
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: shweta.saboo1@gmail.com; 
 
 
 

Journal of Pharmaceutical Research International 
 
33(43A): 367-375, 2021; Article no.JPRI.73293 
ISSN: 2456-9119 
(Past name: British Journal of Pharmaceutical Research, Past ISSN: 2231-2919, 
NLM ID: 101631759) 

 

 

In-silico Inhibitory Potential of Triphala Constituents 
Against Cytochrome P450 2E1 for the Prevention of 

Thioacetamide-induced Hepatotoxicity 
 

Aziz Unnisa1, Sharuk L. Khan2, Farooque A. H. Sheikh3, Syed Mahefooz4,  
A. A. Kazi5, Falak A. Siddiqui2, Nitin Gawai2 and Shweta G. Saboo6* 

 
1Departmenet of Pharmaceutical Chemistry, University of Hail, Hail, Saudi Arabia; 

2
MUP's College of Pharmacy (B Pharm), Degaon, Risod, Washim, Maharashtra, 444504, India. 

3Shri Sant Gajanan Maharaj College of Pharmacy, Sagwan, Buldana, Maharashtra, 443001, India. 
4
Latur College of Pharmacy, Hasegaon, Ausa, Latur, Maharshtra, 413531, India. 

5
N.B.S. Institute of Pharmacy, Ausa, Latur, Maharashtra, 413520, India. 

6Government College of Pharmacy, Karad, Maharashtra, 425124, India. 
 

Authors’ contributions 
 

This work was carried out in collaboration among all authors. All authors read and approved the final 
manuscript. 

 

Article Information 
 

DOI: 10.9734/JPRI/2021/v33i43A32499 
Editor(s): 

(1) Dr. Carlos M. Contreras, Unidad Periférica Xalapa, Instituto de Investigaciones Biomédicas, UNAM, Instituto de 
Neuroetología, Universidad Veracruzana, Mexico.  

(2) Dr. Dharmesh Chandra Sharma, G. R. Medical College & J. A. Hospital, India. 
Reviewers: 

(1) Purvi Kakrani, ISF College of Pharmacy, India.  
(2) Raja Kumar Parabathina, Mettu University, Ethiopia. 

Complete Peer review History: https://www.sdiarticle4.com/review-history/73293 
 
 
 

Received 22 June 2021 
Accepted 02 September 2021 
Published 07 September 2021 

 
 

ABSTRACT 
 

Background: Triphala, which is a combination of fruits of Terminalia chebula, Terminalia bellerica 
and Embilica officinalis generally recommended as herbal drug formulation in the Indian traditional 
medicine system.  
Study Design: To study the in-silico inhibitory potential of Triphala constituents against 
cytochrome P450 2E1 (CYP2E1) for the prevention of Thioacetamide-induced Hepatotoxicity  
Place and Duration of Study: The work has been performed at MUP's College of Pharmacy (B 
Pharm), Degaon, Risod, Washim, Maharashtra, India in between February 2021 to May 2021. 
Methodology: We have studied the inhibitory potential of Triphala on CYP2E1 by applying 
molecular docking tools. The major chemical constituents of Triphala i.e. gallic acid, chebulic acid, 
ellagic acid, epicatechin, syringic acid, and ascorbic acid were docked on CYP2E1.  

Original Research Article 



Results: Docking results revealed the v
affinity towards CYP2E1. All the chemical constituents have formed at least 2 and at most 6 
hydrogen bonds with the crystal structure of CYP2E1. The binding energies (kcal/mol) of gallic 
acid, chebulic acid, ellagic acid, epicatechin, syringic acid, and ascorbic acid are 
8.3, -6.3, and -5.7, respectively. Ellagic acid has formed strong hydrogen bonds with Thr
Thr-304 with bond length of 1.98 A
Conclusion: These findings can be used to control the CYP2E1
drug interactions in the development of new chemical entities. In future, these phytoconstituents 
can be used as lead molecules to overcome the cancer associated with oxidative stress resulting 
from the hyperactivity of CYP2E1.
 

 
Keywords: Triphala; thioacetamide; CYP2E1; ellagic acid; gallic acid; chebulic acid.
 

