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This paper develops the problem of estimating stress-strength reliability for Gompertz lifetime distribution. First, the maximum
likelihood estimation (MLE) and exact and asymptotic confidence intervals for stress-strength reliability are obtained. Then, Bayes
estimators under informative and noninformative prior distributions are obtained by using Lindley approximation, Monte Carlo
integration, and MCMC. Bayesian credible intervals are constructed under these prior distributions. Also, simulation studies are used
to illustrate these inference methods. Finally, a real dataset is analyzed to show the implementation of the proposed methodologies.

1. Introduction

The stress-strength reliability R = PðX > YÞ is an assessment
of the reliability of a component based on its strength X and
its stress Y . The idea of a stress-strength reliability was
introduced by Birnbaum [1] and spread two years later by
Birnbaum and McCarty [2].

Recently, the study on reliability has been considered by
the authors, which we refer to some recent studies. Qixuan
and Wenhao [3] worked on the Bayesian and classical esti-
mation of stress-strength reliability for inverse Weibull
lifetime models. Abravesh et al. [4] obtained classical and
Bayesian estimation of stress-strength reliability in type II
censored Pareto distributions. Akgül et al. [5] presented
inferences on stress-strength reliability based on ranked set
sampling data in the case of Lindley distribution. Byrnes
et al. [6] made a Bayesian inference of R for Burr type XII
distribution based on progressively first failure-censored
samples. Zhang et al. [7] studied the reliability of generalized
Rayleigh distribution under progressive type II censoring.

Gompertz distribution which was first proposed by
Gompertz [8] is one of the most widely used distributions
in the fields of survival, lifetime data, mortality tables, com-
puter, biology, sociology, and marketing [9–12]. Some recent

studies on the distribution of Compretz include the follow-
ing: [13] presented a new and practical generalization of
the Compretz distribution. [14] developed acceptance sam-
pling plans for lot sentencing in which the quality character-
istic of the products follows the Topp-Leone Gompertz
distribution. An application of Gamma-Gompertz distribu-
tion was proposed by [15]. [16] estimated the parameters
of a new generalization of Gompertz distribution and inves-
tigated the features and application of this new model.

The study on reliability by considering Gompertz distri-
bution is one of the most important and interesting issues.
Saraçoğlu and Kaya [17] studied MLE and confidence inter-
vals of system reliability for Gompertz distribution in stress-
strength models. Kumar and Vaish [18] presented a study of
strength reliability for Gompertz distributed stress. Jha et al.
[19] obtained reliability estimation of a multicomponent
stress-strength model for unit Gompertz distribution under
progressive type II censoring. Asadi et al. [20] studied infer-
ence on adaptive progressive hybrid censored accelerated life
test for Gompertz distribution.

A brief explanation of the type II censoring is given. Let
x1, x2,⋯, xn1 and y1, y2,⋯, yn2 be independent random sam-
ples from X and Y random variable, respectively. Suppose the
ordered statistics of these samples are xð1Þ < xð2Þ <⋯<xðn1Þ
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and yð1Þ < yð2Þ <⋯<yðn2Þ. xi’s and yi’s are collected until r1
failures and r2 failures occur, respectively (where r1 ≤ n1 and
r2 ≤ n2).

The rest of the article is organized as follows. In Section
2, we introduce the Gompertz distribution. In Section 3, we
obtain the MLE of stress strength reliability (R). In Section 4,
we construct the exact and asymptotic confidence intervals
for R. In Section 5, we calculate the Bayes estimator of R
by considering the conjugate informative and Jeffreys nonin-
formative prior distributions. In Section 6, we provide
Bayesian credible intervals, including equi-tailed and HPD
intervals under the conjugate informative and Jeffreys non-
informative prior distributions. In Section 7, the perfor-
mance of these inference methods is compared by using
simulation studies. Finally, Section 8 performs a real data
analysis to demonstrate the application of these methods.

2. Gompertz Distribution

Let X ~ Gompertzðβ1, γÞ and Y ~ Gompertzðβ2, γÞ be two
independent random variables. The probability density
function (PDF) and cumulative distribution function
(CDF) of X and Y are given:

f X x ; β1, γð Þ = β1e
γxe−β1/γ eγx−1ð Þ, FX x ; β1, γð Þ = 1 − e−β1/γ eγx−1ð Þ, x > 0, β1, γ > 0,

f Y y ; β2, γð Þ = β2e
γye−β2/γ eγy−1ð Þ, FY y ; β2, γð Þ = 1 − e−β2/γ eγy−1ð Þ, y > 0, β2, γ > 0:

ð1Þ

The reliability function is calculated as follows:

R = P X > Yð Þ
=
ð∞
−∞

FY wð Þf X wð Þdw

=
ð∞
0

1 − e−β2/γ eγw−1ð Þ
� �

β1e
γwe−β1/γ eγw−1ð Þdw

= β2
β1 + β2

:

ð2Þ

3. MLE of R

Let xð1Þ, xð2Þ,⋯, xðr1Þ be a type II censored sample from
Gompertzðβ1, γÞ and yð1Þ, yð2Þ,⋯, yðr2Þ be a type II censored
sample from Gompertzðβ2, γÞ. Suppose these two samples
are independent. The likelihood function is given by

L β1, β2, γ x, yjð Þ = n1!n2!
n1 − r1ð Þ! n2 − r2ð Þ!

Yr1
i=1

f X x ið Þ ; β1, γ
� �

SX x r1ð Þ
� �h in1−r1

×
Yr2
j=1

f Y y jð Þ ; β2, γ
� �

SY y r2ð Þ
� �h in2−r2

= n1!n2!
n1 − r1ð Þ! n2 − r2ð Þ!β

r1
1 e

γ〠
r1

i=1
x ið Þ

e
−β1/γ〠

r1

i=1
eγx ið Þ−1ð Þ

e−β1 n1−r1ð Þ/γ e
γx r1ð Þ−1ð Þ

× βr2
2 e

γ〠
r2

j=1
y jð Þ

e

−β2/γ〠
r2

j=1
eγy jð Þ−1ð Þ

e−β2 n2−r2ð Þ/γ e
γy r2ð Þ−1ð Þ

= n1!n2!
n1 − r1ð Þ! n2 − r2ð Þ!β

r1
1 β

r2
2 e

γ 〠
r1

i=1
x ið Þ+〠

r2

j=1
y jð Þ

" #
e−β1b1′e−β2b2′ ,

ð3Þ

where

b1′ =
1
γ

〠
r1

i=1
eγx ið Þ + n1 − r1ð Þeγx r1ð Þ − n1

" #
, ð4Þ

b2′ =
1
γ

〠
r2

j=1
eγy jð Þ + n2 − r2ð Þeγy r2ð Þ − n2

" #
: ð5Þ

Then, the log-likelihood function is

l β1, β2, γ x, yjð Þ = log n1!n2!ð Þ − log n1 − r1ð Þ! n2 − r2ð Þ!½ �

+ γ 〠
r1

i=1
x ið Þ + 〠

r2

j=1
y jð Þ

" #
+ r1 log β1 + r2 log β2

−
β1
γ

〠
r1

i=1
eγx ið Þ + n1 − r1ð Þeγx r1ð Þ − n1

" #

−
β2
γ

〠
r2

j=1
eγy jð Þ + n2 − r2ð Þeγy r2ð Þ − n2

" #
:

