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ABSTRACT 
 
Evaluation of genotypes under Egyptian desert conditions comes in the first order for the Plant 
Breeding and Conservation Program of the Desert Research Center (DRC). The objective of this 
study was to analyze the effect of the genotype by environment interaction of sugar beet across 
various locations using multivariate models. Data for studied traits of sugar beet were obtained from 
experiments at three regions: Saint Catherine, South Sinai Governorate (E1); Baloza station, North 
Sinai Governorate (E2); and East El- Qantra station, El-Ismailia Governorate (E3) in Egypt. All 
examined traits were significantly impacted (p <0.05 or 0.01) by environment (E), genotypes (G), 
and their interaction (GEI) using the AMMI model, with the exception of root length/plant by the 
environments as well as leaves weight/plant and total soluble solids percentage % traits by the 
genotypes. GEI was partitioned into two principal components (PCs), which were significant for all 
studied traits (P < 0.05 and P < 0.01). The highest variability from the total variance was recorded 
by environmental influences for leaves weight/plant and total soluble solids percentage % traits, as 
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well as by genotype effects for the other studied traits. The environmental index showed that some 
environments were favorable and some environments were unfavorable for the two traits. The 
highest root weight/plant and most studied traits were noticed in the E2 environment. Based on the 
GGE model for root weight/plant, the test environments E1 and E2 are more representative and 
have the greatest ability to discriminate genotypes, thus favoring the selection of superior 
genotypes. The genotypes G2, G5, and G6 perform best in the E1 and E2 environments as well as 
are the most productive and stable compared with the other genotypes. According to PCA and 
cluster analysis, the genotypes G5 and G6 showed the best performance in response to 
environments and positive association with root weight/plant and most studied traits. Based on the 
results of statistical methods used in this study, G5 and G6 genotypes should be used in future 
sugar beet breeding in an effort to improve productivity and sustainable production of sugar beet in 
Egypt. 

 

 
Keywords: Sugar beet; ANOVA; GEI; environmental index; multivariate analysis. 

 

1. INTRODUCTION 
 

Sugar beet (Beta vulgaris L.) is considered one 
of the most important sugar crops in many 
countries all over the world and Egypt. It is the 
second sugar crop in the world after sugar cane 
[1,2]. It ranks the first important sugar crop in 
Egypt and many countries all over the world [3]. 
Beet growing is becoming more and more 
important in sugar-producing, the secondary 
production, fodder and organic matter for the soil 
[3] as well as in the production of biofuels [4]. In 
the world, the total area harvested, yield and 
production of sugar beet were 4439073 ha, 
569869 hg ha

-1
 and 252968843 tons in 2020, 

respectively. While the total area harvested, yield 
and production of sugar beet were 263543 ha, 
494933 hg ha

-1
 and 13043612 tons in Egypt [5].  

 

Locations, growth seasons, years, drought 
conditions, rainfall, the amount of precipitation 
received throughout each season, temperature, 
and other environmental factors (non-genetic 
factors) may have favorable or unfavorable 
effects on genotypes [6]. According to Falconer 
and Mackay [7], the phenotypic expression of an 
individual is determined by both genotype and 
environmental effects such as locations and/or 
years, and the phenotypes can be observed, 
quantified, categorized, or counted. The term 
"genotype-environment interaction (GEI)" refers 
to the relationship between a genotype's 
phenotypic expression and the environment. 
Breeders assess genotypes in various 
environments (locations and/or years) to account 
for GEI effects in order to select those with high 
and stable performance and higher adaptation, 
taking GEI effects into account [8]. Stable 
genotypes were identified with relatively high 
yield across environments [9], and with 
insignificant GEI [10]. With respect to sugar beet, 
the assessment of GEI would be highly beneficial 

in identifying traits promoting a better variety of 
performance in specific environments [11]. 
Various statistical methods such as parametric, 
nonparametric statistics, and multivariate models 
are used for the investigation and interpretation 
of GEI and evaluation of different genotypes [12]. 
Among these methods, the additive main effect 
and multiplicative interaction (AMMI) model and 
genotype (G) main effect plus genotype-by-
environment (GE) interaction (GGE) biplot. 

