

Journal of Experimental Agriculture International

43(3): 42-54, 2021; Article no.JEAI.68522 ISSN: 2457-0591 (Past name: American Journal of Experimental Agriculture, Past ISSN: 2231-0606)

Impact of Elevated CO₂ and Temperature on Growth and Development of *Helicoverpa armigera* Hubner

D. V. Sravan Kumar^{1*}, P. V. Krishnayya¹, M. Srinivasa Rao², P. Anil Kumar³ and V. Srinivasa Rao⁴

 ¹Department of Entomology, Agricultural College, Acharya N.G. Ranga Agricultural University, Bapatla-522101, Guntur, A. P., India.
 ²Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Hyderabad - 500059, Telangana, India.
 ³Department of Plant Pathology, Agricultural College, Acharya N. G. Ranga Agricultural University, Bapatla-522101, Guntur, A. P., India.
 ⁴Department of Statistics and Computer Applications, Agricultural College, Acharya N. G. Ranga Agricultural University, Bapatla-522101, Guntur, A. P., India.

Authors' contributions

This work was carried out in collaboration among all authors. Author DV, PV and MS designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors PA and VS managed the analyses of the study. Author DV managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JEAI/2021/v43i330655 <u>Editor(s):</u> (1) Prof. Mohamed Fadel, National Research Center, Egypt. <u>Reviewers:</u> (1) Natanael Vieira de Sousa, Center for Weather Forecasting and Climate Studies -National Institute for Space Research (CPTEC -INPE), Brazil. (2) José Oliveira Dantas, Instituto Fderal de Sergipe, Brazil. Complete Peer review History: <u>http://www.sdiarticle4.com/review-history/68522</u>

Original Research Article

Received 05 March 2021 Accepted 10 May 2021 Published 12 May 2021

ABSTRACT

Climate change is an imminent and inevitable circumstance largely driven by increase in CO₂ and temperature. CO_2 directly affects plants through positive effects on net photosynthetic rate. Higher temperature during the crop growth phase can diminish the yield, with a longer growing season. In the present study, adverse climate conditions i.e. elevated CO_2 (550 ppm) and elevated temperatures (29, 31, 33 and 35 ± 1 °C) were simulated in carbon dioxide and temperature gradient chambers (CTG). Growth and development of *Helicoverpa armigera* on non-Bt and Bt cotton leaves from those CTG chambers were recorded and correlated with foliar carbohydrates and proteins.It

*Corresponding author: E-mail: venkat.9006@gmail.com;

was found that protein content decreased by almost 42 % in non-Bt cotton and by 36 % in Bt cotton, while larval weight and duration decreased significantly with elevated conditions particularly in Bt cotton. Relative Growth Rate (RGR) increased with eCO_2 + eTemp and is relatively less in non-Bt cotton compared to Bt cotton by 4-13 mg g⁻¹ day⁻¹. Lower protein content is positively correlated significantly to larval growth rate (r = 0.9**). Effects of climate change on crops and their pests have to be further quantified precisely to develop plausible stress mitigation strategies.

Keywords: Climate change; American bollworm; Bt cotton; carbohydrates; proteins; larval duration; RGR.

1. INTRODUCTION

American bollworm, H. armigera is highly polyphagous with more than 100 host plants. The effect of climate change on such pests has attained a lot of significance of late. Constant emissions of greenhouse gases are supposed to increase annual average temperatures (2.5-4.3 °C) in the cultivable areas of the world by 2080 [1]. Numerous FACE (Free Air CO₂ Enrichment) studies demonstrated better cotton yield and growth with increased CO₂ concentration [2-3]. However, the concomitant increase in temperature may enhance both dark reaction and photorespiration and would certainly pose a challenge to cotton production. High CO₂ is associated with down regulation of nitrogen content of foliage [4-5] which may lead to dilution of biochemical constituents i.e. reduction in levels of proteins and inorganic ions [6]. Further, supply demand ratio for carbohydrates in cotton controls the growth rate of the various plant parts [7].