ð6Þ

To obtain the MLE of parameters β1, β2 and γ, it is suf-
ficient to derive the log-likelihood function with respect to
parameters β1, β2 and γ and equal them to zero:

∂l
∂β1

= r1
β1

−
1
γ

〠
r1

i=1
eγx ið Þ + n1 − r1ð Þeγx r1ð Þ − n1

" #
= 0, ð7Þ

∂l
∂β2

= r2
β2

−
1
γ

〠
r2

j=1
eγy jð Þ + n2 − r2ð Þeγy r2ð Þ − n2

" #
= 0, ð8Þ

∂l
∂γ

= r1
γ

+ r2
γ

+ 〠
r1

i=1
x ið Þ + 〠

r2

j=1
y jð Þ

" #

−
β1
γ

〠
r1

i=1
x ið Þe

γx ið Þ + n1 − r1ð Þx r1ð Þe
γx r1ð Þ

" #

−
β2
γ

〠
r2

j=1
y jð Þe

γy jð Þ + n2 − r2ð Þy r2ð Þe
γy r2ð Þ

" #
:

ð9Þ

From Equations (7) and (8), we get

bβ1 =
γr1

∑r1
i=1e

γx ið Þ + n1 − r1ð Þeγx r1ð Þ − n1
Â Ã = r1

b1′
, ð10Þ

bβ2 =
γr2

∑r2
j=1e

γy jð Þ + n2 − r2ð Þeγy r2ð Þ − n2
h i = r2

b2′
: ð11Þ

Now, by substituting (10) and (11) into (9), the MLE of

parameter γðbγÞ is obtained. Then, to get bβ1 and bβ2, we
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substitute bγ into Equations (10) and (11). Therefore, the
MLE of R is

R̂ =
bβ2bβ1 + bβ2

: ð12Þ

4. Confidence Interval of R

In this section, the exact and asymptotic confidence intervals
for R are calculated.

4.1. Exact Confidence Interval. Let xð1Þ, xð2Þ,⋯, xðr1Þ be a
type II censored sample from Gompertzðβ1, γÞ. Consider
Wi = β1/γðeγxðiÞ − 1Þ, i = 1, 2,⋯, r1, where w1 ≤w2 ≤⋯≤wr1
is a type II censored dependent sample from the standard
exponential distribution (SED). Now, apply the following
conversion:

Wi′= n1 − i + 1ð Þ Wi −Wi−1ð Þ: ð13Þ

It can be concluded that W1′ ,W2′ ,⋯,Wr1
′ ~ ind SED.

Therefore,

2〠
r1

i=2
Wi′~ χ2

2 r1−1ð Þð Þ: ð14Þ

Similarly, suppose yð1Þ, yð2Þ,⋯, yðr2Þ be a type II censored
sample from Gompertzðβ2, γÞ. Define Mj = β2/γðeγyð jÞ − 1Þ,
j = 1, 2,⋯, r2, where m1 ≤m2 ≤⋯≤mr1

is a type II censored
dependent sample from the SED. Now, apply the following
transformation:

Mj′= n2 − j + 1ð Þ Mj −Mj−1
À Á

: ð15Þ

It results that M1′ ,M2′ ,⋯,Mr2
′ ~ ind SED. So,

2〠
r2

j=2
Mj′~ χ2

2 r2−1ð Þð Þ: ð16Þ

Based on the independence of ∑r1
i=2Wi′ and ∑r2

j=2Mj′ can
be written

F0 =
r2 − 1ð Þ∑r1

i=2Wi′
r1 − 1ð Þ∑r2

j=2Mj′
~ F 2 r1−1ð Þ,2 r2−1ð Þð Þ: ð17Þ

Then, confidence interval for R is

1
1 +Q2/Q1F1−ξ/2 2 r1 − 1ð Þ, 2 r2 − 1ð Þð Þ ,

1
1 +Q2/Q1Fξ/2 2 r1 − 1ð Þ, 2 r2 − 1ð Þð Þ

� �
,

ð18Þ

where

Q1 =
r2 − 1
γ

〠
r1

i=2
n1 − i + 1ð Þ eγx ið Þ − eγx i−1ð Þð Þ,

Q2 =
r1 − 1
γ

〠
r2

j=2
n2 − j + 1ð Þ eγy jð Þ − eγy j−1ð Þð Þ:

ð19Þ

4.2. Asymptotic Confidence Interval. In this section, the
asymptotic confidence interval for R is calculated using
Wald statistics. Based on Wald statistics, we have

W = 1/r1 + 1/r2ð Þ−1/2 R̂ − R
À Á

bη ⟶
D

N 0, 1ð Þ, ð20Þ

where bη = VarðR̂Þ = bβ1
bβ2/ðbβ1 + bβ2Þ

2
.

Theorem 1. Let r1 ⟶∞ and r2 ⟶∞, then

2
1
r1

+ 1
r2

� �� �−1/2
R̂ − R
À Á

⟶
D

N 0, κ2
À Á

, ð21Þ

where κ2 = 2ðβ1β2Þ2/ðβ1 + β2Þ2 ·

Proof. Given that the maximum likelihood estimator is
asymptotically normal [21], when r1 ⟶∞ and r2 ⟶∞,
then

ffiffiffiffi
r1

p bβ1 − β1

� �
, ffiffiffiffi

r2
p bβ2 − β2

� �� �T
⟶
D

N 0, ϖð Þ, ð22Þ

where

ϖ =
β2
1 0
0 β2

2

" #
: ð23Þ

Define hðβ1, β2Þ = β2/β1 + β2. According to Taylor expan-

sion hðbβ1, bβ2Þ around β1 and β2, we have

R̂ = h bβ1, bβ2

� �
= h β1, β2ð Þ+∇h β1, β2ð ÞT

bβ1 −β1

bβ2 −β2

2
4

3
5 + ς1

= R + −β2
β1 + β2ð Þ2

β1
β1 + β2ð Þ2

" #
·
bβ1 −β1

bβ2 −β2

2
4

3
5 + ς1, a:s:,

ð24Þ

where the remaining sentences in the following relation
apply:

ς1 =OP
bβ1 − β1

� �2
+ bβ2 − β2

� �� �2
" #

: ð25Þ
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Based on (22) and (24), when r1 ⟶∞ and r2 ⟶∞,
then

