρ2)

J
and RT =

ηβmaxΛ(1− ω)θ

J
.

Here, we note that RI is the contribution of individuals in compartment I to HIV/AIDS infections
in the presence of interference which is only reflected in the infection term while RT is contribution
of infected individuals in compartment T .

3.5.1 Local Stability of the DFE

Theorem 3.3. The DFE of system (3.3) is locally asymptotically stable whenR0 < 1 and unstable
otherwise.

Proof. We employ the idea of stability matrix to prove theorem 3.3 above. Thus, the Jacobian
matrix of system (3.3) is given by

J(S, I, T,A) =


−(µ+ C(ω)I + C(ω)ηT ) −C(ω)S −C(ω)ηS 0

C(ω)I + C(ω)ηT C(ω)S −H1 C(ω)ηS + σ 0
0 H2 −H3 0
0 ρ1 ρ2 −(µ+ δ)

 .

Now, evaluating the Jacobian at the DFE, we obtain

J (E0) =


−µ −C(ω) Λ

µ
−C(ω)η Λ

µ
0

0 C(ω) Λ
µ
−H1 C(ω)η Λ

µ
+ σ 0

0 H2 −H3 0
0 ρ1 ρ2 −(µ+ δ)

 .
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It can be clearly noted that a1 = −µ and a2 = −(µ + δ) are eigenvalues of J(E0). The other two
eigenvalues are obtained from the non-zero roots of 2× 2 Jacobian matrix

J1(E0) =

(
C(ω) Λ

µ
−H1 C(ω)η Λ

µ
+ σ

H2 −H3

)
with the characteristic polynomial P (a) given by

P (a) = a2 +Xa+ Y = 0, (3.10)

where

X = C(ω)
Λ

µ
− (H1 +H3) and Y = H1H3(1− φ)(1−R0). (3.11)

It is evident that the eigenvalues a1 and a2 have negative real parts. Similarly, according to
the Routh-Hurwitz criterion, the characteristic Equation (3.10) has negative real eigenvalues if its
coefficients are strictly positive, that is X > 0 and Y > 0 [17]. We note that for Y > 0 then R0 < 1.
Hence, the DFE is locally asymptotically stable if all the eigenvalues of the stability matrix at
DFE have negative real parts. This implies that for our system, when R0 < 1 and X > 0 then the
DFE is locally asymptotically stable and it is unstable otherwise.

Theorem 3.3 tells us that the HIV infection can die out slowly and end up being eliminated from
the community if R0 < 1.

3.5.2 Global Stability of the DFE

Theorem 3.4. The DFE of system (3.3) is globally asymptotically stable whenever R0 < 1 and
unstable otherwise.

Proof. Let the candidate Lyapunov function for the global stability be given by

L = ψ1I + ψ2T

where the constants ψ1 and ψ2 are non-negative. To find these constants, we compute the time
derivative of L, that is

dL

dt
= ψ1

dI

dt
+ ψ2

dT

dt

≤ ψ1

[(
C(ω)Λ

µ
−H1

)
I +

(
C(ω)Λη

µ
+ σ

)
T

]
+ ψ2 [H2I −H3T ]

=

[
ψ1

(
C(ω)Λ

µ
−H1

)
+ ψ2H2

]
I +

[
ψ1

(
C(ω)Λη

µ
+ σ

)
− ψ2H3

]
T. (3.12)

Now equating the coefficient of the component T in (3.12) to zero, that is

ψ1

(
C(ω)Λη

µ
+ σ

)
− ψ2H3 = 0 (3.13)

and evaluating Equation (3.13) for the coefficients of the Lyapunov candidate function L we get

ψ1 = H3 and ψ2 =
C(ω)Λη

µ
+ σ. (3.14)
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Now substituting the constants ψ1 and ψ2 into Equation (3.12) gives

dL

dt
≤
[
H3

(
C(ω)Λ

µ
−H1

)
+

(
C(ω)Λη

µ
+ σ

)
H2

]
I

=

[
C(ω)Λ(H3 + ηH2)− µ(H1H3 − σH2)

µ(H1H3 − σH2)

]
(H1H3 − σH2)I

= H1H3(R0 − 1)(1− φ)I.

Therefore, it follows that dL
dt
< 0 whenever R0 < 1 and dL

dt
= 0 if and only if either I = 0 or R0 = 1.

The largest non-negative compact invariant subset of the set{
(S(t), I(t), T (t), A(t)) ∈ Ω :

dL

dt
= 0

}
if R0 ≤ 1 is E0. Hence, by the LaSalles’s Invariance Principle defined in [18], the DFE is globally
asymptotically stable in Ω if R0 < 1.

