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ABSTRACT 
 
Root-knot nematodes are among the most significant pathogenic organisms due to their global 
distribution, capacity for destruction, and economic importance. Antagonistic bioagents are more 
effective alternative to synthetic pesticides in the suppression of root-knot nematodes. Bioagents 
reduce the use of synthetic chemicals, which are hazardous to both humans and the environment. 
Despite this, some bioagents, such as fungi and bacteria have unknown mechanisms. This review 
discusses the nematophagous bacteria and fungi that have been discovered so far, including 
Pochonia, Trichoderma sp., Pseudomonas sp., and Bacillus sp., with an overview of the current 
advances in research regarding their molecular and biochemical control mechanisms. Biological 
control agents (BCAs), as valuable ecological enemies of nematode infestations, use a range of 
mechanisms, such as parasitism, nutrient competition, toxin production, induce systemic resistance 
to antibiotics, enzymes, and enhance plant health. They suppress nematodes directly, improve plant 
growth, and facilitate the colonization and activities of antagonistic microbes in the rhizosphere. 
Understanding the molecular basis of BCAs suppression mechanisms provides the basis for their 
future incorporation into phytopathogen or plant disease control management. This study reviews 
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the current threat posed by the root-knot nematode, biological control, antagonistic bioagents, and 
their mechanisms, and the future perspectives in modern agricultural sustainability to provide basis 
for the broad control of root-knot nematodes. 

 

 
Keywords: Root-knot nematodes; biological control; mechanism; biological control agents; plant-

parasitic nematodes. 
 

1. INTRODUCTION 
 

Plant-parasitic nematodes (PPNs) are among the 
most dangerous plant pathogens, exacerbating 
plant diseases and interfering with crop 
development, contributing to economic losses 
[1,2]. PPNs, or Phytonematodes, are parasitic 
worms that spend part of their lives in the soil, 
causing damage to plant tissues while feeding 
[3]. They are also known to attack diverse 
portions of vascular plants, with the majority 
feeding on or in plant roots and the minority 
feeding on aerial parts [4]. PPNs are major 
threats to the world’s food supply, accounting for 
at least 12.3% of global food production loss 
each year [5]. One of the most significant worms 
associated with PPNs is the root-knot nematode 
(Meloidogyne sp.). Root-knot nematode (RKN) is 
the most significant PPN species on the planet 
and is among the top five primary plant 
pathogens [6-8]. Of these, the root-knot 
nematodes are possibly the most important 
because of their global distribution, destructive 
capacity, and economic importance [9]. They are 
thought to be the most dangerous nematodes on 
the planet. They affect over 5000 plant species 
and cause economic losses in a variety of crops 
[10,11]. Worms are widely regarded as the most 
damaging eggplant pests [12]. Meloidogyne 
incognita, M. arenaria, M. hapla, and M. javanica 
are the most common species of phytophagous 
RKNs in the genus Meloidogyne [13-15]. 
Meloidogyne sp. threatens over 2000 plant 
species, including tobacco (Nicotiana tabacum), 
coffee (Coffea arabica), tomato (Solanum 
lycopersicum), Niebe (Vigna sinensis), kenaf 
(Hibiscus cannabinus L.), sugar cane 
(Saccharum officinarum), tea (Camellia sinensi), 
carrot (Daucus carota), melon [16]. Chemical 
nematicides and resistant cultivars have 
traditionally been used to manage Meloidogyne 
sp. [17]. Synthetic agrochemicals, which are 
made up of inorganic or organic compounds, 
have been the most successful technique in 
modern agricultural production for controlling 
plant diseases and pathogens, protecting crop 
quality, and increasing production because of 
their affordability, easy handling, and efficacy. 
While nematodes can be effectively managed 

with nematicides, their use is restricted because 
of their limited-term consequences: increased 
prices, nematode resistance establishment, 
environmental and health risks, toxic effects, and 
negative impacts on ecosystems. The use of 
microorganisms as biocontrol agents of PPNs 
can replace chemical control. Bioagents are 
considered to be both safe and affordable [18]. 
Over the last few decades, biocontrol using 
rhizosphere bioagents (e.g. bacteria and fungi) 
has been effective in improving plant growth and 
influencing nematode reproduction via a variety 
of mechanisms, like producing growth regulators, 
bioactive compounds, and enzymes that act 
directly on nematodes [19,20]. Biological control 
agents (BCA) appear to be a promising tool for 
controlling phytopathogens. This study aims to 
review the current threat of rook-knot nematode 
infection on crops, biological control, antagonistic 
bioagents, and their mechanisms, and future 
directions in agriculture to provide a basis for the 
broad management of root-knot nematodes. 