ABBREVIATIONS 
 
TAA : Thioacetamide 
CYP2E1 : Cytochrome P450 2E1
TASO : Thioacetamide-S-oxide
TASO2 : Thioacetamide sulphdioxide
UFF : Universal Force Field
 

1. INTRODUCTION 
 
Triphala, which is a mixture of fruits of 
chebula, Terminalia bellerica 

Fig. 1. The proposed mechanism of hepatotoxicity caused due to TAA
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Docking results revealed the very good inhibitory potential of Triphala in terms of binding 
affinity towards CYP2E1. All the chemical constituents have formed at least 2 and at most 6 
hydrogen bonds with the crystal structure of CYP2E1. The binding energies (kcal/mol) of gallic 

hebulic acid, ellagic acid, epicatechin, syringic acid, and ascorbic acid are 
5.7, respectively. Ellagic acid has formed strong hydrogen bonds with Thr

304 with bond length of 1.98 A0 and 2.26 A0 which confirms the excellent inhibition of CYP2E1. 
These findings can be used to control the CYP2E1-facilitated biotransformation and 

drug interactions in the development of new chemical entities. In future, these phytoconstituents 
cules to overcome the cancer associated with oxidative stress resulting 

from the hyperactivity of CYP2E1. 

Triphala; thioacetamide; CYP2E1; ellagic acid; gallic acid; chebulic acid.

: Cytochrome P450 2E1 
oxide 

: Thioacetamide sulphdioxide 
: Universal Force Field 

Triphala, which is a mixture of fruits of Terminalia 
chebula, Terminalia bellerica and Embilica 

officinalis generally recommended as herbal drug 
formulation in the Indian traditional medicine 
system [1]. Recipe for this traditional herbal 
supplement has been described in the texts, ‘The 
Charak and Susruta Samhitas’ 
1500 B.C [2] which governs the biological 
energies of human life on three doshas like Vata
Pitta- Kapha. It is also reported to have 
antiasthmatic [3], antiobesity 
immunostimulatory [5], antibacterial 
cataract [7], antimutagenic [8
properties [9]. 
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Thioacetamide (TAA), due to its toxic bio 
transforming substances, acetamide and 
thioacetamide-S-oxide (TASO) damages the liver 
and associated with carcinogenic activity due to 
depletion of reduced glutathione that causes 
oxidative stress [10,11]. Cancer cells associated 
with chromosomal abnormalities due to genetic 
alterations which lead to mutation which further 
progresses to tumor progression and metastasis 
[12]. TAA leads to cirrhosis, fibrosis and hepatic 
necrosis which results in hepatocellular 
carcinoma, cholangiocarcinoma and papillary 
adenocarcinoma. It is also used as standard 
hepatotoxin due to the reactive metabolite 
thioacetamide-S-oxide (TASO) and 
thioacetamide-S-dioxide (TASO2) [13] which 
causes oxidative stress and deplete reduced 
glutathione content [14]. Natural substances 
owing to a variety of phytoconstituents such as 
polyphenols, flavonoids, tannins, or their 
derivatives, possess anti-mutagenic properties 
[15,16]. 
 

Bio-activation of TAA is induced by cytochrome 
P450 (CYP) 2E1 which forms thioacetamide-S-
oxide (TASO) in the first step and second step 
thioacetamide-S-dioxide (TASO2), a reactive 
metabolite [17–19]. Many studies have                  
reported the role of CYP2E1 in TAA-mediated 
hepatotoxicity through increased oxidative                 
stress [11,20-21]. The proposed mechanism of 

hepatotoxicity caused due to TAA is represented 
in (Fig. 1.) Ponnusankar S. et al. published a 
study on Triphala's Cytochrome P450                   
inhibitory potential [22]. Concerning the above 
literature, we have studied the inhibitory        
potential of Triphala on CYP2E1 by applying 
molecular docking tools. The major chemical 
constituents of Triphala [2,23–25] i.e. gallic acid, 
chebulic acid, ellagic acid, epicatechin, syringic 
acid, and ascorbic acid were docked on 
CYP2E1. 
 