Quantity and quality of host plant foliage, has a direct bearing on the growth and development of insect herbivores. Proteins and carbohydrates are important nutrients that provide essential amino acids and energy, and influence larval development, growth, and fecundity [8]. Selection of foliage with optimum levels of protein has utmost importance as evident from the choice test, wherein Helicoverpa zea selected a diet with a protein-to-carbohydrate (P: C) ratio of 1.6: 1 [9]. It was estimated that the sugar content of every crop produce will rise with increase of carbon emissions [10] and as carbohydrates are phagostimulants, foliage invites more pests and result in higher crop damage. It was reported that wanting of nitrogen also stimulates insects to consume about 80 % more foliage [11]. Under nutrition of the plants grown under eCO₂ conditions, affect the development of insects indirectly often termed as 'Host mediated effect' [12], which can induce both increased larval duration and greater mortality [13]. However

studies on the coupled influence of CO_2 + temperature on larval growth and development are meagre. Hence, studies on the interactive effect of elevated CO_2 and temperatures on cotton foliage quality and on *H.armigera*, are of immense value in planning future crop protection strategies.

2. METHODOLOGY

2.1 Experimental Study Site

The study was conducted utilizing Carbon dioxide and Temperature Gradient (CTG) Chambers and insect growth chambers at ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, Telangana during 2018-2020. The aforementioned facility has a provision to maintain constant levels of CO₂ and temperatures in eight chambers with 30 meters length, 6 meters width and 4 meters height at center. The experiment was planned with elevated CO_2 (eCO₂: 550 ± 25 ppm) and elevated temperatures (eTemp: 29, 31, 33 and 35 ± 1 °C) compared to ambient conditions (aCO₂: 380 ppm; aTemp: 28 °C). RCH-659 hybrids of non-Bt and Bt cotton were grown in each of the ten individual and combination treatments.

2.2 Test Insect Rearing

Larvae of the test insect, *H. armigera* were reared on standard artificial diet [14] individually in 6-cell well plates (3.5 cm diameter × 2.0 cm depth) under laboratory conditions ($27 \pm 1 \text{ °C}$ temperature and 60 % RH). Overlapping generations were maintained for continuous supply of larvae.

2.3 Leaf Biochemical Analysis

Carbohydrates and proteins were estimated in cotton foliage taken from various set conditions. The collected leaf samples were oven dried at 80

°C for 72 hours and ground into fine powder. Carbohydrates and proteins were estimated as per the standard procedures using anthrone [15] and folin-ciocalteu reagents [16], respectively.

2.4 Larval Growth and Development

Neonate larvae of *H. armigera* were allowed to feed on tender leaves of non-Bt and Bt cotton from various CO_2 and temperature conditions *viz.*, 550 and 380 ± 25 ppm CO_2 and 28, 29, 31, 33 and 35 ± 1°C in CTGCs. Light intensity of 550 µmol/ m²/s was maintained in the chambers during 14 hours photoperiod with 60 % relative humidity during day and 70 % at night. One larva maintained in each petri dish individually formed a replication. Twenty five such replications were maintained at each condition. Moist filter paper was kept at the bottom of the petri dishes to maintain leaf turgidity. Data regarding larval weights, larval duration and relative growth rate (RGR) were collected.

2.5 Statistical Analysis

The data collected on leaf carbohydrate and protein content and growth parameters of the test insect i.e., larval weight, duration and RGR were analyzed with two way analysis of variance (ANOVA). Correlations between various temperatures on leaf nutrition status and larval growth were performed using Pearson's correlation coefficient analysis.

3. RESULTS AND DISCUSSION

3.1 Biochemical Analysis of Cotton Foliage

Carbohydrate and protein levels were highest at 60 DAS coinciding with the rapid plant growth requirements. Irrespective of the Bt gene, carbohydrate content increased under eCO_2 and eTemp conditions, but the protein content decreased.