 
2. THE CURRENT THREAT OF ROOT-

KNOT NEMATODE INFECTION ON 
CROPS 

 
RKNs are among the most significant pathogenic 
organisms due to their global distribution, 
capacity for destruction, and economic 
importance [9]. Diseases caused by PPNs, cost 
the global economy over $150 billion annually 
[21,22], with RKNs responsible for more than half 
of these losses [23]. The quality and quantity of 
plant production output can be negatively 
affected by PPNs, pests, and diseases [11,24]. 
RKNs are one of the globe's most devastating 
nematode groups, causing substantial economic 
harm to a vast number of arable crops in tropical 
and subtropical environments [7,25]. RKNs are 
rhizosphere parasitic nematodes that infest over 
5000 species of plants around the world, 
including a variety of vegetables, commercial 
crops, shrubs, and trees [10]. According to a 
recent study, the top ten parasitic nematode taxa 
in molecular plant pathology are ranked by 
scientific and commercial significance [26]. 
Tomato, carrot, melon, tobacco, kenaf, sugar 
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cane, tea, and coffee are just a few of the over 
2000 plant species susceptible to Meloidogyne 
sp., which poses the most economically 
significant threat to agricultural crop output 
[27,28]. Even though the host range of many 
RKNs overlaps, not every RKN pathogen may 
attack the same plants. Meloidogyne sp. is 
widely regarded as the most destructive worm 
parasite of eggplant [29,30]. Their infection 
begins with root penetration by second-stage 
juveniles (J2), which hatch in the soil from eggs 
left in egg masses on infected roots by females 
[31,32]. Chlorosis (yellowing), rotting, wilting, root 
galling, early leaf shedding with severely stunted 
growth, and root development anomalies are all 
common signs of RKN attack, leading to huge 
crop losses [31,33]. M. incognita and M. javanica 
are two dormant RKN species in Pakistan since 
they are common in vegetable-growing areas, 
severely limiting growth and yield [8]. Root-knot 
nematodes are a danger to economic crop 
farming around the world. Nematode inoculum 
development and annual production of the same 
cultivars on the same land are the primary 
causes of their yield losses [13,34]. Because 
nematodes can increase susceptibility to other 
parasites, the severity of this damage can be 
substantially great [35]. Crop loss caused by 
nematodes is estimated to cost between $80 and 
118 billion dollars per year [36]. It is estimated 
that these worms cause 18–20.7% of tomato 
production losses, accounting for one-third of the 
losses normally attributed to pests and diseases 
[37]. When nematode populations are low, the 
foliar symptoms may or may not be present. 
Furthermore, RKN infestation can make the host 
plant more vulnerable to other diseases, such as 
root rot and Fusarium crown, in areas where 
these pathogens are present [38,39]. RKNs are 
difficult to identify and control because they live 
in infected host plants below the soil surface. 
Meloidogyne sp. has always been difficult to 
control owing to its high reproductive potential 
and extensive host specificity, which restricts 
crop rotation's effectiveness [32,33]. Plant 
mortality, lower production, decreased 
chlorophyll content, and a variety of other 
negative physiology are all additional symptoms 
and damages of root-knot nematode infestation 
[40,41]. 