 
The additive main effect and multiplicative 
interaction (AMMI) model established by Zobel et 
al. [13] is the most well-known of the multivariate 
methods used for the interpretation of GEI data. 
The AMMI model characterizes genotype and 
environment main effects using analysis of 
variance as an additive model, and their 
interactions using principal components analysis 
as a multiplicative model (IPCA). The visual 
method GGE biplot (Genotype and Genotype-
Environment Interaction) represents a 
modification of the AMMI model and gives an 
extensive explanation of GEI effect [8]. The 
method is used for visual analysis of multi-
environment trial data and it is based on two 
important concepts: the biplot concept [14] and 
GGE concept [8]. This method uses a biplot to 
describe two factors, genotype, and interaction 
between genotype and environment (G and GEI), 
thus the name GGE, which can be very useful in 
the evaluation of the performance of genotypes 
in different environments [15]. Sugar beet 
breeders all over the world have been using 
AMMI analysis of variance and the GGE model 
to investigate GEI in environmental trials [16-20]. 

 
To visualize the outcomes of sugar beet trials, 
principal component analysis (PCA) and cluster 
analysis are required, where many researchers 
have used the PCA to assess the relationship 
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and diversity between several sugar beet 
genotypes, in addition to knowing the 
relationships between yield, its components, and 
other traits, such as Škrbić et al. [21], Hu et al. 
[22], Alami et al. [23], Islam et al. [24], Kleuker 
and Hoffmann [25] and Majumdar et al. [26]. The 
aim of this work was to study the effect of 
environment on genotypes of sugar beet under 
various regions in Egypt, and evaluate the 
magnitude of genotype x environment interaction 
using the multivariate methods, thus discovering 
the most stable sugar beet genotype and 
determining associations for the studied traits in 
ten sugar beet genotypes under three different 
environments. 

 

2. MATERIALS AND METHODS 
 

2.1 Plant Material and Field Trials 

 
The three field experiments were conducted 1) at 
a local community farm, Saint Catherine (E1), 
South Sinai, Governorate; 2) at Baloza station 
(E2), DRC, North Sinai Governorate; and 3) at 
East El-Qantra station (E3) of DRC, El-Ismailia 
Governorate in Egypt. Ten sugar beet genotypes 
were used to evaluate under three locations 
(environments) during the 2021/2022 growing 
season. The genotypes used in this study are 
SK58-4-S4 (G1), SK48-C (G2), SK70 (G3), SK90 
(G4), SK44-1-4R2 (G5), SK27-38 (G6), SK27-32 
(G7), SK Fc723 (G8), SK44-1-9C1 (G9) and 
SK17-2-7W (G10). Healthy seeds of sugar beet 
genotypes were obtained from the Plant 
Breeding and Conservation Program of Desert 
Research Center (DRC), Egypt. Sugar beet 
genotypes were evaluated in Randomized 
Complete Block Design (RCBD) with three 
replicates across the three environments. Each 
replicate included ten plots of genotypes. Each 
experimental plot had five rows, and the 
genotypes were planted using standard 
agronomic practices and proper plant geometry 
with a row length of 5 m and comprised 25 hills. 
Under each plot, the row x row and plant x plant 
distances were 50 and 20 cm, respectively. The 
crop was sown in one day, and all the 
recommended cultural practices of sugar beet 
production in the area were done as needed, 
under uniform field conditions to minimize 
environmental variations to the maximum 
possible extent.  
 
In Table 1, the meteorological data for the three 
environments is shown as monthly averages for 
precipitation (mm), average temperature (ºC), 
and relative humidity (%) during the experimental 

period (from October to May) during the 
2021/2022 growing season. Under the three 
studied environments, the highest temperature 
typically occurred in October and May months, 
while the lowest temperature was recorded in 
January month. The maximum monthly 
precipitation rates were recorded at Saint 
Catherine and Baloza Stations in January, and at 
East El-Qantra Station in February. The highest 
values of relative humidity were observed in 
October, January, and November months at 
Baloza Station, Saint Catherine, and East El-
Qantra Station, respectively. Generally based on 
the grand mean, Saint Catherine had the lowest 
average temperature during the study period, 
followed by Baloza and East El-Qantra Stations. 
While the greatest values of precipitation and 
relative humidity were observed in Baloza Station 
compared with Saint Catherine, and East El-
Qantra Station. 
 

2.2 Data Recording 
 

The data on an individual plant basis of the ten 
genotypes were recorded. Ten guarded plants 
randomly were collected from each genotype 
from each replication to evaluate the following 
traits: leaves weight/plant (g; LW/P), root 
length/plant (cm; RL/P), root diameter/plant (cm; 
RD/P), root weight/plant (g; RW/P) and total 
soluble solids percentage (%; TSS). TSS% was 
determined by using Hand Refractometer and 
expressed as a percentage of the juice.   