E 2 1
r1

+ 1
r2

� �� �−1/2
R̂ − R
À Á" #

= 0, ð26Þ

Var 2 1
r1

+ 1
r2

� �� �−1/2
R̂ − R
À Á" #

= 2 1
r1

+ 1
r2

� �−1
Var R̂ − R
À Á

≔ 2 1
r1

+ 1
r2

� �−1
S2,

ð27Þ

where

S2 = Var −β2
β1 + β2ð Þ2

β1
β1 + β2ð Þ2

" #
·
bβ1 − β1

bβ2 − β2

2
4

3
5

0
@

1
A

= −β2
β1 + β2ð Þ2

β1
β1 + β2ð Þ2

" #
· Var

bβ1 − β1

bβ2 − β2

2
4

3
5

0
@

1
A

·

−β2
β1 + β2ð Þ2

β1
β1 + β2ð Þ2

2
66664

3
77775 = −β2

β1 + β2ð Þ2
β1

β1 + β2ð Þ2
" #

·

Var ffiffiffiffi
r1

p bβ1 − β1

� �h i
r1

0

0
Var ffiffiffiffi

r2
p bβ2 − β2

� �h i
r2

2
6666664

3
7777775

·

−β2
β1 + β2ð Þ2

β1
β1 + β2ð Þ2

2
66664

3
77775 = −β2

β1 + β2ð Þ2
β1

β1 + β2ð Þ2
" #

·

β2
1
r1

0

0 β2
2
r2

2
66664

3
77775

·

−β2
β1 + β2ð Þ2

β1
β1 + β2ð Þ2

2
66664

3
77775 = κ2

r1
+ κ2

r2
= κ2

1
r1

+ 1
r2

� �
:

ð28Þ

Therefore,

Var 2 1
r1

+ 1
r2

� �� �−1/2
R̂ − R
À Á" #

= κ2: ð29Þ

Equation (26) holds because according to the property of

MLE R̂⟶
P

R.

Corollary 2. A 100ð1 − ξÞ% asymptotic confidence interval
for R is

R̂ − bηzξ/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r1

+ 1
r2

s
, R̂ + bηzξ/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r1

+ 1
r2

s" #
, ð30Þ

where bη = bβ1
bβ2/ðbβ1 + bβ2Þ

2 ·

Proof. Define η2 = ðβ1β2Þ2/ðβ1 + β2Þ4 and bη2 = ðbβ1
bβ2Þ

2/
ðbβ1 + bβ2Þ

4
. According to the asymptotic property of the

MLE, bη/η tends to 1 in probability. On the other hand,
according to Theorem 1,

1/r1 + 1/r2ð Þ−1/2 R̂ − R
À Á

η
⟶
D

N 0, 1ð Þ: ð31Þ

Therefore, according to the Slutsky theorem, we have

1/r1 + 1/r2ð Þ−1/2 R̂ − R
À Á

bη = 1/r1 + 1/r2ð Þ−1/2 R̂ − R
À Á

/ηbη/η ⟶
D

N 0, 1ð Þ:

ð32Þ

Thus,

P R̂ − bηzξ/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r1

+ 1
r2

s
≤ R ≤ R̂ + bηzξ/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r1

+ 1
r2

s !
= 1 − ξ:

ð33Þ

5. Bayesian Estimation of R

Bayes [22] and Laplace [23] found that the uncertainty about
the parameters of a model, which we represent with θ, could
be modeled on Θ through a probability distribution such as
πðθÞ, called the prior distribution. With this approach, the
inference is based on the conditional distribution θ on x,
πðθjxÞ. This conditional distribution is called the posterior
distribution. In this section, Bayesian estimation is obtained
by using the conjugate informative and Jeffreys noninforma-
tive prior distributions.

5.1. Conjugate Informative Prior. Let β1 ~ Gammaðα1, η1Þ
and β2 ~ Gammaðα2, η2Þ and are independent. The PDF of
these priors is as follows:

π β1ð Þ = ηα11
Γ α1ð Þβ

α1−1
1 e−η1β1 , α1, η1 > 0,

π β2ð Þ = ηα22
Γ α2ð Þβ

α2−1
2 e−η2β2 , α2, η2 > 0,

ð34Þ
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where α1, η1, α2 and η2 are the hyperparameters. Then, the
joint prior possibility distribution is

π β1, β2ð Þ = π β1ð Þπ β2ð Þ = ηα11
Γ α1ð Þβ

α1−1
1 e−η1β1

ηα22
Γ α2ð Þβ

α2−1
2 e−η2β2 :

ð35Þ

The posterior probability distribution is calculated as
follows:

where b1′ and b2′ were given in (4) and (5), respectively. For
i = 1, 2, we can write

βi x, yj ~ Gamma α∗i , η∗ið Þ, ð37Þ

where α∗i = αi + ri and η∗i = ηi + bi′. [24] proposed α1 = η1 =
α2 = η2 = 0:001, and Robert [25] suggested an empirical
Bayesian approach to determining the values of hyperpara-
meters. According to the approach presented by Robert, to
get α1 and η1, we maximize the following function:

m x α1, η1jð Þ =
ð∞
0
f x α1, η1jð Þπ β1 α1, η1jð Þdβ1

= n1!η
α1
1 eγ∑

r1
i=1x ið Þ

Γ α1ð Þ n1 − r1ð Þ!
ð∞
0
βα1+r1−1
1 e−β1 η1+b1′ð Þdβ1

= n1!η
α1Γ α1+r1ð Þ
1 eγ∑

r1
i=1x ið Þ

Γ α1ð Þ n1 − r1ð Þ! η1 + b1′
� �α1+r1 :

ð38Þ

We have

M x α1, η1jð Þ = log m x α1, η1jð Þ½ �
= log n1!

n1 − r1ð Þ!
� �

+ α1 log η1 + log Γ α1 + r1ð Þ

− log Γ α1ð Þ − α1 + r1ð Þ log η1 + b1′
� �

+ γ〠
r1

i=1
x ið Þ:

ð39Þ

α1 and η1 are obtained by solving the following
equations:

∂M
∂α1

= log η1 + ψ r1 + α1ð Þ − ψ α1ð Þ − log η1 + b1′
� �

= 0,

ð40Þ

∂M
∂η1

= α1
η1

−
α1 + r1
η1 + b1′

= 0, ð41Þ

where ψ shows the digamma function. By solving Equation
(41), η1 is

η1 =
α1b1′
r1

: ð42Þ

By substituting (42) into (40), we get

0 = log η1
η1 + b1′

 !
+ ψ r1 + α1ð Þ − ψ α1ð Þ

= log α1
r1 + α1

� �
+ ψ r1 + α1ð Þ − ψ α1ð Þ

= log α1
r1 + α1

� �
+ 〠

r1−1

k=0

1
α1 + k

:

ð43Þ

Similarly, this method can be repeated to calculate α2
and η2. So, η2 is as follows:

η2 =
α2b2′
r2

: ð44Þ

Also, α2 is obtained by solving the following equation:

0 = log α2
r2 + α2

� �
+ 〠

r2−1

k=0

1
α2 + k

: ð45Þ

Abravesh et al. [4] showed that Equations (43) and (45)
have no answer and set α1 = α2 = 1 to solve this problem.
Then, η1 = b1′/r1 and η2 = b2′/r2.