3.6 Existence of the Endemic Equilibrium

Theorem 3.5. WheneverR0 > 1, then the proposed system (3.3) has a unique endemic equilibrium
given by

E1 = (S?, I?, T ?, A?) .

Proof. To obtain the disease-persistent steady state of system (3.3) in terms of the force of infection,
we set the right-hand side of system (3.3) to zero, that is

Λ− (C(ω)I? + C(ω)ηT ? + µ)S? = 0,

(C(ω)I? + C(ω)ηT ?)S? −H1I
? + σT ? = 0,

H2I
? −H3T

? = 0,

ρ1I
? + ρ2T

? −H4A
? = 0,

(3.15)

where

H1 = µ+ (1− ω)θ + ρ1, H2 = (1− ω)θ, H3 = µ+ σ + ρ2, and H4 = µ+ δ.

We compute the endemic equilibrium by solving system (3.15) simultaneously for S?, I?, T ? and
A?.
Now, from the third equation in the system (3.15), we have

T ? =
H2

H3
I?. (3.16)

Then, substituting (3.16) into the fourth equation of system (3.15) gives

A? =

(
H3ρ1 + ρ2H2

H4H3

)
I?. (3.17)

Similarly, substituting (3.16) into the second equation of system (3.15), we obtain

I?
[(
C(ω) +

C(ω)ηH2

H3

)
S? −H1 +

σH2

H3

]
= 0. (3.18)
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Solving equation (3.18) for I? and S? gives I? = 0 which corresponds to the disease-free equilibrium
or

S? =
H1H3 − σH2

C(ω)H3 + C(ω)ηH2
=

Λ

µR0
. (3.19)

Now, substituting Equations (3.19) and (3.16) into the first equation of system (3.15) yields

I? =
µH3(R0 − 1)

C(ω)H3 + C(ω)ηH2
. (3.20)

Substituting Equation (3.20) into equations (3.16) and (3.17) gives

T ? =
µH2H3(R0 − 1)

C(ω)H3(H3 + ηH2)
and A? =

(
(H3ρ1 + ρ2H2)(µH3(R0 − 1))

C(ω)H3H4(H3 + ηH2)

)
.

It can be observed that whenever R0 = 1, then the disease-persistent equilibrium becomes the
disease-free equilibrium. Similarly, the results indicate that the disease-persistent equilibrium is
unique and exists if and only if R0 > 1.

3.6.1 Global Stability of Endemic Steady State

Theorem 3.6. The disease-persistent equilibrium (E1) of system (3.3) is globally asymptotically
stable if R0 > 1.

Proof. As noted earlier, N approaches Λ
µ

as t approaches ∞. So from Equation (3.1), we have the
relation

S =
Λ

µ
− I − T −A. (3.21)

Substituting (3.21) into the second and third equations of system (3.3) yields the limiting system
dI

dt
= (C(ω)I + C(ω)ηT )

(
Λ
µ
− I − T −A

)
−H1I − σT,

dT

dt
= H2I −H3T.

(3.22)

Now applying the Dulac’s multiplier π2(I, T ) = 1
IT

as used in [19] and [14], we have

∂π2 =
∂

∂I

[
(C(ω)I + C(ω)ηT )

IT

(
Λ

µ
− I − T −A

)
− H1

T
+
σ

I

]
+

∂

∂T

[
H2

T
− H3

I

]
=

∂

∂I

[
−C(ω)

T
I +

C(ω)ηΛ

Iµ
− C(ω)ηT

I
− C(ω)ηA

I
+
σ

I

]
+

∂

∂T

[
H2

T

]
= −C(ω)

T
− C(ω)ηΛ

µI2
+
C(ω)ηT

I2
+
C(ω)ηA

I2
− σ

I2
− H2

T 2

= −
[
C(ω)

T
+
C(ω)η

I2

(
Λ

µ
− (T +A)

)
+

σ

I2
+
H2

T 2

]
.

We note that ∂π2 < 0 since Λ
µ
≥ (T + A) in Ω. Therefore, by the Dulac’s criterion, no closed or

periodic orbits exist in Ω. Then, according to the Poincare-Bendixon Theorem, all the solutions
of system (3.22) starting in Ω remain in Ω for all time t, since the endemic steady state exists
if R0 > 1 and Ω is positively invariant [20]. Additionally, having no periodic orbits in Ω means
that the unique disease-persistent steady state of system (3.3) is globally asymptotically stable if
R0 > 1.
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4 Results and Discussion

In this section, we present results of the simulations for system (3.3). We will estimate parameter
values and hypothetically choose the initial population values. We will carry out sensitivity analysis
to identify model parameters that highly influence the reproduction number R0. We will also solve
system (3.3) for DFE and disease-persistent equilibrium to support the analytic results. We will
also look at the effect of selected parameters to the reproduction number R0.