 2. MATERIALS AND METHODS 
 
The autodock vina 1.1.2 in PyRx-Virtual 
Screening Tool 0.8 were used to perform the 
molecular docking studies [26]. The receptor-
ligand interactions after docking were studied by 
using BIOVIA Discovery Studio Visualizer 
(version-19.1.0.18287) [27]. The Structures of 
major chemical constituents of Triphala (gallic 
acid, chebulic acid, ellagic acid, epicatechin, 
syringic acid, and ascorbic acid) (SDF File) were 
downloaded from the official website of the U.S. 
National Library of Medicine PubChem. Energy 
minimization (optimization) was performed by 
Universal Force Field (UFF) [28]. Table 1 
represents the structures of the major chemical 
constituents of Triphala used for molecular 
docking. 

 
Table 1. The structures of the major chemical constituents of Triphala used for molecular 

docking 
 
Ellagic acid Gallic acid Chebulic acid 

O O

OH

OH

OO

OH

HO

 

O

OH
HO

HO

HO
 

O

OH

OHO

HO

HO
OH

O
O

O

OH

 

Epicatechin Syringic acid Ascorbic acid 

OH

OH

O
HO

HO

HO
 

O

HO
O

O

OH

 

OO

HO

OH

HO
OH

 



 
Fig. 2. The structure of Cytochrome P450 2E1 (PDB ID: 3LC4); Chain

Chain-A with Co

 
The elucidated crystal Human Cytochrome P450 
2E1 in Complex with Omega
Dodecanoic Acid was obtained from the RCSB 
Protein Data Bank (PDB ID: 3LC4) which was 
released on 12 May 2010 
(https://www.rcsb.org/structure/3LC4
were two chains (Chain A & B) in the crystal 
structure of Cytochrome P450 2E1 (PDB ID: 
3LC4). Chain A was selected to perform the 
molecular docking. The complete molecular 
docking was performed as per the procedure 
described by Chaudhari R. N
[30,31,31–34]. The structure of Cytochrome 
P450 2E1 (PDB ID: 3LC4); Chain
color and Chain-A with Co-crystallized Ligand in 
Active Cavity represented in (Fig. 2) which was 
obtained from Discovery Studio. 
 

3. RESULTS AND DISCUSSION
 
The chemical constituents of Triphala showed 
very good binding affinity towards CYP2E1. The 
2D- and 3D-docking poses of the molecules 
represented in Table 2. Ellagic acid has 
kcal/mol binding affinity which formed 3 hydrogen 
bonds with CYP2E1. The act
residues with bond lengths are Ala
(4.66A⁰), Gly-A:300 (3.43A
(5.28A⁰), Glu-A:446 (2.45A
(2.26A⁰), Thr-A:303 (1.98A⁰), Cys
4.93A⁰), Ala-A:299 (3.41A⁰, 3.98A
(4.67A⁰). Gallic acid has low binding affinity i.e. 
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Fig. 2. The structure of Cytochrome P450 2E1 (PDB ID: 3LC4); Chain-B: In Yellow colour and 
A with Co-crystallized Ligand in Active Cavity 

Human Cytochrome P450 
2E1 in Complex with Omega-Imidazolyl-
Dodecanoic Acid was obtained from the RCSB 
Protein Data Bank (PDB ID: 3LC4) which was 
released on 12 May 2010 
https://www.rcsb.org/structure/3LC4) [29]. There 

were two chains (Chain A & B) in the crystal 
structure of Cytochrome P450 2E1 (PDB ID: 

in A was selected to perform the 
molecular docking. The complete molecular 
docking was performed as per the procedure 

Chaudhari R. N and et. al. 
. The structure of Cytochrome 

P450 2E1 (PDB ID: 3LC4); Chain-B: In Yellow 
crystallized Ligand in 

Active Cavity represented in (Fig. 2) which was 
 

3. RESULTS AND DISCUSSION 

The chemical constituents of Triphala showed 
very good binding affinity towards CYP2E1. The 

docking poses of the molecules 
2. Ellagic acid has -9.1 

kcal/mol binding affinity which formed 3 hydrogen 
bonds with CYP2E1. The active amino acid 
residues with bond lengths are Ala-A: 443 