5.2. Posterior Distribution of R. To calculate the posterior
distribution of R, we have the following transformations:

R = β2
β1 + β2

, ð46Þ

V = β2: ð47Þ

π β1, β2, γ x, yjð Þ = L β1, β2 ; x, yð Þπ β1, β2ð ÞÐ∞
0
Ð∞
0 L β1, β2 ; x, yð Þπ β1, β2ð Þdβ1dβ2

∝ βα1+r1−1
1 e−β1 η1+b1′ð Þβα2+r2−1

2 e−β2 η2+b2′ð Þ, ð36Þ
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Transformations (46) and (47) are equivalent to β1 =
Vð1 − R/RÞ and β2 =V . The posterior distribution of R
and V can be calculated by the following formula:

π r, v x, yjð Þ = Jj j · π v
1 − r
r

� �
, v x, yj

� �
: ð48Þ

In the above formula, J is called Jacobin and is calcu-
lated as follows:

Jj j = det

∂β1
∂v

∂β2
∂v

∂β1
∂r

∂β2
∂r

2
664

3
775

��������

��������
= det

1 − r
r

1

−
v
r2

0

2
64

3
75

�������
������� =

v
r2
:

ð49Þ

The marginal distribution of R is calculated from the
joint distribution in (48) as

π r x, yjð Þ =
ð∞
0
πI r, v x, yjð Þdu

=
ð∞
0

v
r2

· η∗
α∗1

1 η∗
α∗2

2
Γ α∗1ð ÞΓ α∗2ð Þ v

1 − r
r

� �� �α∗1−1
e−η

∗
1 v 1−r/rð Þ½ �vα

∗
2−1e−η

∗
2 vdu

= η∗
α∗1

1 η∗
α∗2

2 Γ α∗1 + α∗2ð Þ
Γ α∗1ð ÞΓ α∗2ð Þ · 1/r − 1ð Þα∗1−1

r2 η∗1 1/r − 1ð Þ + η∗2½ �α∗1 +α∗2
, 0

≤ r ≤ 1:
ð50Þ

5.3. Jeffreys Noninformative Prior. In this section, by using
Jeffreys noninformative prior [26], the Bayesian estimation
of R is obtained. The Jeffreys prior is as follows:

πJ β1, β2ð Þ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det I β1, β2ð Þ½ �

p
, ð51Þ

where

I β1, β2ð Þ = −

E
∂2l
∂β2

1

 !
E

∂2l
∂β1∂β2

 !

E
∂2l

∂β2∂β1

 !
E

∂2l
∂β2

2

 !
2
666664

3
777775: ð52Þ

Considering Jeffreys prior πJ ∝ 1/β1β2, the marginal
posterior distribution is given by

βi x, yj ~ Gamma ri, bi′
� �

, i = 1, 2: ð53Þ

Similar to the process in Subsection 5.2, the marginal
posterior distribution can be obtained:

πJ r x, yjð Þ = b
′r1
1 b
′r2
2Γ r1 + r2ð Þ

Γ r1ð ÞΓ r2ð Þ · 1/r − 1ð Þr1−1

r2 b1′ 1/r − 1ð Þ + b2′
h ir1+r2 , 0 ≤ r ≤ 1:

ð54Þ

5.4. Lindley Approximation. Lindley [27] proposed a method
for approximating the ratio of integrals. The Lindley approxi-
mation of R can be calculated using the following formula:

E R τð Þ datajð Þ =
Ð
R τð Þel τð Þ+Π τð ÞdτÐ
el τð Þ+Π τð Þdτ

≈ R bτð Þ + 1
2 〠

i,j
ρij + 2ρiΠi

� �
σij + 〠

i,j,k,l
lijkρlσijσkl

 !
,

ð55Þ

where Σ = ½σijðbτÞ� = ½−lijðbτÞ�−1, bτ is MLE of τ and

ρi =
∂R
∂τi τ=bτ , ρij = ∂2R

∂τi∂τj

�����
�����
τ=bτ ,Πi =

∂Π
∂τi τ=bτ , lijk = ∂3l

∂τi∂τj∂τk

�����
�����
τ=bτ :
ð56Þ

Here, l is log-likelihood function and Π is log-prior
distribution.

5.4.1. Informative Prior. Based on the prior distribution (35)
and R = β2/β1 + β2, we obtain

Π = log π β1, β2ð Þ = α1 log η1 − log Γ α1ð Þ + α1 − 1ð Þ log β1
− η1β1 + α2 log η2 − log Γ α2ð Þ + α2 − 1ð Þ log β2 − η2β2:

ð57Þ

So,

Π1 =
∂Π
∂β1

= α1 − 1
β1

− η1,

Π2 =
∂Π
∂β2

= α2 − 1
β2

− η2,

ρ1 =
∂R
∂β1

= −β2
β1 + β2ð Þ2

,

ρ2 =
∂R
∂β2

= β1
β1 + β2ð Þ2 ,

ρ11 =
∂2R
∂β2

1
= 2β2

β1 + β2ð Þ3 ,

ρ22 =
∂2R
∂β2

2
= −2β1

β1 + β2ð Þ3
,

ρ12 =
∂2R

∂β2∂β1
= β2 − β1

β1 + β2ð Þ3
:

ð58Þ

Inverse of the Hessian matrix is given by

Σ =

β2
1
r1

0

0 β2
2
r2

2
6664

3
7775: ð59Þ
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So, σ11 = β2
1/r1, σ22 = β2

2/r2, σ12 = σ21 = 0 and

liii =
∂3l
∂β3

i

= 2ri
β3
i

, i = 1, 2: ð60Þ

Finally, the Lindley approximation of the Bayes estima-
tor of R is

RBayes ≈ R bτð Þ + 1
2 〠

i,j
ρij + 2ρiΠi

� �
σij + 〠

i,j,k,l
lijkρlσi jσkl

 !

= R bβ1, bβ2

� �
+ 1
2〠

2

i=1
ρii + 2ρiΠið Þσii +

1
2〠

2

i=1
liiiρiσ

2
ii

= R bβ1, bβ2

� �
+
bβ2
1

r1

bβ2bβ1 + bβ2

� �3 + −bβ2bβ1 + bβ2

� �2 α1 − 1bβ1
− η1

 !2
64

3
75

+
bβ2
2

r2

−bβ1bβ1 + bβ2

� �3 +
bβ1bβ1 + bβ2

� �2 α2 − 1bβ2
− η2

 !2
64

3
75

+
bβ1
bβ2bβ1 + bβ2

� �2 1
r2

−
1
r1

� �
:

ð61Þ
5.4.2. Noninformative Prior.Under Jeffreys prior (πJðβ1, β2Þ =
1/β1β2), we have

Π = − log β1 − log β2,

Π1 = −
1
β1

,Π2 = −
1
β2

:
ð62Þ

Therefore, the Bayes estimator of R using the Lindley
approximation is

RBayes ≈ R bτð Þ + 1
2 〠

i,j
ρij + 2ρiΠi

� �
σij + 〠

i,j,k,l
lijkρlσijσkl

 !