 

2.3 Statistical Analysis  
 

The analysis of variance by the AMMI model was 
performed to determine the main and interaction 
effects of environments and genotypes on 
evaluated traits. The least significant differences 
(LSD) at 0.05 and 0.01 levels of probability were 
also used for means separation and comparison 
after significance [27]. After determining the 
significance of the GEI, adaptation ability and 
phenotypic stability analyses for genotypes 
studied were performed graphically using the 
GGE-biplot model [8]. The AMMI model, GGE-
biplot, cluster analysis and PCA were done using 
computer software programs PBSTAT, PAST 
version 4.03 and OriginPro 2018 version 
b9.5.0.193. 
 

3. RESULTS AND DISCUSSION 
 

3.1 AMMI Analysis of Variance 
 

Table 2 displays the results of the AMMI analysis 
of variance of the environments, genotypes, and 
GEI effects on investigated traits in sugar beet. 
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The mean squares due to environments, 
genotypes, and GEI were significant at 0.05 or 
0.01 probability levels for all investigated traits, 
with the exception of RL/P trait by environments, 
as well as LW/P and TSS % traits by genotypes. 
A considerable part of the overall variation was 
formed by the environments for LW/P and TSS% 
traits, as well as by the genotypes for other 
studied traits. Curcic et al. [17], Hassani et al. 
[18] and Bocianowski et al. [20] have previously 
revealed significant variation between genotypes, 
environments, and their interactions for all 
considered traits of sugar beet using AMMI 
model. Significant variations in the response of 
genotypes to the effect of environments show the 
right choice of experimental sites for GEI 
assessment [18]. 
 

After removing sums of squares (SS%) due to 
error and replication, the greatest contribution to 
the SS% of the total variance was due to 
genotypes for root traits including RL/P, RD/P 
and RW/P, followed by GEI. While, the 
environments source had recorded the highest 
contribution to the SS% of the total variance for 
LW/P and TSS% traits, followed by GEI for 
LW/P, and genotypes for TSS% in that order. 
These results indicated that more than 50% of 
the total variance observed for LW/P and TSS % 
traits were due to environmental influences, and 
for RL/P and RD/P traits it was due to the 
genotype effects. Curcic et al. [16] reported that 
the environment had the greatest effect on the 
root yield of sugar beet. On the other hand, the 
variance due to GEI ranged from 12% for TSS % 
to 35 for RD/P. The production of sugar beet 
crop is based on root and its quantitative traits 
estimated, which is the main cause of the low 
degree of interaction in this crop [16]. Contrary to 
other field crops, the sugar beet root grows 
throughout the vegetative stage of development 
and does not pass through delicate phases like 
bolting, flowering, pollination, and seed filling 
[11]. According to Basford and Cooper [28], the 
breeders may be able to create more stable 
genotypes if they have a better grasp of the 
relative contributions of genotypes, 
environments, and GEI as sources of variation.  
 

Differences in the variances of the phenotypes 
produced by the various genotypes can be used 
to detect the GEI [29]. According to the AMMI 
analysis, GEI was partitioned into two principal 
components (PC1 and PC2). The PC1 and PC2 
showed significant (P < 0.05 or P < 0.01) for all 
examined traits. More than 59% of the total SS 
from GEI were explained by the PC1 for all 

studied traits. In contrast, PC2 contribution 
ranged from 28% for the LW/P trait to 40% for 
the RW/P trait. The fact that there was a 
significant GEI for yield shows that some 
genotypes were stable while others were 
unstable [30]. The values of coefficients of 
variation (CV%) ranged from 3.84% for TSS% 
trait to 12.88% for LW/P trait. The values of CV% 
indicate that the genotypes had exploitable 
genetic variability during selection, also the low 
CV% proved the accuracy of the sugar beet 
experiments in three studied environments. Our 
results of CV% are in accordance with earlier 
findings on sugar beet crop by Bayomi et al. [31]. 
 