A:300 (3.43A⁰), Leu-A:442 
A:446 (2.45A⁰), Thr-A:304 

), Cys-A:437 (3.82A⁰, 
, 3.98A⁰), Ala-A:438 

as low binding affinity i.e. -

6.1 kcal/mol comparing to Ellagic acid but it has 
formed 6 hydrogen bonds that are good enough 
to inhibit the activity of the enzyme. Gallic acid 
interacted with Gln-A:358 (2.19A
A:364 (2.19A⁰), Leu-A:363 (2.87A
A:429 (2.07A⁰, 2.43A⁰, 5.18A
has a docking score of -7.2 kcal/mol with the 
formation of 2 hydrogen bonds. The active amino 
acid residues involved in the interactions were 
Arg-A:100 (1.40A⁰, 6.63A⁰), Leu
Cys-A:437 (4.48A⁰), Ala
Epicatechin interacted with Thr
Pro-A:429 (5.20A⁰), Gln-A:358 (2.38A
A:363 (3.72A⁰), Phe-A:430 (2.50A
(5.12A⁰), Cys-A:437 (2.77A
binding affinity was -8.3 kcal/mol with t
formation of 4 hydrogen bonds. The binding 
affinity of Syringic acid was 
has formed 3 hydrogen bonds with CYP2E1 and 
interacted with Cys-A:437 (5.42A
(2.29A⁰, 4.96A⁰), Arg-A:100 (2.07A
(3.48A⁰, 3.71A⁰), Ala-A:438 (3.16A
(4.61A⁰). Ascorbic acid found to have 
kcal/mol binding energy and formed 5 hydrogen 
bonds with CYP2E1 and reacted with Ala
(1.97A⁰), Ile-A:115 (2.89A⁰, 2.34A
(3.62A⁰), Arg-A:100 (3.01A⁰), Arg
1.07A⁰). Table 3 represents the name of 
molecules, docking score (kcal/mol), no. of 
hydrogen bonds formed and active amino acid 
residues with bond length (A
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B: In Yellow colour and 

6.1 kcal/mol comparing to Ellagic acid but it has 
formed 6 hydrogen bonds that are good enough 
to inhibit the activity of the enzyme. Gallic acid 

A:358 (2.19A⁰, 2.16A⁰), Val-
A:363 (2.87A⁰, 3.75A⁰), Pro-

, 5.18A⁰). Chebulic acid 
7.2 kcal/mol with the 

formation of 2 hydrogen bonds. The active amino 
acid residues involved in the interactions were 

), Leu-A:368 (3.69A⁰), 
), Ala-A:299 (2.24A⁰). 

Epicatechin interacted with Thr-A:307 (2.48A⁰), 
A:358 (2.38A⁰), Leu-

A:430 (2.50A⁰), Val-A:364 
A:437 (2.77A⁰, 4.08A⁰) and 

8.3 kcal/mol with the 
formation of 4 hydrogen bonds. The binding 
affinity of Syringic acid was -6.3 kcal/mol which 
has formed 3 hydrogen bonds with CYP2E1 and 

A:437 (5.42A0), Arg-A:126 
A:100 (2.07A⁰), Arg-A:435 
A:438 (3.16A⁰), Ile-A:115 

). Ascorbic acid found to have -5.7 
kcal/mol binding energy and formed 5 hydrogen 
bonds with CYP2E1 and reacted with Ala-A:438 

, 2.34A⁰), Arg-A:435 
), Arg-A:126 (2.20A⁰, 

). Table 3 represents the name of 
molecules, docking score (kcal/mol), no. of 
hydrogen bonds formed and active amino acid 
residues with bond length (A⁰). 

https://www.rcsb.org/structure/3LC4
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Table 2. The 2D- and 3D-docking poses of the molecules with CYP2E1 (PDB ID: 3LC4) 
 
Name of 
Compound 

3D-Docking Pose 2D-Docking Pose 

Gallic acid  

 

 

 

Chebulic acid 
 

 

 

 

 
 

Epicatechin  

 

 

 

Syringic acid  
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Name of 
Compound 

3D-Docking Pose 2D-Docking Pose 

Ascorbic acid  

 

 

 

Ellagic acid  

 

 

 
 
Table 3. The name of molecules, docking score (kcal/mol), no. of hydrogen bonds formed and 

active amino acid residues with bond in length (A⁰) 
 
Names of 
Compound 

Dock 
Score 
(kcal/mol) 

No. of 
Hydroge
n Bonds 

Active Amino Acid Residues (Bond Length in A⁰) 