3.2 Carbohydrate Content in non-Bt Cotton

Carbohydrate content of cotton foliage under aCO_2 at 28 and 35 °C was 43.43 - 48.75 mg g⁻¹ at 30 DAS; 45.03 - 51.47 mg g⁻¹at 60 DAS and 42.80 - 48.48 mg g⁻¹ at 90 DAS (Table 1). Significantly higher carbohydrate content was recorded under eCO_2 with an increase of 4.83-7.01 % at 30 DAS, 7.03-5.94 % at 60 DAS and

7.59-5.65 % at 90 DAS at 28 and 35 °C, respectively. At all the growth stages, both eCO₂ and eTemp significantly influenced carbohydrate content, where eCO_2 alone brought about 7.01 % rise at 30 DAS and 7.03 % increase at 60 DAS (ns) in carbohydrate content over ambient. Similarly, an increase of 8.3 % of starch in maize leaves was reported at eCO₂ [17]. The interactive effect of eCO₂ + eTemp has shown significant increase of 20.12 % over ambient (F = 5.28, P <.05) at 30 DAS but in later stages it was nonsignificant. Wheat leaf carbohydrate concentration increased 3-fold at eCO₂ [18] implying decreased carbohydrate transport from source to sink tissues due to eCO₂ [19].

3.3 Carbohydrate Content in Bt Cotton

The carbohydrate content under aCO_2 was 42.48 - 47.67 mg g⁻¹at 30 DAS followed by 45.30 - 50.52 mg g⁻¹ at 60 DAS and 42.42 - 47.08 mg g⁻¹ at 90 DAS. Significant increase in carbohydrate content by 3.06-4.67 % at 30 DAS, 4.34-7.64 % at 60 DAS and 2.07-2.01 % at 90 DAS was recorded in the cotton foliage at 28 and 35 °C, respectively (Fig. 1). Interactive effect of eCO_2 + eTemp has shown significant increase only at 60 DAS (*F* = 8.515, *P* < .05) by 20.04 % and 90 DAS intervals (*F* = 3.003, *P* < .05) by 13.22 % (Table 2). Both non-Bt and Bt cotton had higher total carbohydrates under elevated CO_2 [20].

3.4 Protein Content in Non-Bt Cotton

The protein content of foliage under aCO_2 conditions was 25.32 - 17.37 mg g⁻¹(30 DAS), 29.71 - 20.11 mg g⁻¹ (60 DAS) and 22.35 - 14.97 mg g^{-1} (90 DAS) at 28 and 35 °C. Under eCO_2 , protein content decreased by 20.14-27.92 % (30 DAS), 10.23-13.97 % (60 DAS) and 1.83-10.22 % (90 DAS) at the same temperatures (Table 3). Interaction effect has significant influence on protein content of cotton foliage at all growth stages and reduced protein content by 46 % at 60 DAS. Analogously, protein content of sunflower foliage grown at 35 °C + eCO₂ reduced by 35.90, 33.74, 28.20, 24.62 and 23.45 % at 30, 45, 60, 75 and 90 DAS, respectively compared to 28 °C + aCO₂ [21]. The present results are also in agreement with marked decrease in protein content of sunflower at higher temperatures (33 /19 °C) from 70 % to 40 % at 23/19 °C [22]. Similar, reduction in protein content by 20 % under eCO₂ was reported in maize [23].

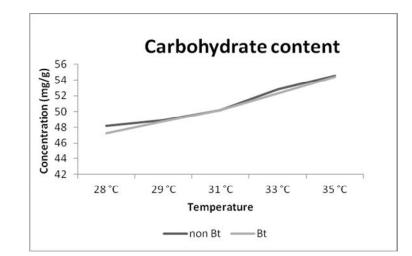


Fig. 1. Effect of eCO₂ and eTemp on carbohydrate content of non-Bt and Bt cotton

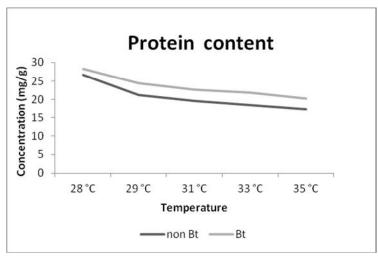


Fig. 2. Effect of eCO₂ and eTemp on protein content of non-Bt and Bt cotton

3.5 Protein Content in Bt Cotton

In Bt cotton, protein content was 22.33 to 14.09 mg g⁻¹ at 30 DAS, 31.42 to 24.77 mg g⁻¹at 60 DAS and 23.26 to 16.03 mg g⁻¹at 90 DAS under aCO₂ conditions at 28 and 35 °C, respectively (Table 4). At the same temperatures, protein content under eCO₂ decreased by 8.19-0.7% (30 DAS), 10.08-18.36% (60 DAS) and 16.16 - 12.91% (90 DAS) (Fig. 2). At 60 DAS, interaction effect eCO₂+eTemp reduced the protein content by 36 % over $aCO_2 + a$ Temp. The findings are in line with the report that high temperature reduces soluble protein content in bolls of Bt cotton [24]. Protein content was not significantly different between transgenic and non-transgenic cotton [25].