= R bβ1, bβ2

� �
+ 1
2〠

2

i=1
ρii + 2ρiΠið Þσii +

1
2〠

2

i=1
liiiρiσ

2
ii

= R bβ1, bβ2

� �
+
bβ2
1

r1

bβ2bβ1 + bβ2

� �3 +
bβ2bβ1
bβ1 + bβ2

� �2
2
64

3
75

+
bβ2
2

r2

−bβ1bβ1 + bβ2

� �3 +
bβ1bβ2
bβ1 + bβ2

� �2
2
64

3
75

+
bβ1
bβ2bβ1 + bβ2

� �2 1
r2

−
1
r1

� �
:

ð63Þ

5.5. Monte Carlo Integration. The Monte Carlo integration
method was introduced byMetropolis and Ulam [28] and Neu-
mann [29]. Let θ1, θ2,⋯, θk be a random sample from poste-
rior density πðθjobservationsÞ. In this case, according to the
strong law of large numbers, for large k, an approximation for
the expected values of posterior is equal to

E ζ θð Þ observationjð Þ ≃ 1
k
〠
k

i=1
ζ θið Þ: ð64Þ

This method was very simple and does not involve compli-
cated calculations. The only problem this method may have is
generating a random sample of posterior density.

Now, the Bayes estimator of R is obtained using this

method. Let fβð1Þ
i , βð2Þ

i ,⋯, βðNÞ
i g be the random sample

from πðβijx, yÞ, i = 1, 2, then for large N ,

E R x, yjð Þ ≈ 1
N
〠
N

j=1
R β

jð Þ
1 , β jð Þ

2
� �

= 1
N
〠
N

j=1

β
jð Þ
2

β
jð Þ
1 + β

jð Þ
2

 !
: ð65Þ

5.5.1. Informative Prior. To calculate the Bayes estimator of

R under the conjugate prior (35), we assume βð1Þ
i , βð2Þ

i ,⋯,
βðNÞ
i ~ iid Gammaðαi + ri, ηi + bi′Þ, i = 1, 2. So,

R̂
I
MC = 1

N
〠
N

j=1
R β

jð Þ
1 , β jð Þ

2
� �

= 1
N
〠
N

j=1

β
jð Þ
2

β
jð Þ
1 + β

jð Þ
2

 !
: ð66Þ

5.5.2. Noninformative Prior. Under the Jeffreys prior, we

consider βð1Þ
i , βð2Þ

i ,⋯, βðNÞ
i ~ iid Gammaðri, bi′Þ, i = 1, 2. Then,

R̂
J
MC =

1
N
〠
N

j=1
R β

jð Þ
1 , β jð Þ

2
� �

= 1
N
〠
N

j=1

β
jð Þ
2

β
jð Þ
1 + β

jð Þ
2

 !
: ð67Þ

5.6. MCMC. To solve the stated problem of the Monte Carlo
integrationmethod, amore general method is used to generate
approximate random variables from the posterior distribu-
tion, called the Markov chain Monte Carlo (MCMC) method
[30]. The Metropolis-Hastings algorithm is used to create
Markov chains with a given distribution. The application of

1: Generate a MCMC sample fRi, i = 1, 2,⋯, kg from πðRjx, yÞ;
2: Sort fRi, i = 1, 2,⋯, lg and suppose Rð1Þ ≤ Rð2Þ ≤⋯≤RðlÞ;
3: Consider Cj = ðRj, Rj+½ð1−ξÞl�Þ, j = 1, 2,⋯, l − ½ð1 − ξÞl�;
4: Consider Wj = Rj+½ð1−ξÞl� − Rj;

5: Select j′ such that Wj′ =min fWj, j = 1, 2,⋯, l − ½ð1 − ξÞl�g;
6: Introduce Cj′ as a 100ð1 − ξÞ% HPD interval for R.

Algorithm 1: Chen-Shao algorithm for R.
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this algorithm in mechanical physics was first developed by
Metropolis et al. [30]. A few years later, Hastings and Keith
generalized the algorithm in more statistical detail [31]. Using
the MCMC method, the following integral is approximated:

E R x, yjð Þ =
ð1
0
rπ r x, yjð Þdr: ð68Þ

Let r1, r2,⋯, rl be an ergodic MCMC sample from
πðrjx, yÞ, we have

E R x, yjð Þ ≈ 1
l
〠
l

j=1
rj: ð69Þ

5.6.1. Informative Prior. Considering the conjugate prior

Table 2: The bias and MSE values (MSE in parentheses) of estimators for β1 = 1, β2 = 2, γ = 1, R = 2/3.

n1 n2 r1 r2 Prior MLE Lindley MC MCMC

10 10

10 10
Conjugate 0.009500 (0.012304) -0.015630 (0.010022) -0.012485 (0.010080) -0.053973 (0.008464)

Jeffreys — 0.002976 (0.011512) 0.003521 (0.011480) -0.045037 (0.008308)

9 8
Conjugate 0.047141 (0.019723) 0.013442 (0.015408) 0.019974 (0.015494) -0.030126 (0.010706)

Jeffreys — 0.035412 (0.018268) 0.037776 (0.018229) -0.019705 (0.011154)

8 8
Conjugate 0.002840 (0.019525) -0.023443 (0.015882) -0.020104 (0.016047) -0.062010 (0.013115)

Jeffreys — -0.004222 (0.018351) -0.004391 (0.018341) -0.053220 (0.013700)

10 30

10 30
Conjugate -0.002736 (0.008137) 0.008917 (0.006132) -0.005916 (0.006567) -0.038466 (0.006042)

Jeffreys — 0.014354 (0.007555) -0.000261 (0.007695) -0.034790 (0.006342)

9 28
Conjugate -0.000636 (0.011272) 0.013486 (0.008512) -0.003448 (0.009072) -0.037787 (0.007786)

Jeffreys — 0.018633 (0.010370) 0.002493 (0.010620) -0.036707 (0.008483)

8 27
Conjugate -0.011756 (0.007082) 0.006556 (0.004932) -0.013705 (0.005678) -0.049995 (0.006245)

Jeffreys — 0.012011 (0.006199) -0.007743 (0.006572) -0.046598 (0.006817)

30 30

30 30
Conjugate 0.003700 (0.003215) -0.005787 (0.002979) -0.005248 (0.002967) -0.025586 (0.003080)

Jeffreys — 0.001298 (0.003137) 0.001252 (0.003141) -0.019025 (0.002924)