4.1 Estimation of Parameter Values

We need to determine the values of model parameters to carry out numerical simulations in order
to draw vital information and insights from the system. To begin with, we estimate the values of
parameters basing on the existing literature which agrees with biological facts and experimental
data.

The rate at which individuals are recruited into the susceptible class is approximated to be Λ =
0.02N and natural death rate to be µ = 1

63
. Table 2. below shows the estimated values for the

other parameters of system (3.3).

Table 2. Estimation of parameter values for system (3.3).

Parameter Estimate value/year Source

δ 0.09 Estimated
ω 0 ≤ ω ≤ 1 Estimated
θ 0 ≤ θ ≤ 1 Estimated
ρ1 0.1 Estimated
ρ2 0.05 Estimated
σ 0 ≤ σ ≤ 1 Estimated
η 0 ≤ η ≤ 1 Estimated
ε 7 Estimated
K 9 Estimated

βmax 0.000000001 ≤ βmax ≤ 0.00000001 Estimated

4.2 Sensitivity Analysis

Sensitivity analysis is a technique that is used to determine how epidemiological quantities such
as disease prevalence and reproduction number respond to variations in parameter values. For
instance, through sensitivity analysis we can tell which parameters have high effect on reproduction
number and target them to reduce HIV transmission. It is crucial to evaluate the robustness of
the system predictions to the estimated parameter values through sensitivity analysis since the
approximation of parameters were associated with uncertainties. The model parameters which are
most sensitive to the reproduction number contribute largely to the spread of the disease. Therefore,
carrying out sensitivity or uncertainty analysis can help in identifying the parameters to target in
the intervention strategies since it provides information on the role played by different parameter
values in the dynamics of HIV epidemic.

We employ the concept of elasticity (normalized sensitivity index) to examine the sensitivity of
R0 with respect to changes in its parameters as described in [21], [22], [23], [24] and [14]. It is
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important to note that the higher the absolute values of the sensitivity index of R0 with respect to
the parameter, the more the impact that the parameter has on R0.
If R0 is differentiable with respect to each of its parameters, then the expression for normalized
sensitivity index (SR0

ξ ) of R0 to the parameter ξ, is given by

SR0
ξ =

∂R0

∂ξ
× ξ

R0
. (4.1)

Note that ξ
R0

is introduced to make resultant value of SR0
ξ unitless.

Additionally, in (4.1) we assume that the contribution of partial derivatives of higher order are
negligible and no correlation exist between the parameters. Now applying the explicit sensitivity
index formula provided in (4.1) with model parameters values given in Table 2., we get sensitivity
indices for each parameter in R0 which are shown in Table 3.

Table 3. Sensitivity indices of R0

Parameter Sensitivity index

µ -1.1385
ω +1.1031
Λ +1.0000

βmax +1.0000
ε +0.9651
K -0.6894
θ -0.5520
ρ2 -0.3001
ρ1 -0.2724
σ +0.2631
η +0.1324

The sensitivity indices in Table 3. are arranged according to their magnitude (absolute values) in
a descending order. Similarly, it is important to note that increasing the model parameters with
the positive and negative sensitivity indices increase and decrease the reproduction number R0

respectively. We can observe from Table 3. that the most sensitive parameters to R0 are level of
interference ω, recruitment rate Λ and contact rate βmax. For ω = +1.1031 implies that a 11.031%
increase (decrease) in ω causes R0 to increase (decrease) by the same rate. Similarly, Λ = +1.0000
and βmax = +1.0000 tells us that a 10% increase (decrease) in Λ and βmax makes R0 to increase
(decrease) by 10%. The sensitivity analysis results indicate that R0 increases with increase in ω.
We can also observe that as we increase the rate of treatment θ, R0 also decreases. From the given
model parameters, we focus on θ, σ and η and we can observe that the disease progression can be
lowered by increasing the rate of treatment θ, reducing drop out rate σ and ensuring that treatment
is very effective by lowering the value of η.