3.6 Effect on Larval Growth and Development

Larval weight and duration of *H.armigera* increased under eCO_2 and decreased under eTemp conditions in both non-Bt and Bt cotton. RGR decreased under both eCO_2 and eTemp conditions.

3.7 Larval Weight in Non-Bt Cotton

In the first generation under aCO_2 , larval weight decreased with temperature from 28 °C (415.08 mg) to 35 °C (375.08 mg). Under eCO_2 , weight increased by 19.76 % at *a*Temp and 21.90 % at *e*Temp. These present findings are in accordance with an earlier report that larval

weight of Spodoptera litura increased significantly by 17.09 % under eCO₂ in castor [12]. Similar results were also reported in H. armigera on chickpea with increased larval weight under eCO₂ (384.16 mg) compared to aCO₂ conditions (367.91 mg) [26]. In our study, under eTemp, weight decreased by 9.64 and 8.01 % at aCO₂ and eCO₂ respectively. The interaction effect of eCO₂ and eTemp showed non-significant influence in the first, second and third generations. Mean larval weight increased under eCO₂ by 17.66 % at aTemp and 19.47 % at eTemp and decreased under eTemp by 9.03 % at aCO2 and 7.64 % at eCO2. The mean interaction effect also showed non-significant influence on larval weight. Likewise, significantly higher larval weight was recorded when S. litura was fed with groundnut foliage grown under eCO₂ + eTemp compared to ambient conditions [5].

3.8 Larval Weight in Bt Cotton

In the first generation, larval weight varied from 346.71 - 323.75 mg at temperatures 28 and 35 °C, respectively. Larval weight in Bt cotton is relatively lesser than that under non-Bt cotton. Under eCO₂, larval weight increased by 32.06 % at aTemp and 31.95 % at eTemp. And under eTemp, mean weight decreased by 6.62 % at aCO_2 and 6.70 % at eCO₂. The interaction effect of eCO₂ and eTemp showed non-significant influence on larval weight in the three successive

generations. Mean larval weight increased under eCO_2 by 32.56 % at aTemp and 33.49 % at eTemp and decreased under eTemp, by 6.85 % at aCO_2 and 6.20 % at eCO_2 (Fig. 3). The mean larval weight indicated non-significant influence of the interaction on larval weight (F = 1.05, ns). Similar results were reported in chickpea with reduced larval weight of *H.armigera* by 33.51 % at eCO_2 + eTemp [27].

3.9 Larval Duration in Non-Bt Cotton

In the first generation under aCO₂, larval duration ranged from 11.44-14.60 days with lowest and highest duration at 35 and 28 °C, respectively. Under eCO₂, duration increased by 13.15 % at aTemp and 17.83 % at eTemp. This observation is in agreement with increase in larval duration of H. armigera by 12.43 % under eCO₂ in wheat crop [28]. An increase in larval duration was reported in Achaea janata on castor foliage by 12.95 % at eCO₂ (16.13 in aCO₂ and 18.22 days @ 700 ppm eCO₂) [29]. A study on A. janata on castor, showed that larval duration increased by 15-20 % in four successive generations under eCO₂ [30]. The larval duration of H. armigera increased by 10.60-12.45 % in four successive generations under eCO₂ in chickpea compared with aCO₂ [26]. In the present study, larval duration decreased by 21.64 % at aCO2 and 18.40 % at eCO_2 under eTemp. High temperature above 35 °C exhibited a negative effect on *H. armigera* larval period but a positive