29 27
Conjugate 0.009701 (0.009701) -0.001228 (0.004512) -0.000352 (0.004518) -0.021084 (0.004090)

Jeffreys — 0.006303 (0.004813) 0.006694 (0.004831) -0.014817 (0.004119)

27 27
Conjugate 0.013939 (0.004330) 0.003420 (0.003420) 0.004086 (0.003858) -0.018673 (0.003403)

Jeffreys — 0.011203 (0.004182) 0.011117 (0.004171) -0.013123 (0.003508)

Table 1: The bias and MSE values (MSE in parentheses) of estimators for β1 = 1, β2 = 1, γ = 1, R = 1/2.

n1 n2 r1 r2 Prior MLE Lindley MC MCMC

10 10

10 10
Conjugate 0.011339 (0.015528) 0.010107 (0.012152) 0.010295 (0.012573) 0.006669 (0.006495)

Jeffreys — 0.010822 (0.014271) 0.011231 (0.014295) 0.007375 (0.007236)

9 8
Conjugate 0.009474 (0.021751) 0.003927 (0.016272) 0.007728 (0.016904) 0.005395 (0.008246)

Jeffreys — 0.004289 (0.019732) 0.007793 (0.019736) 0.004971 (0.009175)

8 8
Conjugate -0.000753 (0.021541) -0.000852 (0.016715) -0.000681 (0.017157) -0.000596 (0.008737)

Jeffreys — -0.000815 (0.019670) -0.000749 (0.019676) -0.000502 (0.008889)

10 30

10 30
Conjugate -0.015306 (0.010153) 0.010855 (0.008091) -0.006733 (0.008151) -0.005904 (0.004985)

Jeffreys — 0.009125 (0.009500) -0.006959 (0.009400) -0.006247 (0.005666)

9 28
Conjugate -0.003033 (0.009196) 0.024440 (0.007826) 0.004501 (0.007476) 0.002187 (0.004340)

Jeffreys — 0.024301 (0.009185) 0.006082 (0.008662) 0.003254 (0.004896)

8 27
Conjugate -0.017882 (0.016928) 0.015887 (0.013174) -0.006873 (0.013339) -0.005408 (0.007667)

Jeffreys — 0.013523 (0.015708) -0.007212 (0.015539) -0.006585 (0.008730)

30 30

30 30
Conjugate 0.007389 (0.004586) 0.007087 (0.004188) 0.007466 (0.004211) 0.006229 (0.003175)

Jeffreys — 0.007269 (0.004444) 0.007113 (0.004477) 0.006013 (0.003299)

29 27
Conjugate 0.000869 (0.004186) -0.000089 (0.003779) 0.000583 (0.003835) 0.001015 (0.002807)

Jeffreys — -0.000090 (0.004044) 0.000408 (0.004046) 0.001044 (0.002948)

27 27
Conjugate -0.002992 (0.005576) -0.002802 (0.005017) -0.002798 (0.005059) -0.002345 (0.003726)

Jeffreys — -0.002939 (0.005384) -0.002854 (0.005423) -0.002606 (0.003900)
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distribution (35) for β1 and β2, we obtain the posterior distri-
bution (50). By generating an ergodic sample rI1, rI2,⋯, rIl from
πI using the Metropolis-Hastings algorithm, the R Bayesian
estimator is as follows:

E R x, yjð Þ ≈ 1
l
〠
l

j=1
rIj : ð70Þ

5.6.2. Noninformative Prior. Similarly, using the Jeffreys prior
and the posterior distribution (54) for β1 and β2, we generate
an ergodic sample rJ1, rJ2,⋯, rJl from πJ using the Metropolis-
Hastings algorithm; the R Bayesian estimator is given by

E R x, yjð Þ ≈ 1
l
〠
l

j=1
rJj : ð71Þ

6. Bayesian Credible Interval

In fact, the Bayesian view offers confidence interval that are
more realistic than its classic counterpart. We start this
section with two definitions.

Definition 3. Set Cx is called a ξ-credible region whenever

Pπ θ ∈ Cx xjð Þ ≥ 1 − ξ, ð72Þ

where Pπ is the θ posterior probability function of condi-
tion x.

Definition 4. The ξ -credible region Cx is called a region with
the highest posterior density (HPD) whenever it can be writ-
ten as follows:

Cx νð Þ = θ : π θ xjð Þ ≥ νf g, ð73Þ

where ν is the largest fixed number that applies to

Pπ θ ∈ Cx νð Þð Þ ≥ 1 − ξ: ð74Þ

Although the 100ð1 − ξÞ% HPD interval is an optimal
answer among the ξ-credible intervals, in some cases, it is
not easy to calculate directly, and approximate methods
must be used to obtain it [32]. It is usually easier to calculate
approximate intervals with equal tails than HPD interval

1: Select n1, n2, β1, β2, r1, r2, and γ values;
2: Generate ðτ1, τ2,⋯, τn1Þ and ðδ1, δ2,⋯, δn2Þ from the SED;
3: Consider xi = ð1/γÞ log ððγ/β1Þτi + 1Þ, i = 1, 2,⋯, n1 and yj = ð1/γÞ log ððγ/β2Þδj + 1Þ, i = 1, 2,⋯, n2;
4: Sort xis and yjs and suppose xð1Þ < xð2Þ <⋯<xðn1Þ and yð1Þ < yð2Þ <⋯<yðn2Þ;
5: Report ðxð1Þ, xð2Þ,⋯, xðr1ÞÞ and ðyð1Þ, yð2Þ,⋯, yðr2ÞÞ as the type II censored samples from Gompertzðβ1, γÞ and Gompertzðβ2, γÞ,
respectively.

Algorithm 2: The type II censored sample generation algorithm.

Table 3: The bias and MSE values (MSE in parentheses) of estimators for β1 = 2, β2 = 1, γ = 1, R = 1/3.

n1 n2 r1 r2 Prior MLE Lindley MC MCMC

10 10

10 10
Conjugate -0.006236 (0.013546) 0.017747 (0.011277) 0.014489 (0.011353) 0.055189 (0.009427)

Jeffreys — 0.000054 (0.012776) -0.000131 (0.012800) 0.046938 (0.009554)

9 8
Conjugate -0.020955 (0.020210) 0.001998 (0.015037) 0.002221 (0.015536) 0.049048 (0.010972)

Jeffreys — -0.017516 (0.018642) -0.014752 (0.018694) 0.039356 (0.011794)

8 8
Conjugate -0.036934 (0.018266) -0.006422 (0.014205) -0.010386 (0.014360) 0.039886 (0.010667)

Jeffreys — -0.028748 (0.016873) -0.028721 (0.016784) 0.027892 (0.011565)

10 30

10 30
Conjugate -0.019006 (0.006476) 0.029157 (0.006079) 0.010961 (0.005102) 0.044632 (0.005154)

Jeffreys — 0.006823 (0.006389) -0.007084 (0.006079) 0.031843 (0.004776)