 
3. BIOLOGICAL CONTROL OF ROOT-

KNOT NEMATODES  
 
To ensure food quality in agricultural production, 
a variety of plant diseases must be handled and 
managed well [42]. Several approaches and 

treatment options are used around the world to 
manage, relieve, and inhibit disease in plants 
[43,44]. The need for synthetic chemicals in the 
control of diseases in plants is becoming less 
popular around the world. Today, many types of 
research are being done to develop safe, 
environmentally acceptable, and efficient options 
to synthesize pesticides for reducing 
decomposition damage in cultivated crops and 
managing plant diseases in the field, both of 
which result in significant economic losses 
[45,46]. Biocontrol is a term commonly used in 
plant pathology and entomology. Biocontrol is 
used in the field of plant pathology to suppress 
the buildup of pathogens in the microbial 
population, whereas biocontrol in entomology is 
used to suppress the multiplication of parasitic 
insects against pathogenic microbes, 
entomophagous nematodes, or predation 
parasites [47,48]. Biocontrol is also defined as 
"the employment of microbes or their metabolites 
to eliminate or reduce pest-related damages or 
losses" [49,50]. Bioagents, which occupy the 
same rhizospheric zone as pathogens and 
absorb the same nutrients, are often used to 
manage diseased plants [20,51]. Biocontrol could 
be accomplished in a variety of ways, including 
partial, significant, and entire control. Biological 
control agents have shown promise as a cost-
effective and ecologically friendly pest control 
approach [1,52]. Several antagonistic organisms, 
including soil fungi from the genera Trichoderma 
(Hypocreaceae), Verticillium, Pochonia, and 
Paecilomyces, have been tested against 
Meloidogyne sp. and have been commercialized 
[53,54]. In diverse crops and experimental 
situations, a variety of fungi, including Pochonia 
chlamydosporia isolates, were tested as RKN 
bioagents [55-57]. Pathogen growth is 
suppressed while plant growth and development 
are promoted by P. chlamydosporia colonization 
of the root [58,59]. Pochonia chlamydosporia has 
been proven to be a bioagent for RKNs and cyst 
nematodes. This fungus parasitizes RKN eggs 
within 24 hours, preventing them from hatching 
by more than 55% [60]. Trichoderma sp. enables 
the development of biocontrol strategies for 
economically significant plant infections [61]. 
Trichoderma sp. has an antagonistic effect on 
Pythium ultimum and Rhizoctonia solani due to 
the production of secondary metabolites [9]. 
Purpureocillium lilacinum, formerly Paecilomyces 
lilacinus [62,63], is a saprophyte that parasitizes 
nematode sedentary stages, particularly their 
eggs, which are generally deposited in a 
gelatinous matrix, as well as female nematodes 
[64,65]. Because of its strong potential for 
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biological nematode control, it has been 
successfully used on tomatoes against M. 
javanica and M. incognita [64,66]. Bacillus 
subtilis, Bacillus sphaericus, and Pseudomonas 
fluorescens are the antagonistic rhizobacteria 
that affect RKN [2,67]. Agrobacterium, 
Enterobacter, Aureobacterium, Chryseoba-
cterium, Alcaligenes, Corynebacterium, 
Klebsiella, Paenibacillus, Phyllobacillus, 
Xanthomonas, Telluria, and Rhizobium, are 
among the other genera mentioned [68]. Fungi 
from the Trichoderma and Purpureocillium 
genera [69], endospores of Pasteuria penetrans, 
and commercially available rhizobacteria (e.g., 
Bacillus firmus) hold the most promise for 
biological control of RKNs (Meloidogyne sp.) 
[6,70]. Biological management approaches 
appear to be less expensive, making them more 
accessible to farmers and contributing to the 
agricultural sector's long-term viability. Bioagents 
are mostly developed to reduce pest populations 
economically [71,72]. The activity and 
performance of biological control agents are 
influenced by their surroundings.  
 