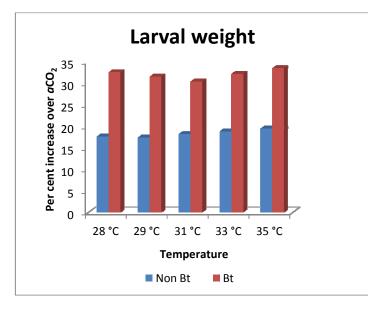


Fig. 3. Effect of eCO₂ and eTemp on larval weight of *H. armigera*

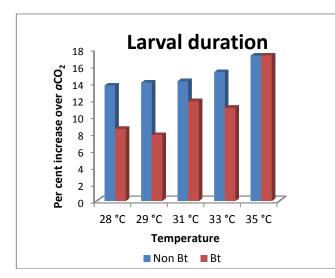


Fig. 4. Effect of eCO₂ and eTemp on larval duration of *H. armigera*

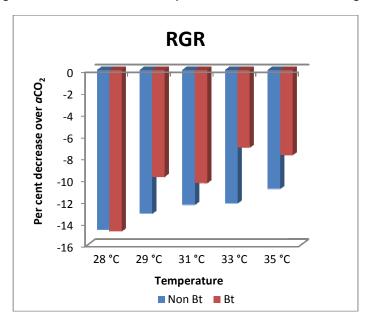


Fig. 5. Effect of eCO₂ and eTemp on RGR of *H. armigera*

effect on larval growth on chickpea based artificial diet [31]. Interaction effect of eCO_2 and eTemp showed non-significant reduction across the three generations. Mean larval duration decreased under eCO_2 and eTemp. Interaction effect has produced 7.02 % increase of mean larval duration, but was non-significant (F = 0.32, ns).

3.10 Larval Duration in Bt Cotton

In the first generation at aCO_2 , larval duration varied from 11.15 to 13.42 days with lowest and

highest duration at 35 and 28 °C, respectively. Under eCO₂, duration increased by 8.05 % at aTemp and 16.95 % at eTemp. Under eTemp, duration decreased by 16.92 % at aCO₂ and 10.07 % at eCO₂. The interaction effect of eCO₂ and eTemp caused a significant decrease in larval duration by 2.83 % in first, 3.22 % in second and 2.05 % in third generation. The interaction effect of eCO₂ and eTemp caused a significant decrease of 2.65 % on larval duration (*F* = 40.29, *P* < .05). *H. armigera* reared on Bt cotton grown under eCO₂ exhibited higher consumption by 46 % [20] and longer larval

						Carbohy	drate (mg	g ⁻¹) conte	ent in non-	Bt cotton					
Temperature		30 DAS			45 DAS			60 DAS			75 DAS			90 DAS	
	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO₂	eCO ₂	Mean	aCO₂	eCO ₂	Mean	aCO2 eCO2 42.8 46.05 44.28 47.17 45.2 48.67 47.5 49.82 48.48 51.22 45.65 48.58 F value SE m 459.08* 0.097 203.88* 0.153	Mean	
28 ± 1°C	43.43	45.53	44.48	44.55	47.15	45.85	45.03	48.20	46.62	43.38	47.75	45.57	42.8	46.05	44.43
29 ± 1°C	44.20	46.83	45.53	45.95	48.45	47.20	46.47	48.88	47.68	45.72	48.73	47.23	44.28	47.17	45.73
31 ± 1°C	45.70	48.40	47.05	47.67	49.42	48.54	47.97	50.20	49.08	47.47	50.87	49.17	45.2	48.67	46.93
33 ± 1°C	46.98	50.45	48.72	48.90	51.27	50.08	50.17	52.82	51.49	48.58	52.05	50.32	47.5	49.82	48.66
35 ± 1°C	48.75	52.17	50.46	50.17	53.20	51.68	51.47	54.53	53.00	50.20	53.65	51.93	48.48	51.22	49.85
Mean	45.82	48.67		47.44	49.89		48.22	50.92		47.07	50.61		45.65	48.58	
	F value	SE m	CD	F value	SE m	CD	F value	SE m	CD	F value	SE m	CD	F value	SE m	CD
			(p= .05)			(p= .05)			(p= .05)			(p= .05)			(p= .05
CO ₂	639.20*	0.08	0.24	395.48*	0.09	0.26	330.66*	0.11	0.31	624.49*	0.10	0.30	459.08*	0.097	0.28
Temperature	361.65*	0.13	0.37	395.48*	0.14	0.41	252.82*	0.17	0.49	250.43*	0.16	0.47	203.88*	0.153	0.45
(°C)															
Interaction	5.28*	0.18	0.53	2.84	0.20	NS	1.47	0.24	NS	2.47	0.22	NS	2.159	0.216	NS
(CO ₂ + Temp)															
ČV (%)	0.65			0.69			0.82			0.79			0.79		