3.2 Main Effects of Environments, 
Genotypes, and Their Interaction on 
Sugar Beet Traits 

 

Table 3 includes the mean performances of the 
main effects of environments, genotypes, and 
their interaction on studied traits as well as the 
environmental indicator (EI) and coefficient of 
variation (CV%). The average comparisons of 
the analyzed traits showed that the evaluated 
genotypes in each environment differed 
significantly from one another. Based on the 
grand mean, the E2 location had the highest 
mean performances for all studied traits with 
compared to the other environments, except 
RL/P trait. The highest mean performances of 
genotypes over three environments were 
observed by G9 genotype for LW/P (116.52 g), 
by G2 genotype for RL/P (16.29 cm) and TSS% 
(20.11%), and by G5 genotype for RD/P (10.00 
cm) and RW/P (886.49 g). With respect to GE 
interaction, the highest values of mean 
performance were recorded by the G9 and G4 
genotypes for LW/P (163.50 g) and TSS% 
(23.33%), respectively in E2, as well as by the 
G2 genotype for RL/P (17.47 cm) and by G5 
genotype for RD/P (12.23 cm) and RW/P 
(1078.67 g) in E2. The differential yield ranking of 
genotypes across environments is proof that the 
GEI effect was of the crossover type [32]. 
According to Thillainathan & Fernandez [33], 
consistent performance across many 
environments (locations and/or years) may be 
the cause of yield stability. LW/P and RW/P traits 
showed a high CV% in E2 and moderate CV% in 
E3 and E1, respectively. Opposite, the other 
studied traits had low CV% values during the 
studied environments. The estimates of CV% 
show that the genotypes exhibited genetic 
variability that may be used during the selection 
of sugar beet yield under various environmental 
conditions. 
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Table 1. Monthly climatic data for the studied environments during 2020/2022 sugar beet growing season 
 

Environments  Climatic data October November December January February March April May 

Saint Catherine (E1) Temperature (ºC) 18.9 13.4 9.2 7.4 9.4 12.9 17.1 21.1 
Precipitation  (mm) 8.0 4.0 3.0 8.0 6.0 6.0 4.0 4.0 
Relative Humidity % 34.0 37.0 38.0 39.0 32.0 27.0 22.0 21.0 

Baloza Station (E2) Temperature (ºC) 22.4 18.0 13.7 11.9 13.0 15.6 18.5 21.8 
Precipitation  (mm) 7.7 11.7 19.0 26.0 21.0 13.3 5.0 2.3 
Relative Humidity % 68.0 63.7 64.7 66.0 62.7 58.3 55.7 57.3 

East El-Qantra Station (E3) Temperature (ºC) 23.5 19.1 15.0 13.3 14.5 17.3 20.5 24.2 
Precipitation  (mm) 2.0 2.7 3.3 6.0 6.3 4.0 2.0 0.7 
Relative Humidity % 58.0 58.3 58.0 57.0 52.0 48.3 44.3 43.7 

Source: https://en.climate-data.org

https://en.climate-data.org/
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Table 2. Combined ANOVA with AMMI analysis for studied traits of sugar beet genotypes 
evaluated across different environments 

 

S.O.V D.F. LW/P RL/P RD/P RW/P TSS % 

Environment (E) 2 19584.43
**
 0.17

NS
 1.25

*
 95721.29

**
 144.63

**
 

Replication/E 6 31.89
NS

 0.34
NS

 0.12
NS

 2914.65
NS

 0.66
NS

 
Genotype (G) 9 1118.38

NS
 17.60

**
 8.06

*
 137451.45* 6.05

NS
 

G X E 18 582.60
**
 2.78

**
 2.80

**
 40296.15

**
 2.92

**
 

PC1 10 752.02
**
 3.11

**
 3.09

**
 42828.81

**
 3.65

**
 

PC2 8 370.83
*
 2.36

*
 2.43

**
 37130.33

**
 2.00

**
 

Residuals 54 149.12 1.06 0.30 7373.78 0.51 

Contribution to the sums of squares % of total variance explained 

% due to E 57.63 0.13 1.75 7.45 67.65 
% due to G 14.81 59.11 51.04 48.14 12.74 
% due to G X E 15.43 18.66 35.40 28.23 12.28 

PCs variance % of the total variance of variables 

PC1 71.71 62.21 61.34 59.05 69.60 
PC2 28.29 37.79 38.66 40.95 30.40 
CV% 12.88 6.98 6.60 12.77 3.84 
Statistically significant differences at *p ≤ 0.05 and **p ≤ 0.01; ns: indicate the non-significant difference. LW/P: 

leaves weight/plant; RL/P: root length/plant; RD/P: root diameter/plant; RW/P: root weight/plant; TSS%: total 
soluble solids percentage % 

 

Estimates of the environmental index under the 
tested environments ranged from -64.66 to 
39.75, demonstrating significant differences 
across these environments for studied traits. The 
maximum values of the environmental index 
were recorded for LW/P (29.42), RD/P (0.17), 
RW/P (39.75) and TSS% (2043) traits in E2, 
followed by RD/P (0.05) and RW/P (24.90) in E1, 
indicating these environments were favorable for 
these studied traits. While other environments 
were unfavorable for the other studied traits. It is 
evident from the environmental index that an 
environment that was good for a trait was poor 
for another [34]. 
 