9 28
Conjugate -0.022646 (0.008856) 0.029192 (0.008100) 0.008836 (0.006968) 0.044723 (0.006398)

Jeffreys — 0.005889 (0.008797) -0.009568 (0.008326) 0.031616 (0.006042)

8 27
Conjugate -0.020403 (0.009430) 0.040819 (0.009588) 0.016503 (0.007684) 0.053626 (0.007476)

Jeffreys — 0.012477 (0.009715) -0.005752 (0.008934) 0.035300 (0.007476)

30 30

30 30
Conjugate -0.005453 (0.004098) 0.003841 (0.003746) 0.003399 (0.003739) 0.023368 (0.003607)

Jeffreys — -0.003058 (0.003991) -0.002791 (0.004009) 0.018217 (0.003467)

29 27
Conjugate -0.003748 (0.004346) 0.005040 (0.004015) 0.005143 (0.004039) 0.026241 (0.003894)

Jeffreys — -0.002042 (0.004232) -0.001604 (0.004234) 0.019994 (0.003906)

27 27
Conjugate -0.007624 (0.003878) 0.002911 (0.003491) 0.002431 (0.003503) 0.023633 (0.003301)

Jeffreys — -0.004931 (0.003755) -0.005036 (0.003742) 0.017996 (0.003314)
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[33]. Chen and Shao [34] have proposed an algorithm to
construct an approximate HPD interval. We obtain confi-
dence intervals of equal tails and HPD.

6.1. An Equi-Tailed Bayesian Credible Interval. In this sub-
section, confidence intervals with equal tails are calculated
under the conjugate and Jeffreys prior distributions.

Table 5: L and CP of confidence interval for R = 2/3, β1 = 1, β2 = 2 and γ = 1.

n1 n2 r1 r2 Asymptotic Exact
Credible equi-tailed

Conjugate
Credible equi-tailed

Jeffreys
HPD

Conjugate
HPD
Jeffreys

10 10

10 10
L
CP

0.358133 0.371438 0.311195 0.317441 0.349515 0.355055

0.987 0.867 0.907 0.908 0.882 0.869

9 8
L
CP

0.370774 0.390539 0.324441 0.332062 0.365106 0.370252

0.925 0.850 0.902 0.902 0.869 0.844

8 8
L
CP

0.383027 0.403275 0.329960 0.338316 0.374478 0.380763

0.724 0.850 0.894 0.900 0.874 0.849

10 30

10 30
L
CP

0.304199 0.307665 0.260316 0.264883 0.290042 0.296947

0.996 0.886 0.907 0.897 0.905 0.883

9 28
L
CP

0.322409 0.326611 0.271776 0.277204 0.305627 0.313888

1.000 0.909 0.908 0.906 0.922 0.911

8 27
L
CP

0.333331 0.338090 0.277764 0.283595 0.314420 0.323653

0.759 0.877 0.886 0.879 0.899 0.880

30 30

30 30
L
CP

0.219360 0.222087 0.204815 0.206564 0.217282 0.218471

1.000 0.930 0.942 0.938 0.938 0.927

29 27
L
CP

0.225229 0.228234 0.210635 0.211962 0.223388 0.224514

1.000 0.903 0.915 0.918 0.923 0.906

27 27
L
CP

0.229774 0.232950 0.214164 0.215451 0.227483 0.228800

1.000 0.915 0.920 0.919 0.928 0.920

Table 4: L and CP of confidence interval for R = 1/2, β1 = 1, β2 = 1 and γ = 1.

n1 n2 r1 r2 Asymptotic Exact
Credible equi-tailed

Conjugate
Credible equi-tailed

Jeffreys
HPD

Conjugate
HPD
Jeffreys

10 10

10 10
L
CP

0.410623 0.417916 0.328047 0.337885 0.385356 0.400056

0.995 0.900 0.936 0.939 0.910 0.900

9 8
L
CP

0.435411 0.447157 0.342757 0.354050 0.406417 0.423652

0.987 0.875 0.922 0.920 0.886 0.870

8 8
L
CP

0.443006 0.454225 0.347341 0.358796 0.412829 0.431075

0.725 0.857 0.922 0.916 0.869 0.855

10 30

10 30
L
CP

0.344899 0.352722 0.287869 0.295543 0.327492 0.338830

0.242 0.929 0.954 0.953 0.932 0.922

9 28
L
CP

0.359745 0.369685 0.297746 0.306382 0.340650 0.353603

1.000 0.932 0.965 0.955 0.944 0.931

8 27
L
CP

0.373987 0.386498 0.306679 0.316532 0.353156 0.367765

1.000 0.912 0.950 0.942 0.926 0.910

30 30

30 30
L
CP

0.248407 0.249667 0.223203 0.226709 0.242077 0.245737

1.000 0.934 0.946 0.943 0.943 0.940

29 27
L
CP

0.257244 0.258682 0.230090 0.233250 0.250227 0.254282

1.000 0.941 0.949 0.949 0.942 0.938

27 27
L
CP

0.261087 0.262638 0.233356 0.236327 0.253800 0.258014

1.000 0.928 0.937 0.935 0.929 0.927
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6.1.1. Informative Prior. We use the prior distribution (35).
The posterior distributions of β1 and β2 are as follows:

βi x, yj ~ind Gamma α∗i , η∗ið Þ, i = 1, 2: ð75Þ

Therefore, one can conclude

2η∗i βi x, yj ~ χ2 2α∗ið Þ,∀i = 1, 2: ð76Þ

Given that the posterior distributions of β1 and β2 are
independent, we get

η∗1α
∗
2

α∗1η
∗
2
· β1 x, yj
β2 x, yj ~ F 2α∗1 , 2α∗2ð Þ: ð77Þ

Thus, a 100ð1 − ξÞ% Bayesian credible interval with
equal tails for R under the conjugate prior is

P
1

1 + α∗1η
∗
2 /η∗1α∗2 F1−ξ/2 2α∗1 , 2α∗2ð Þ < R < 1

1 + α∗1η
∗
2 /η∗1α∗2 Fξ/2 2α∗1 , 2α∗2ð Þ

� �
= 1 − ξ:

ð78Þ

6.1.2. Noninformative Prior. Similarly, considering the
Jeffreys prior, the posterior distributions of β1 and β2 are
β1jx, y ~ ind Gammaðr1, b1′Þ and β2jx, y ~ ind Gammaðr2, b2′Þ,
respectively. So, we have

2bi′βi x, yj ~ χ2 2rið Þ, i = 1, 2: ð79Þ

Table 8: Estimators of R for real data.

Prior MLE Lindley MC MCMC

Conjugate 0.4169946 0.4192417 0.4202460 0.4294883

Jeffreys — 0.4192367 0.4158864 0.4422381

Table 7: Real data.