4.3 Simulations Results

In this section, we use Matlab to solve system (3.3) and simulate the results to verify theoretical
conclusions. We also vary the parameters to understand the impact of treatment on HIV transmission
dynamics in presence of interference. For illustrative purposes, we consider a hypothetical total
population of 18200000 individuals, with the initial conditions S(0) = 12000000, I(0) = 650000, T (0) =
5500000 and A(0) = 50000.
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Fig. 3. Indicates the results of simulations at DFE for the following values of
parameters:

Λ = 364000, µ = 1
63
, ω = 0.2, θ = 0.6, σ = 0.06, η = 0.04, ρ1 = 0.1, ρ2 = 0.05,K = 9, ε = 7, δ = 0.09

and βmax = 0.00000002. Here, the value of the reproduction number is R0 = 0.4473

Fig.3 shows that the disease can be eliminated from the entire population after sometime when
R0 < 1. The population of HIV-infected individuals (I), infected individuals under treatment (T )
and those in full-blown AIDS stage will all decline to zero with time. On the contrary, we can
observe that the susceptible population S keeps increasing with time until it approaches a constant
value of Λ

µ
. This is consistent with the theoretical results that we obtained in stability analysis. We

observe that HIV infection may die out in approximately 100 years if appropriate control measures
that ensure that the reproduction number (R0) is kept below unity are undertaken.

The graphical representation in Fig. 4 also concurs with our stability analysis results. We observe
that initially there is a short-term increase in the population of HIV patients at asymptomatic
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stage (I) and infected individuals at AIDS stage (A), but after sometime all compartments with
the infection decline and stabilizes at different heights. This indicates that system (3.3) levels off at
disease-persistent steady state as stipulated in Theorem 3.6. Therefore, the HIV epidemic persists
in the community when R0 > 1 hence verifying the fact that the disease-persistent equilibrium is
globally asymptotically stable when R0 > 1.

Fig. 4. Shows the result of simulations for the following values of parameters:
Λ = 364000, µ = 1

63
, ω = 0.2, θ = 0.6, σ = 0.06, η = 0.04, ρ1 = 0.1, ρ2 = 0.05,K = 9, ε = 7, δ = 0.09

and βmax = 0.000000085. Here, the value of the reproduction number R0 = 1.9010 is
greater than one
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4.4 Impact of Model Parameters on the Reproduction Number R0

It is important to investigate how the reproduction number is influenced by some changes in the
selected model parameters since it provides vital information regarding the spread of the infection.
To start with, we fix all the other model parameter values and vary the reproduction number R0

with the factors that hinder interventions for different values of the relative infectivity of T with
respect to I as shown in Fig.5.

Fig. 5. highlights some very interesting results on the relationship between the reproduction number
R0 and the level of interference ω for different values of η. We can observe that if treatment is very
effective in reducing the infection, that is for low values of η, then the rate at which R0 increases
is lower as compared to higher values of η. Therefore, we can note that even with increased
interference, as long as treatment is effective the disease progression is low. However, if treatment
has a low impact to disease transmission then increased interference has increased propensity to
raise the value of R0. So we need an effective treatment regime even if the interference is high.

Fig. 6 provides crucial information about the impact of interference on disease progression for
different values of drop out rate σ. If treatment is effective, we note that if drop out rate is
increased, the reproduction number also increases. So, a reduction in the number of drop out cases
is essential even in the presence of interference. On the contrary, if η is high indicating that the
treatment is less effective then the changes in the rates of drop out does not significantly change
the growth of R0 as the factors that hinder interventions increase, in fact R0 increases significantly
even with low drop out rates as shown in Fig.7. Therefore, effective treatment (low value of η) is
essential in the fight against HIV even in the presence interference.

Fig. 5. Evolution of R0 against the level of interference ω for the following values of
parameters: Λ = 364000, µ = 1

63
, ω = 0.2, θ = 0.6, σ = 0.06, ρ1 = 0.1, ρ2 = 0.05,K = 9, ε = 7, δ =

0.09, βmax = 0.000000085 with four values of η, 0.02, 0.18, 0.34, and 0.5
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Fig. 6. Evolution of R0 against the level of interference ω for the following values of
parameters: Λ = 364000, µ = 1

63
, ω = 0.2, θ = 0.6, σ = 0.06, η = 0.04, ρ1 = 0.1, ρ2 = 0.05,K =

9, ε = 7, δ = 0.09, βmax = 0.000000085 with four values of σ, 0.02, 0.32, 0.62, and 0.92.