3.3 GGE Biplot Model 
 
3.3.1 Discrimitiveness vs. Representativeness 
 
The GEI is partitioned into two components (PC1 
and PC2) by GGE biplot. The GGE biplot of PC1 
and PC2 contributed 77.50% and 15.60%, and 
collectively they explained 93.10% of the total 
G+GE variation for root weight/plant (Fig. 1). 
After partitioning GEI by GGE biplot, the PC1 
contribution in the GEI was greater than the PC2 
under the various environments, suggesting that 
the GGE biplot effectively partitioned the 
variability in root weight trait. A similar trend has 
been reported in sugar beet by Curcic et al. [16] 
and Studnicki et al. [19]. Finding the most 
suitable (ideal) test environment through the test-
environment evaluation is crucial for a successful 
breeding technique in the selection of superior 

genotypes for a variety of environments [35]. The 
idealness of the tested environments is defined 
by two characteristics: a) discriminating ability 
(the ability of an environment to differentiate 
genotype in terms of main genotype effects), 
which has a high PC1 score, and b) 
representativeness (the ability of an environment 
to represent all other evaluated environments), 
which has a zero score for PC2. As a report by 
Yan and Tinker [15], the length vectors and the 
cosine of the angle between the two 
environments determine their similarity 
(covariance) of them. Therefore, the 
environments for RW/P were divided into two 
distinct groups by the ray's lines. The first group 
included the E3 environment in a sector of its 
own and had two suitable varieties (G3 and G9), 
while E1 and E2 environments formed the 
second group where varieties G5 and G6 had the 
highest RW/P. As a report by Yan et al. [35], due 
to having the smallest angles with average 
environment coordination (AEC), the test 
environments E1 and E2 for RW/P are more 
representative of other test environments       
(Fig. 1). These results indicate that these 
environments are idyllic and have the greatest 
ability to discriminate genotypes, thus favoring 
the selection of superior genotypes. Yan et al. [8] 
and Yan and Rajcan [36] reported that the most 
genotypes desirable is the one closest to the 
graph of the ideal environment. Thus, the 
genotypes G2, G5 and G6 are the most 
productive and stable for RW/P. While the test 
environment E3 had a larger angle with AEC for 
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RW/P, indicating that it was the least 
discriminating and representative in both 
irrigation conditions. Non-discriminating test 
environments provide minimal information about 
genotypes and must not be used as test 
environments [15]. According to Yan and Kang 
[37], strong positive correlation was observed 
among E1 and E2 (the acute angle), while E3 
had positively correlated with E1 (slight). GGE 
biplot model indicated the most representative 
testing environments with the discriminating 
ability for root yield trait tested [18]. 
 
3.3.2 Mean vs. Stability analysis 
 
The AEC method based on genotype-focused 
singular value partitioning (SVP) was utilized to 
assess genotype yield stability using average 
PCAs in all environments. If SVP = 1, the AEC 
line with a single arrow passes through the 
biplot's origin [38], the arrow points to a higher 
mean yield. The mean of PC1 and PC2 of the 
environmental scores is defined, as a report by 
Yan and Rajcan [36]. The ‘Mean vs. stability’ 
view is frequently referred to as AEC with SVP = 
1 which helps to simplify the genotype 
assessment based on the mean performance 
and stability across environments within a multi-
environment (Fig. 2). The GGE biplot was 
created by plotting the PC1 and PC2 produced 
from subjecting data of environment-centered 
yield to singular value decomposition [8]. The 
genotypes are grouped according to their 
average root weight, as indicated by the arrow 
sign on the AEC. The genotypes with above-
average means were G2, G4, G5, and G6, while 
the other genotypes were below-average means. 
The highest values of RW/P were observed by 
the genotypes G5, and G6 in the E1 and E2 
environments, and the genotypes G6 and G9 in 
the E3 environment. While G3, G7, and G10 
genotypes had the least mean root weight in E2, 
E3, and E1, respectively. GGE biplot model 
revealed that some environments were the best 
test environments where the best genotypes 
could easily be identified with respect to the root 
trait of sugar beet [18]. 
 