X
156 442 285 247 173 168 253 112 125 286

166 202 852 261 133 365 559 227 309 702

Y
230 568 1101 218 169 115 285 342 178 280

734 431 271 305 177 143 129 326 493 381

Table 6: L and CP of confidence interval for R = 1/3, β1 = 2, β2 = 1 and γ = 1.

n1 n2 r1 r2 Asymptotic Exact
Credible equi-tailed

Conjugate
Credible equi-tailed

Jeffreys
HPD

Conjugate
HPD
Jeffreys

10 10

10 10
L
CP

0.361056 0.375095 0.312100 0.318856 0.352094 0.357747

0.956 0.916 0.930 0.936 0.925 0.900

9 8
L
CP

0.381043 0.396260 0.324565 0.332243 0.369455 0.376389

0.939 0.857 0.906 0.891 0.880 0.858

8 8
L
CP

0.381905 0.400602 0.329760 0.337189 0.373895 0.379686

0.922 0.845 0.899 0.901 0.876 0.847

10 30

10 30
L
CP

0.301283 0.320492 0.280337 0.286296 0.302704 0.306193

0.823 0.927 0.932 0.948 0.948 0.930

9 28
L
CP

0.315321 0.337685 0.290839 0.297912 0.316907 0.321067

0.095 0.933 0.934 0.938 0.936 0.919

8 27
L
CP

0.326139 0.353599 0.301778 0.309364 0.329406 0.334021

1.000 0.923 0.942 0.951 0.939 0.929

30 30

30 30
L
CP

0.219806 0.222444 0.205892 0.206672 0.217676 0.218890

1.000 0.931 0.925 0.926 0.935 0.925

29 27
L
CP

0.227859 0.230704 0.211658 0.213410 0.225177 0.226650

1.000 0.924 0.936 0.939 0.932 0.921

27 27
L
CP

0.229601 0.232700 0.214087 0.215231 0.227314 0.228632

1.000 0.909 0.919 0.919 0.918 0.906
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Hence,

b1′r2
r1b2′

· β1 x, yj
β2 x, yj ~ F 2r1, 2r2ð Þ: ð80Þ

A 100ð1 − ξÞ% Bayesian credible interval with equal tails
for R under the Jeffreys prior is

P
1

1 + r1b2′/b1′r2F1−ξ/2 2r1, 2r2ð Þ
< R < 1

1 + r1b2′/b1′r2Fξ/2 2r1, 2r2ð Þ

" #

= 1 − ξ:

ð81Þ

6.2. HPD Interval. As mentioned earlier, it is difficult to obtain
the HPD interval directly. Therefore, in this subsection, the
Chen-Shao algorithm [34] is used to calculate the approximate
HPD interval for R. This algorithm is expressed as follows.

In Step 3, Cj’s are 100ð1 − ξÞ% credible intervals for R.
To obtain the HPD interval under the conjugate and Jeffreys
priors, it is enough to substitute the posterior distributions
(50) and (54) in Step 1 of Algorithm 1.

7. Simulation Study

In this section, we use simulation to compare estimators and
confidence intervals of R. Therefore, for different sample
sizes, different numbers of type II censorship, and different
R values with 1000 repetitions, bias and mean square error
(MSE) values of R estimators are calculated. For the conju-
gate informative prior distribution, hyperparameters α1 =
α2 = 1, η1 = b1′/r1 and η2 = b2′/r2 are considered. Tables 1–3
show biases and MSEs of point estimators with R = 1/2,
R = 2/3, and R = 1/3, respectively. Using Algorithm 2, type
II censored samples are generated from two independent
Gompertz distributions.

The results of the proposed methods for point estima-
tion are summarized in Tables 1–3. Based on these tables,
the following results can be achieved:

(i) The MCMC method has the lowest MSE

(ii) For small sample size, the Bayesian method per-
forms better than the MLE method

(iii) The MSE of Bayesian estimators under conjugate
and Jeffreys priors is not significantly different

(iv) The MSE of all estimators decreases significantly
with increasing sample size

Tables 4–6 compare the proposed confidence intervals
using the interval lengths (L) and coverage probabilities
(CPs). From these tables, the following results are obtained:

(i) The Bayesian credible intervals equi-tailed under the
conjugate priors have the shortest, and the exact
interval has the longest interval length

(ii) For classical and Bayesian methods, the L’s and the
CPs have been improved by increasing the sample size.

Among these interval estimators, the CPs of the exact
intervals are close to nominal level 95%.

(iii) The CPs of the Bayesian credible intervals equi-
tailed are almost the same under the conjugate
and Jeffreys priors

(iv) When R is close to 1/2, the HPD intervals have an
overestimate in estimating the CP

(v) When R is far from 1/2, the HPD intervals have an
underestimate in estimating the CP

8. Application

The sample lifetime of a steel particular type under two differ-
ent pressures of 35.5 ðXÞ and 35 ðYÞ is reported in Table 7.
This data contains 20 observations in each sample. This data
has been studied by Kimber [35]. To verify that the data have
a Gompertz distribution, we perform the Kolmogorov-
Smirnov test. Based on the test statistics and P value, it is
concluded that X has a Gompertz distribution with parame-
ters β1 = 0:0013 and γ = 0:0027ðD = 0:2, P‐value = 0:832Þ
and Y has a Gompertz distribution with parameters β2 =
0:00093 and γ = 0:0027ðD = 0:35, P‐value = 0:1745Þ. We con-
sider r1 = r2 = 2. In Bayesian estimation, the values of the
hyperparameters are α1 = α2 = 1, η1 = b1′/r1 and η2 = b2′/r2.
Now, we apply the proposed methods for point estimation
and confidence interval estimation to this data. The results
are summarized in Tables 8 and 9. Based on the value of
R = PðX > YÞ = 0:417, it can be concluded that the lifetime
of steel under pressure 35 is greater than the lifetime of
steel under pressure 35.5.

9. Conclusion

This paper proposed a classical and Bayesian inference for
stress-strength reliability of Gompertz distribution under
type II censoring. First, the MLE of R was obtained. Then,

Table 9: Confidence intervals of R for real data.

Asymptotic Exact
Credible equi-tailed

Conjugate
Credible equi-tailed

Jeffreys
HPD

Conjugate
HPD
Jeffreys

Lower 0.2581656 0.2414667 0.2727656 0.2691575 0.3078994 0.2989704

Upper 0.5758236 0.5554383 0.5769903 0.5814321 0.5804470 0.5704925

L 0.317658 0.313972 0.272548 0.271522 0.304225 0.312275
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exact and asymptotic confidence intervals for R were pre-
sented. In addition, Bayesian estimators of R obtained using
Lindley approximation, Monte Carlo, and MCMC under
conjugate informative and Jeffreys noninformative priors
were discussed. Also, Bayesian credible intervals with equi-
tailed and HPD intervals under conjugate and Jeffreys prior
distributions were obtained. The proposed methods were
compared with simulation studies. Finally, the application
of these methods was examined with a real data.
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