4. BIOAGENTS USED IN CONTROLLING 
ROOT-KNOT NEMATODES 

 

A biological control agent (BCA) is an organism 
that inhibits a pest or disease. They are microbial 
antagonists that reduce plant disease and 
phytopathogens in several ways [73,74]. Much 
information on the variety of methods of BCA in 
the control of plant diseases has been published 
over the last few decades [43,75]. For pest and 
disease management, BCAs offer an alternative 
to chemical fertilizers and pesticides. 
Biotechnological applications, such as gene 
modification, enable us to enhance the 
characteristics of such bioagents, allowing them 
to survive in stressful and nutrient-limited 
environments, producing more antimicrobial 
phytochemicals under different temperatures and 
pH conditions than the existing isolates. Once a 
BCA has established itself in the rhizosphere, it 
should be able to colonize and compete for 
space and nutrients with grown roots [76,77]. 
BCA will be unable to compete for food and 
space if it is unable to develop itself in the 
rhizosphere and grow along with the treated 
plant's root system [78]. BCAs for the 
management of phytopathogens are often fungal 
or bacterial isolates obtained from the 
phyllosphere, endosphere, or rhizosphere, and 
they serve a vital role in pathogen management. 
Plant-parasitic nematodes are parasites, 
predators, or antagonists of fungi, bacteria, 

protozoans, viruses, turbellarians, enchytraeids, 
mites, predatory nematodes, collembolans, and 
tardigrades. The above microbes are being 
utilized to regulate PPNs in some agricultural and 
horticultural crops as biocontrol agents [79,80]. 
Plant diseases can be combated using microbial 
biological control agents (MBCAs) such as 
mycoviruses and bacteriophages. In 2017, 101 
MBCAs were certified for disease control in 
Australia, Brazil, Canada, Europe, Japan, New 
Zealand, and the United States [81-83]. 
Bioagents or antagonistic microbes hinder 
pathogen invasion or pathogen establishment in 
the host plant. The production of extracellular 
enzymes by the antagonist, competition for food 
and habitat among pathogens, and pathogenicity 
detoxification are all related to the biological 
management of the disease [42,84]. In a variety 
of ways, microbial biocontrol agents (MBCAs) 
prevent plants from disease damage. In the 
absence of direct antagonistic interaction with the 
parasites, they may develop or activate 
enhanced resistance to pathogen infections in 
plant tissues [81]. Competition for nutrients and 
space is another way to come into contact with 
viruses [85]. MBCAs can interact with pathogens 
actively via hyperparasitism or antibiosis. 
Hyperparasites attack and destroy fungal 
pathogen hyphae, spores, and resting structures, 
as well as bacterial pathogen cells. MBCAs 
protect agricultural commodities from disease 
damage in a variety of ways. They compete with 
pathogens for available space and nutrients in an 
indirect way [86]. They interact with pathogen 
species directly via an antibiosis or 
hyperparasitism mechanism. The production of 
antimicrobial compounds that suppress bacteria 
is another direct-mode strategy [87-89]. The 
compounds emerge as potential plant disease 
control options. Most BCAs that suppress fungal 
or bacterial plant diseases and pathogens 
employ one or more pathways. The production of 
antibiotics, enzymes, or specific active 
compounds is referred to as antibiosis, whereas 
competitive displacement is referred to as 
competition for food or space [48]. Microbial 
pathogen-associated molecular patterns 
(MAMPs) are resistance-inducing stimuli 
produced by microorganisms that are identified 
by pattern recognition receptors (PRRs) 
[83,90,91]. The fact that BCAs are pathogen-
specific and unlikely to harm non-target species 
is the major advantage of using them. Weeds, 
worms, insects, micro-pathogens, mites, and 
even vertebrates are among the target species 
controlled by biocontrol agents. Some 
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phytopathogens are so toxic that they kill the 
organisms they infect [48,92]. 
 