The most stable genotypes were G6 > G2 > G5 
> G4, which were practically on the AEC 
abscissa and had a close to zero projection onto 
the AEC ordinate. This demonstrates that these 
genotypes' ranking was remarkably constant 
across environments, according to Yan et al. 
[35]. In addition to good sugar beet root weight, 
genotype stability is more important, in terms of 

Yan [39] established an "ideal" genotype based 
on average performance as well as stability. 
Thus, the genotypes G6 and G5 are more stable 
with better mean sugar beet yield other than the 
other genotypes. Conversely, the genotypes G1 
and G3 are more variable and highly unstable 
with below and above-average mean 
performance in both conditions, respectively. The 
use of GGE biplots helped to indicate the mega-
environments and sugar beet genotypes that 
yield the best in each of them [19]. Some 
genotypes of sugar beet had specific adaptability 
to the best environment identified for root yield in 
the GGE biplot model [18]. 
 

3.3.3 Which‑won‑where pattern   
 

The polygon view of the GGE biplot pattern of 
root weight of sugar beet yield was constructed 
to show which genotypes with the best 
performance best in which environment and 
groups of environments [8], as well as to 
demonstrate the presence of crossover GEI, 
mega-environment differentiation, and specific 
adaptation [15]. Four genotypes including G2, 
G4, G8 and G9 have situated within the polygon. 
While other genotypes are located away from the 
biplot origin in all directions and which formed the 
polygon vertices (Fig. 3). A line perpendicular to 
each polygon side was drawn starting from the 
biplot origin. The biplot is divided into sectors by 
these lines. The rays are perpendicular lines to 
the sides of the polygon or their expansion [38]. 
Thus, the three environments are divided into 
different apparent groups. The genotype at the 
vertices of each sector is the nominal highest 
yielder for the environments or mega-
environments that fell into it. Accordingly, G5 
produced maximum root weight in the E1 
environment. Also, the genotypes G5, G6, and 
G2 perform best in the E1 and E2 environments 
and gave the highest root weight, due to being 
located in the sector of these environments. 
While the genotype G4 occurred in the sector of 
the E3 environment and gave the highest root 
weight after genotypes G5 and G6. The 
genotypes G1, G3, G7, and G10 were the 
poorest across the environments, due to no 
environment falling into the sectors of these 
genotypes.  GGE biplot analysis suggested that 
optimal locations were identified for each 
genotype, which can be useful when 
recommending sugar beet varieties for certain 
growing areas of this field crop [16]. Winner 
genotypes were also identified based on the 
results of the GGE biplot model [18]. 
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Table 3. Mean values of studied traits of ten sugar beet genotypes grown under different environments 
 

 Traits Environments  Genotypes  Mean LSD at  CV%  EI 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 0.05 0.01 

 LW/P E1 65.57 69.27 72.97 58.67 99.37 107.13 104.17 79.33 95.00 69.00 82.05 6.79 9.04 5.84 -12.76 
E2 107.43 140.00 127.60 117.93 133.33 123.70 102.87 122.33 163.50 103.50 124.22 26.42 NS 15.02 29.42 
E3 65.20 81.53 88.47 78.60 77.73 84.00 63.23 65.67 91.07 85.93 78.14 12.35 NS 11.17 -16.66 
Mean 79.40 96.93 96.34 85.07 103.48 104.94 90.09 89.11 116.52 86.14 94.80 NS NS 12.88  

 RL/P E1 15.90 17.47 12.20 14.70 14.43 16.83 15.53 16.90 12.03 12.33 14.83 1.36 1.82 6.49 0.08 
E2 16.70 15.07 11.03 14.67 15.37 15.27 14.97 15.60 14.50 13.67 14.68 1.80 2.40 8.66 -0.07 
E3 15.63 16.33 14.03 15.07 14.60 15.17 15.00 15.30 14.07 12.27 14.75 1.12 1.50 5.38 -0.01 
Mean 16.08 16.29 12.42 14.81 14.80 15.76 15.17 15.93 13.53 12.76 14.75 0.81 1.08 6.98  

 RD/P E1 8.33 8.33 7.60 6.83 12.23 8.67 7.37 6.93 10.23 7.03 8.36 0.95 1.26 8.03 0.05 
E2 9.27 8.67 7.63 9.00 9.13 8.60 7.93 8.03 9.07 7.40 8.47 0.80 1.07 6.70 0.17 
E3 7.43 7.83 9.87 7.33 8.63 8.17 7.10 7.13 9.97 7.30 8.08 0.49 0.66 4.30 -0.23 
Mean 8.34 8.28 8.37 7.72 10.00 8.48 7.47 7.37 9.76 7.24 8.30 0.43 0.57 6.60  