Fig. 7. Evolution of R0 against the level of interference ω for the following values of
parameters: Λ = 364000, µ = 1

63
, ω = 0.2, θ = 0.6, σ = 0.06, η = 0.45, ρ1 = 0.1, ρ2 = 0.05,K =

9, ε = 7, δ = 0.09, βmax = 0.000000085 with four values of σ, 0.02, 0.32, 0.62, and 0.92
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Fig. 8. Evolution of R0 against the treatment rate θ for the following values of
parameters: Λ = 364000, µ = 1

63
, ω = 0.2, σ = 0.06, η = 0.45, ρ1 = 0.1, ρ2 = 0.05,K = 9, ε =

7, βmax = 0.00000004 with four values of η, 0.01, 0.1, 0.2, and 0.4

Fig. 9. The diagram shows how the drop out rate parameter σ, and the interference
level parameter ω, influences the reproduction number R0 for the following

parameter values:
Λ = 364000, µ = 1

63
, θ = 0.4, η = 0.04, ρ1 = 0.1, ρ2 = 0.05,K = 9, ε = 7, βmax = 0.00000008
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Fig. 10. Contour plot showing how the drop out rate parameter σ, and the
treatment rate parameter θ, influences the reproduction number R0, for the following

parameter values:
Λ = 364000, µ = 1

63
, ω = 0.03, η = 0.04, ρ1 = 0.1, ρ2 = 0.05,K = 9, ε = 7, βmax = 0.000000085

Fig. 8. shows that when η = 0.01 and η = 0.1 then we need treatment rates to be above 0.45
and 0.75 respectively for its effect to be essential in stopping the epidemic from spreading in the
population. In addition, the graphical representation also illustrates that the disease progression
decreases at a lower rate when η is high. Therefore, treatment is effective in controlling new
infections but it may not halt transmission of the virus when η is high.

To get a better understanding on how the rate of treatment, level of interference and drop out
rates impact the reproduction number R0, we plot contours which show how R0 changes with two
parameters simultaneously.

Fig.9. illustrates the relationship between interference level and the drop out rates. We can note
from the graphical representation that as the interference level and drop out rate increase then
R0 also increases. The disease progresses much faster when both the level of interference and
drop out rates are high. Therefore, if treatment is effective as indicated by the value of η then it
is important to minimize the drop out cases as much as possible even in the presence of interference.

Fig.10. indicates that increasing the treatment rate has greater potential to lower disease progression
since R0 values decrease much faster than the rate of treatment increase. The graphical description
also suggests that a reduction of the drop out rate will only be effective if treatment is also effective.
Therefore, our graphical simulation results reiterate the significance of very effective treatment
regime even in the presence of interference to reduce the proliferation of HIV infection.
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5 Conclusion

In this paper, we proposed and analysed a mathematical model for HIV to further understand the
HIV infection dynamics in the presence of interference. We discussed the mathematical features of
the system which include: boundedness and positivity of solutions, threshold value of HIV epidemic
and stability of the equilibria states. We determined the basic properties of the model and proved
that all solutions of the system are non-negative and bounded. We also noted that the reproduction
number of the model has two components, namely; the contribution of infected individuals not in
treatment, RI and that of infected individuals under medication, RT .

We used an appropriate Lyapunov candidate function and LaSalle invariance principle to establish
the global stability of the disease-free equilibrium. We found that when the threshold value of the
epidemic is less that unity, that is, when R0 < 1, then the disease-free steady state of the system is
locally and globally attractive. This implies that when R0 < 1, then the cases of new HIV infections
generated is less than the number of infected individuals spreading the disease meaning that the
epidemic can be eliminated from the community. Therefore, HIV/AIDS pandemic can be controlled
effectively if intervention strategies are targeted towards minimizing the value of R0 to less than
unity. However, whenever R0 > 1, the disease-free equilibrium becomes unstable. In addition, we
showed that the system has a unique disease-persistent equilibrium which is globally asymptotically
stable whenever R0 > 1.

Moreover, we observed that presence of interference fuels the spread of HIV/AIDS and a worst
case scenario may be experienced when the level of interference is high and the drop out rate from
treatment is high. We investigated the effect of model parameters on R0 and found that interference
has the effect of reducing the uptake of treatment and increasing the rate of treatment drop-out.
Therefore, scaling-up effective HIV treatment and lowering drop out rates even in presence of
interference is crucial in reducing onward transmission of HIV/AIDS infection.

6 Future Scope

We acknowledge that the presented model has some shortfalls. For instance, consideration of
treatment alone as a control mechanism for HIV infection. Inclusion of more controls such as HIV
screening as well as other educational programs will definitely enhance the understanding of the
HIV/AIDS pandemic. Furthermore, taking into account other HIV transmission routes like mother-
to-child during birth or breastfeeding, infected blood transfusions, sharing piercing equipment with
infected individuals will provide more information regarding the transmission of HIV. Nevertheless,
the results obtained from the proposed model provide adequate insights into the dynamics of HIV
and lays the foundation for the understanding of the role of interference in the HIV disease dynamics.
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