5. MECHANISM OF ANTAGONISTIC 
FUNGI 

 
Fungal antagonists are now recognized as a 
rapidly expanding natural phenomenon with a 
wide range of agricultural applications, including 
food production and yield. Biological control 
agents such as antagonistic fungi are used in 
agriculture. Fungi have a high rate of sexual and 
asexual reproduction, are target-specific, and 
have a short generation period, which has 
increased the potential for biological control 
agents to combat plant diseases. Most fungal 
species have defense systems that enable them 
to effectively defend plants against plant 
pathogenic fungi-caused diseases. Regardless of 
the process of fungi seizing or parasitizing, the 
association of both host-pathogen and fungi or 
prey entails the infiltration of the outermost body 
shell. This infiltration subsequently leads to the 
pathogen's colonizing the body's interior tissues 
via digestion, enabling it to satisfy its nutrient 
requirement [93,94]. Despite being saprophytes, 
these fungi can trap nematodes in the soil during 
their larval or free adult stages. Hydrolytic 
enzymes found in the cuticle, such as lipases 
and chitinase, are thought to be responsible for 
fungi's ability to kill insects and pests [95-97]. 
Extracellular proteases hydrolyzing the cuticle of 
worms have been shown to produce peptides 
that can result in trap formation [2,98,99]. RKNs 
(M. javanica, and M. incognita) have all been 
demonstrated to be suppressed by Paecilomyces 
lilacinus and P. lilacinum [100,101], with good 
results against Meloidogyne sp. [102]. The 
production of proteases and chitinases by the 
fungus is linked to the infection process [101]. 
The enzymes pierce the eggshell's vitelline layer, 
allowing mycelium to infiltrate, proliferate, and 
harm early embryonic developmental stages. 
The hyphae breach the eggshell and multiply 
when the egg contents are depleted, parasitizing 
other eggs in the egg mass [103]. Chemical 
compounds and extracts generated by a variety 
of fungi are important in plant-pathogen 
biocontrol activities as well [104-106]. 
Trichoderma, Paecilomyces [107], Pochonia, and 
Arthrobotrys [108] are well-known Meloidogyne 
sp. inhibitors. Pochonia chlamydospores have 
been demonstrated to parasitize Meloidogyne sp. 
eggs, and females [109,110]. Pochonia 
chlamydospores are among the most extensively 
researched biocontrol agents (BCA) against 
PPNs in the world today [111]. Arthrobotrys sp. 

produces hyphae with sticky features that catch 
and feed on nematodes as a nematophagous 
fungus [112,113]. When used before planting 
tomato seedlings, Arthrobotrys dactyloides 
reduced the quantity of M. incognita [56,114]. 
Meloidogyne sp. is also known to be antagonized 
by fungi from the genera Trichoderma and 
Fusarium. It has been demonstrated that 
Trichoderma sp. can invade plant root surfaces. 
This has been linked to its ability to minimize 
root-knot disease [115,116] as well as 
competition with nematodes. Trichoderma sp. 
successfully decreased Meloidogyne sp., 
second-stage juvenile (J2) densities, and egg 
production in tomato roots [57,64,and 66]. 
Trichoderma is rhizosphere dwellers that 
colonize the surface of plant roots. Their 
antagonism effect is primarily directed at fungi, 
yet has an impact on the life cycle of the RKN 
[117,118]. Trichoderma sp. aids plant 
development by inhibiting nematode penetration. 
Trichoderma conidia attach to the cuticle or 
eggshell of worms and parasitize them 
[2,92,119]. Mycoparasitism and 
entomopathogenicity are the two primary 
mechanisms by which fungal biological control 
agents kill agricultural pests and insects. 
Mycoparasitism is the interaction of a fungus 
parasite and a fungus host. In contrast, 
entomopathogenic fungi are parasitic fungi that 
can kill pathogens. Fungi that control fungal 
infections in plants via mycoparasitism are 
known as Gliocladium and Trichoderma 
[120,121]. Toxic chemicals generated by fungi 
can affect the pathogens of the host organism 
[122]. Trichoderma species are known to 
produce toxins and antibiotics such as viridian, 
fusaric acid, lilacin, oxalic acid, trichoderin, 
trichodermol A, harzianolide, and penicillic acid, 
which suppress the development of RKNs [123]. 
Trichoderma sp. is also being proposed to 
combat plant diseases and phytopathogens 
through mycoparasitism, competition, antibiosis, 
hydrolysis of enzymes, and induced host 
resistance, among other methods [105,124]. 
Trichoderma also produces chemicals that harm 
nematode cuticles, such as volatile organic 
compounds, 6-pentyl-pyrone, and metabolites 
[125]. In addition to direct antagonism, 
Trichoderma sp. manages Meloidogyne through 
a range of methods, including the generation of 
fungal metabolites (e.g., AAL toxins 3–10, 
helvolic acid) and induced resistance [126,127]. 
Direct antagonism, indirect antagonism, and 
mixed path antagonism are the three types of 
intraspecific antagonistic processes related to 
biocontrol [122]. Hyperparasitism is a type of 