 RW/P E1 460.17 762.03 582.10 781.00 1078.67 1001.27 691.67 591.67 571.00 453.33 697.29 105.23 140.14 10.66 24.90 
E2 781.23 708.33 513.33 670.00 845.33 856.30 690.20 706.67 738.33 611.67 712.14 166.96 NS 16.56 39.75 
E3 427.67 595.33 684.20 670.33 735.47 757.17 423.70 510.00 752.77 520.63 607.73 73.46 97.82 8.54 -64.66 
Mean 556.36 688.57 593.21 707.11 886.49 871.58 601.86 602.78 687.37 528.54 672.39 67.75 90.22 12.77  

 TSS% E1 16.33 19.33 16.67 16.00 15.33 17.67 16.00 17.67 16.00 16.67 16.77 0.96 1.27 4.03 -1.83 
E2 21.00 22.33 19.00 23.33 21.33 21.00 20.67 22.00 20.33 19.33 21.03 1.19 1.59 4.00 2.43 
E3 16.67 18.67 17.33 17.33 18.33 18.67 16.67 19.33 18.67 18.33 18.00 0.85 1.13 3.33 -0.60 
Mean 18.00 20.11 17.67 18.89 18.33 19.11 17.78 19.67 18.33 18.11 18.60 NS NS 3.84  

E1, E2 and E3: Saint Catherine, Baloza and East El-Qantra, respectively. EI: Environmental index. The traits key names can be found in Table 2 
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3.3.4 Cluster analysis and Principle 
Component Analysis (PCA) 

 
Based on the mean performances of all studied 
traits under this study, the hierarchical cluster 
analysis method was performed to classify the 
ten sugar beet genotypes into four clusters      
(Fig. 4). Each cluster contained genotypes that 
were highly similar. The first and fourth clusters 
comprised two genotypes including G5 and G6, 

as well as G1 and G10, respectively. While both 
second and third clusters enclosed three 
genotypes including G2, G9 and G4, as well as 
G3, G7 and G8, respectively. The genotypes in 
the first cluster had recorded the highest root 
weight/plant, followed by the genotypes in the 
second and the third clusters, opposite is true for 
the genotypes in the fourth cluster. According to 
Hu et al. [22], cluster analysis classifies sugar 
beet genotypes into four clusters. 

 

 
 

Fig. 1. GGE biplot of discrimitiveness vs. representativeness for root weight/plant traits with 
ten sugar beet genotypes (green color) and three environments (blue color) 

E1, E2 and E3: Saint Catherine, Baloza and East El-Qantra, respectively; 1: SK58-4-S4; 2: SK48-C; 
3: SK70; 4: SK90; 5: SK44-1-4R2; 6: SK27-38; 7: SK27-32; 8: SK Fc723; 9: SK44-1-9C1; 10: SK17-2-

7W 
 

 
 

Fig. 2. GGE biplot of mean vs. stability for and root weight/plant traits with ten sugar beet 
genotypes (green color) and three environments (blue color). The genotypes and environment 

key names can be found in Fig. 1 
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Fig. 3. GGE biplot polygon of "which-won-where" for root weight/plant with ten sugar 
genotypes (green color) and three environments (blue color). The genotypes and environment 

key names can be found in Fig. 1 
 
To find the optimal genotypes in the investigated 
environments and to clearly comprehend the 
correlations between the studied traits, the PCA 
analysis was carried out for the investigated traits 
and genotypes. Table 4 lists the five PCs for the 
analyzed genotypes and traits influenced by the 
three environments. The first two main PCs (PC1 
and PC2) extracted had eigenvalues higher than 
one with values of 2.35 and 1.75, respectively, 
and they explain 82.01% of the total variance of 
variables. In contrast, the other PCs have 
eigenvalues below one (Eigenvalue <1). The 
PC1 and PC2 explained 47.03%, and 34.98% of 
the total variance of variables, respectively. As a 
result, they can be used as the basis for 
evaluating the genotypes and the association 
between investigated traits under the studied 
environments. The PC1 had a positive 
correlation with all studied traits and with the 
genotypes G2, G5, G6 and G9. While, the PC2 is 
positively correlated with RL/P, RW/P and TSS% 
traits and with the genotypes G1, G2, G4, G6 
and G8. These results indicated that PC1 can be 
referred to as the high-root weight component 
and the basis in the weighting of selection 
genotypes, thus PC1 is important to increase 
sugar beet productivity in the three 
environments. Alami et al. [23], Islam et al. [24], 
Majumdar et al. [26] and Mehareb et al. [40] have 
previously revealed similar results for the first two 
main PCs. 