Gallic acid -6.1 6 Gln-A:358 (2.19, 2.16), Val-A:364 (2.19), Leu-A:363 
(2.87, 3.75), Pro-A:429 (2.07, 2.43, 5.18) 

Chebulic 
acid 

-7.2 2 Arg-A:100 (1.40, 6.63), Leu-A:368 (3.69), Cys-A:437 
(4.48), Ala-A:299 (2.24) 

Epicatechin -8.3 4 Thr-A:307 (2.48), Pro-A:429 (5.20), Gln-A:358 (2.38), 
Leu-A:363 (3.72), Phe-A:430 (2.50), Val-A:364 (5.12), 
Cys-A:437 (2.77, 4.08) 

Syringic acid -6.3 3 Cys-A:437 (5.42), Arg-A:126 (2.29, 4.96), Arg-A:100 
(2.07), Arg-A:435 (3.48, 3.71), Ala-A:438 (3.16), Ile-
A:115 (4.61) 

Ascorbic 
acid 

-5.7 5 Ala-A:438 (1.97), Ile-A:115 (2.89, 2.34), Arg-A:435 
(3.62), Arg-A:100 (3.01), Arg-A:126 (2.20, 1.07) 

Ellagic acid -9.1 3 Ala-A:443 (4.66), Gly-A:300 (3.43), Leu-A:442 (5.28), 
Glu-A:446 (2.45), Thr-A:304 (2.26), Thr-A:303 (1.98), 
Cys-A:437 (3.82, 4.93), Ala-A:299 (3.41, 3.98), Ala-
A:438 (4.67) 

 

4. CONCLUSION  
 
Toxic metabolites of TAA damages the liver by 
causing oxidative stress and promote 
carcinogenic activity which is supported by the 
evidence that TAA decreases the phagocyte 

index and also disrupts the morphology of liver 
especially sinusoids where Kupffer cells reside. 
The inhibitory potential of Triphala on CYP2E1 
was studied by applying the molecular docking 
tool. Docking results revealed the very good 
inhibitory potential of Triphala in terms of binding 
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affinity towards CYP2E1. CYP2E1 is not only 
generating ROS in the biological system but it 
also stimulates the numerous pro-carcinogen to 
active carcinogens. All the chemical constituents 
have formed at least 2 and at most 6 hydrogen 
bonds with the crystal structure of CYP2E1. The 
binding energies (kcal/mol) of gallic acid, 
chebulic acid, ellagic acid, epicatechin, syringic 
acid, and ascorbic acid are -6.1, -7.1, -9.1, -8.3, -
6.3, and -5.7 respectively. Triphala is already 
proven to have a safe biological window and well 
known for its antioxidant as well as immune-
modulatory properties, which ultimately helps to 
improve the immunity of the individuals. Although 
exhaustive study regarding molecular 
mechanisms is still needed, to explore Triphala 
against genoprotection. The ellagic acid (-9.1 
kcal/mol) may also reveal a promising role in 
future research against genoprotection. The 
molecular docking studies provide an efficient 
way for the screening of potential inhibitors from 
the Triphala for blocking a specific 
biotransformation enzyme. Thioacetamide 
induces the toxicity due to its biotransformation 
into toxic metabolites (TASO and TASO2) by the 
enzyme CYP2E1. The results of molecular 
docking indicate that all the chemical 
constituents of Triphala have adequately 
negative energy for binding human CYP2E1, 
which recommends a decent affinity of each 
compound to the active site. Laura E. 
Martikainen et al. have reported the interactions 
of inhibitor molecules with the human CYP2E1 
enzyme active site through molecular docking 
studies [35]. They have concluded that 
Electrostatic interactions nearby the Thr-303 
residue showed to be a vital for inhibition of the 
enzyme activity. More interestingly, in our study 
Ellagic acid has formed strong hydrogen bonds 
with Thr-303 and Thr-304 with bond length of 
1.98 A⁰ and 2.26 A⁰ which confirms the excellent 
inhibition of CYP2E1. These findings can be 
used to control the CYP2E1-facilitated 
biotransformation and drug interactions in the 
development of new chemical entities. In future, 
these phytoconstituents can be used as lead 
molecules to overcome the cancer associated 
with oxidative stress resulting from the 
hyperactivity of CYP2E1. 
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