 
 
 
 

Boakye et al.; ARJA, 15(2): 27-44, 2022; Article no.ARJA.84800 

 

 

 
32 

 

predation that underpins direct antagonism. 
Predation, toxic metabolite formation, and 
competition for space and nutrients are all 
examples of direct antagonism. Mixed path 
antagonism is induced by metabolic enzymes, 
physical, chemical inference, antibiotics, and 
uncontrolled byproducts. Indirect antagonism, on 
the other hand, refers to activities that have no 
direct effect on the pathogens under attack. 
Indirect antagonism is characterized by two basic 
processes: competition and host resistance 
enhancement. Nutrient scavenging via 
siderophores, leachate consumption, and niche 
competition are the main mechanisms at work in 
the competition. The method includes host 
resistance induction at the molecular level, as 
well as phytohormone-associated direct 
pathogen contact. ISR has been linked to 
phytoalexins, pathogenesis-related proteins, 
phenolic compounds, reactive oxygen species, 
and other compounds. These also contribute to 
the development of numerous physiological 
obstacles, such as the cuticle and cell plant 
changes, mostly caused by induced plant action 
[128,129]. These mechanisms are energy-
dependent, allowing plants to maintain their 
defense systems. Defensive priming, in contrast 
to direct-induced resistance, allows for a 
powerful and quick response at a minimal energy 
cost [130,131]. Mechanisms of plant defense or 
reactions are activated by MBCAs depending on 
plant genotype [132,133]. Siderophores, bio-
surfactants, volatile organic compounds (VOCs), 
antibiotics, pyocyanin, and DAP are all used to 
induce systemic resistance. The production of 
signal components by MBCAs triggers defensive 
mechanisms to respond to infections, which is 
how they work. The biocontrol mechanism, in 
other words, is reliant on MBCAs' capacity to 
adapt to and thrive on the plant [65,83]. 
 

6. MECHANISM OF ANTAGONISTIC 
BACTERIA 

 
Several bacterial strains have been shown to 
have the potential to become biocontrol agents. 
Bacillus, Pseudomonas, and Azotobacter 
isolates from plant roots displayed antagonistic 
activity against the plant pathogen and acted as 
disease control agents [146,67]. The bacterial 
group which colonizes and supports the 
development of plants' roots is known as plant 
growth-promoting rhizobacteria (PGPR) 
[147,148]. The above (PGPR) are among the 
most efficient and sustainable BCAs for 
controlling plant pathogens and disease 
[149,150]. Because PGPR is non-toxic, naturally 

occurring microorganisms with long-term use, 
they have many advantages over chemical 
biocontrol agents. Pseudomonas sp. and Bacillus 
sp. have been regarded as significant bioagents 
in the fight against root and soil-borne diseases 
in a variety of crops, including wheat, tomato, 
potato, and chickpea [79,151]. Antimicrobial 
metabolites generated by bacteria bioagents of 
the genera Agrobacterium, Bacillus, Pantoea, 
Pseudomonas, Serratia, Stenotrophomonas, 
Streptomyces, and others have been identified, 
with a majority of them having broad-spectrum 
action. Bacillus has been studied for lipopeptides 
like iturin, surfactin, and fengycin, whereas 
Pseudomonas has been studied for antibiotic 
metabolites like DAPG, pyrrolnitrin, and 
phenazine [152,153]. Many antibiotics are only 
made after a bacteria reaches a certain level of 
resistance. In phenazine-producing 
Pseudomonas, this quorum-sensing mechanism 
is well understood. Plant growth secreted toxin 
surface chemicals (bio-surfactants) and volatiles, 
chitinase cell wall-degrading enzymes, and -1,3-
glucanase enhancing rhizobacteria to reduce 
soil-borne pathogens [154-156]. The release of 
siderophore ligands, which efficiently grab iron 
and inhibit pathogen development, was 
previously identified as a biocontrol mechanism 
[157,158]. 