Based on their data from the three researched 
environments, the PC1 and PC2 were used to 
draw a biplot for the studied attributes and 
genotypes (Fig. 5). Using PCA, a sharp angle 
among LW/P, RD/P and RW/P traits, as well as 
among RL/P, RW/P and TSS% traits in this study 
was found, indicating the positive correlation 
between these variables, but they differed in their 
degree and consistency in quantity. Generally, 
RW/P positively correlated with the other studied 
traits. This means that selection based on these 
traits will result in an increasing sugar beet yield 
in all environments [31]. Evaluation of the 
genotypes according to their locations on the 
basis of the studied variables by using the PCA 
model might be a feasible approach [22]. The 
PC1 and PC2 mainly distributed and 
distinguished the studied traits and genotypes 
into two groups. The first group was related to 
PC1 and includes all studied traits, which are 
strongly positively associated with the G2, G5, 
G6 and G9 under the three environments                 
(the first and fourth quarters). While the                
second group is related to PC2, which includes 
the other genotypes (the second and third 
quarters). The PCA with the AMMI model 
enables clustering of genotypes based on 
similarity of response characteristics and 
identifying potential trends in environments [41]. 
Generally, the G5 and G6 genotypes were 
located near the most studied traits across the
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Fig. 4. Cluster dendrogram of ten sugar beet genotypes based on all studied traits across 
various environments. The genotypes key names can be found in Fig. 1 

 
Table 4. Results of Principal Component analysis (PCs) in the first five PCs for the studied 

traits during the main effects of experimental factors 
 

Variables PC1 PC2 PC3 PC4 PC5 

SW/P 0.58 -0.18 0.45 0.22 0.62 

RL/P 0.05 0.68 -0.51 0.35 0.40 

RD/P 0.57 -0.21 -0.31 0.49 -0.54 

RW/P 0.57 0.18 -0.24 -0.77 -0.02 

TSS% 0.14 0.65 0.62 0.07 -0.41 

G1 -1.35 0.24 -1.34 0.71 -0.18 

G2 0.48 1.94 0.64 0.44 -0.20 

G3 -0.49 -2.03 0.34 -0.10 -0.13 

G4 -0.64 0.60 -0.07 -0.67 -0.35 

G5 2.41 -0.41 -0.85 -0.29 -0.38 

G6 1.67 0.98 -0.02 -0.65 0.45 

G7 -1.19 -0.29 -0.55 -0.06 0.76 

G8 -0.95 1.63 0.60 0.22 0.02 

G9 1.98 -1.47 0.61 0.76 0.16 

G10 -1.91 -1.19 0.64 -0.36 -0.17 

Eigenvalues 2.35 1.75 0.50 0.27 0.13 

Variance %  47.03 34.98 9.97 5.40 2.62 

Cumulative% 47.03 82.01 91.98 97.38 100.00 
The traits and genotypes key names can be found in Table 2 and Fig. 1, respectively 

   
three environments. The results of PCA analysis 
were in accord with the results of cluster analysis 
with respect to genotypes delineation with higher 
root weight and most studied traits. Based on our 

results, the G5 and g6 genotypes across the 
three environments have the potential to improve 
plant growth and increase the sustainable 
productivity of sugar beet in Egypt. 
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Fig. 5. A biplot diagram based on the first two PCs shows the relationships among the 
measured traits across ten sugar beet genotypes under various environments. The traits (blue 

color) and genotypes (red color) key names can be found in Table 2 and Fig. 1, respectively 
 

4. CONCLUSIONS 

 
The results of AMMI analysis reflect the 
divergent climatic conditions of three 
environments, resulting in a high level of genetic 
variability among ten genotypes for sugar beet 
crop under these environments. GGE biplot 
performed well in the study of the GEI, and 
provide a clear idea of genotype stability 
behavior in the different environments. PCA and 
cluster analysis could be used as suitable 
methods to identify the best genotypes in the 
examined environments and to clearly 
understand the association between the studied 
traits. The multivariate models were useful in 
identifying the G5 and G6 as the most stable 
genotypes with the greatest potential for high-
yielding across various environments. Thus, 
these genotypes can be used in future breeding 
programs to higher root yields of sugar beet 
across different environments in Egypt.  
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