 
7. FUTURE DIRECTION / PROSPECTS 
 
Man has worked since ancient times to improve 
agricultural productivity and reduce disease 
susceptibility in crops by adopting agricultural 
methods that minimize both diseases and 
pathogens [162,163]. Food security is a top 
priority for all governments, but it is especially 
important in developing countries with rapidly 
growing populations [164]. Food crop production 
must be expanded to satisfy the nutritional 
demands of a growing population. Overuse of 
synthetic pesticides, on the other hand, is an 
unsustainable practice that comes at a high cost 
in terms of environmental harm and organism 
health. Commercial uses and implementations of 
plant disease biocontrol have been delayed due 
to the variable effectiveness of BCAs in different 
climatic environmental conditions as well as host 
specificity. Recent advancements in science 
have enabled us to learn more about molecular 
action mechanisms like the production of 
nemato-toxins, signaling pathways that activate 
the host-plant defense mechanisms, and the 
infestation process. This knowledge must lead to 
the development of new approaches to enhance 
the effectiveness of BCAs for biocontrol 
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Table 1. Fungi species used as bioagents and their mechanisms against root-knot nematodes 
 

Fungi Strain Mechanism Target Pathogen and Host Plant Reference 

Trichoderma sp. (eg. T. harzianum, T. 
viride, T. virens, T. atroviride) 

Parasitism, Antibiotic production (eg. trichodermin, 
trichoviridin, dermadin), ISR and SAR, Secretes lytic 
enzymes ( chitinase, glucanases, and protease), toxic 
metabolites 

M. incognita. (Tomato), M. javanica, 
(Tomato), M. graminicola, (Rice), M. 
arenaria, (Maize). 

[134-136]  

Pochonia chlamydosporia Parasitism, Toxin secretion M. incognita, (Tomato), M. javanica, 
(Lettuce), M. hapla, (Lettuce) 

[137-139]) 

Paecilomyces lilacinus Parasitism, Antibiotics (leucinostatin, lilacin), Enzymes 
(chitinase and protease). 

M. javanica, (Pigeonpea), M. incognita, 
(Tomato) M. arenaria, (Brinjal) 

[140,141]  

Aspergillus niger Parasitism, Induces systemic resistance (ISR) M. incognita, (Mung bean), M. javanica, 
(Pigeonpea), M. arenaria, (Tomato). 

[127,142]  

Verticillium chlamydosporium parasitism M. incognita, M. javanica and M. arenaria 
(maize, kale and Phaseolus). 

[27,143] 

Arbuscular mycorrhizal fungi (AMF) Parasitism M. incognita (sweet, pepper, tomato) [144] 

Syncephalastrum racemosum Secondary metabolites, production of toxins, 
enzymes, ISR, and parasitism 

M. incognita (Cucumber) [145]  

 
Table 2. Mechanism of bacteria bio-control agents in controlling root-knot nematodes 

 

Bacteria Strain Mechanism Target Nematode Reference 

Pasteuria penetrans1 Predation Meloidogyne sp. [1] 

Pseudomonas sp. (P. aeruginosa, P. stutzeri, 
P. fluorescens, P. putida) 

Hydrogen cyanide (HCN), Diacetylphloroglucinol  
(DAPG), ISR and SAR, Pyoluteorin, Extracellular 
protease 

M. incognita, M. javanica [158] 

Serratia marcescens Volatile metabolites, Prodigiosin M. incognita, M. javanica, [159,160] 

Bacillus sp. (eg. B. cereus, B. coagulans B. 
megaterium, B. licheniformis, B. firmus) 

Antibiotic production, Hydrolytic enzymes (Chitinase, 
Protease, Sphingosine), ISR, Secondary metabolites, 

M. incognita, M. javanica, M. graminicola, M. 
arenaria 

[1,2] 

Corynebacterium paurometabolum Hydrogen sulfide, Chitinase M. incognita  [1]  

Rhizobium etli ISR M. javanica (Tomato)  [161]  
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Fig. 1. Mechanism of antagonistic Bioagents (Bacteria & fungi) in Controlling Root-Knot 
nematodes 

 
implementations against RKN, increasing the 
microbial secretion of toxic compounds or 
metabolites, and developing commercial 
nematicidal agents. To overcome this challenge, 
new biotechnological techniques must be 
developed to generate BCA formulations with 
greater stability, efficiency, and survival to 
overcome this challenge [165,166]. BACs are 
expensive to commercialize because they 
require several steps, including microorganism 
isolation in pure culture or enhancement, 
identification, and characterization, formulation 
development, mass production, product efficacy 
testing, storage durability inspection, finding a 
manufacturing partner, licensing and marketing, 
health, and ecological safety considerations 
[167-169]. Agriculture's biodiversity is essential 
for its long-term existence. Effective biocontrol 
agents produce economic advantages, and their 
contribution to the management of preexisting 

pest species, predators, and pathogens has 
been investigated [49,170]. There is a majority of 
research in this sector being done in the lab, and 
there has been minimal focus on generating 
practical bioagents in the field. Furthermore, 
because of a lack of understanding about their 
application, cost-effective products are not widely 
explored by growers. Therefore, efforts must be 
made to popularise biological control. When 
deployed in the field, BCAs that appear 
promising in the lab frequently fail. Biotechnology 
and other molecular approaches have recently 
gained attention as prospective solutions to the 
problem of improving BCA selection and 
characterization. To improve the efficacy of BCA 
for viable marketability, complete knowledge of 
BCA mechanisms, and environmental evaluation, 
various strategies such as mutation or protoplast 
fusion should be applied. The bulk of bioagents 
does poorly in field testing yet excel in the 
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laboratory. However, there are various reasons 
for this, the majority of which can be linked to 
environmental and physical obstacles that hinder 
metabolic efficiency. Compounds synthesized by 
bioagents are important to today's agricultural 
production environment. However, their 
utilization must be fully studied. The majority of 
research in this area is currently done in the lab, 
with minimal emphasis on generating profitable 
bioagent formulations. To maximize the 
efficiency of these agents, new application 
procedures must be developed.  Furthermore, 
due to a lack of awareness of how to use cost-
effective items, farmers have found it difficult to 
do so. As a result, a more fundamental study in 
this field is needed to develop the concept of 
biological control extension. 

 
8. CONCLUSION 
 
Considerably, much research has been 
conducted over the last two decades to probe the 
use of microbes as biocontrol agents 
antagonistic to nematode pests. Many BCAs 
have been recognized as plant-parasitic 
nematode pathogens and have been shown to 
suppress nematode pest infestations. However, 
just a few economically viable biological control 
products derived from BCAs with nematicidal 
potential have been established and used in 
agriculture. Researchers have reported on a 
variety of bio-agents for root-knot nematode 
treatment, including fungi and bacteria. The 
efficacy of the bioagent differed depending on 
whether it was evaluated in vitro or the field. This 
could be due to inconsistencies between the in 
vitro and field conditions. In vitro and the field, 
bioagents such as Verticillium, Pochonia, 
Paecilomyces, Trichoderma sp., Pseudomonas 
sp., Agrobacterium, and Bacillus sp. showed 
considerable suppression of root-knot nematode 
infestation. These bioagents must be used in a 
wider range of applications. In addition, emerging 
bioagents with broader applications must be 
thoroughly explored to better understand and 
apply them. Antibiotics, siderophores, cell wall 
disintegrating enzymes, volatile organic 
compounds, mycoparasitism, competition for 
space, and nutrients are all documented 
processes of bioagents in the reduction of root-
knot nematodes, as is resistance induction. To 
achieve optimum biocontrol effects in practice, 
regardless of how friendly and economic 
nematode antagonist is to a specific host in a lab 
experiment, an intensive investigation of the 
antagonist's mechanisms against nematode 
populations, as well as a deep understanding of 

the relationships between biological control 
strains, nematode targets, microbial biomass, 
plants, and the ecosystems, should be 
conducted. Finding new and biocontrol 
microorganisms that are highly effective against 
phytopathogens is also very significant. Finally, 
bioagents should be used for specific diseases 
and pathogens, as well as in the fields where 
they have the most promises. 
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