Table 1. Effect of eCO₂ and eTemp on carbohydrate content of non-Bt cotton foliage

aCO₂ – 380 ± 25 ppm; eCO₂ – 550 ± 25 ppm; *Significant @ 5 % level of significance; NS – Non significant; DAS – Days after sowing

						Carbo	ohydrate (n	ng g ⁻¹) co	ontent in Bt	cotton					
Temperature	30 DAS			45 DAS			60 DAS			75 DAS			90 DAS		
	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean
28 ± 1°C	42.48	43.78	43.13	43.87	46.18	45.03	45.30	47.27	46.28	43.40	44.73	44.07	42.42	43.3	42.86
29 ± 1°C	43.30	45.18	44.24	44.60	47.67	46.13	46.68	48.75	47.72	44.78	45.57	45.18	43.55	43.72	43.63
31 ± 1°C	44.57	47.22	45.89	46.62	49.23	47.93	48.57	50.17	49.37	46.23	47.20	46.72	44.97	44.72	44.84
33 ± 1°C	46.40	48.72	47.56	48.08	50.38	49.23	49.87	52.32	51.09	47.87	49.00	48.43	46.22	46.32	46.27
35 ± 1°C	47.67	49.90	48.78	49.20	51.30	50.25	50.52	54.38	52.45	49.20	50.15	49.68	47.08	48.03	47.56
Mean	44.88	46.96		46.47	48.95		48.18	50.57		46.29	47.33		44.84	45.21	
	F	SE m	CD	F	SE m	CD	F	SE m	CD	F	SE	CD	F	SE m	CD
	value		(p= .05)	value		(p= .05)	value		(p= .05)	value	m	(p= .05)	value		(p= .05)
CO ₂	201.41*	0.10	0.31	405.22*	0.09	0.26	314.62*	0.10	0.28	51.52*	0.10	0.30	7.48*	0.09	0.28
Temperature	200.51	0.16	0.48	243.90*	0.14	0.41	272.21	0.15	0.44	203.17*	0.16	0.48	159.92*	0.15	0.44
(°C)															
Interaction	2.46	0.23	NS	1.87	0.20	NS	8.515*	0.21	0.63	0.42	0.23	NS	3.00*	0.21	0.63
(CO ₂ + Temp)															
ČV (%)	0.87			0.71			0.75			0.84			0.82		

Table 2. Effect of eCO₂ and eTemp on carbohydrate content of Bt cotton foliage

aCO2 – 380 ± 25 ppm; eCO2 – 550 ± 25 ppm; *Significant @ 5 % level of significance; NS – Non significant; DAS – Days after sowing

						Protei	n (mg g⁻¹) c	ontent i	n non-Bt c	otton					
Temperature		30 DAS			45 DAS			60 DAS			75 DAS			90 DAS	
	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂ 21.94 19.41 15.48 14.7 13.44 16.99	Mean
28 ± 1°C	25.32	20.22	22.77	27.50	22.23	24.86	29.71	26.67	28.19	26.58	23.15	24.86	22.35	21.94	22.14
29 ± 1°C	21.26	18.46	19.86	23.94	20.40	22.17	27.55	21.15	24.35	24.11	20.64	22.37	20.43	19.41	19.92
31 ± 1°C	19.92	16.95	18.43	21.24	19.86	20.55	23.92	19.57	21.74	22.34	17.73	20.03	19.51	15.48	17.49
33 ± 1°C	18.57	14.58	16.57	20.80	16.67	18.73	22.92	18.56	20.74	18.45	16.58	17.51	15.09	14.7	14.89
35 ± 1°C	17.37	12.52	14.94	19.21	14.35	16.78	20.11	17.30	18.70	15.28	14.14	14.71	14.97	13.44	14.2
Mean	20.48	16.54		22.53	18.70		24.84	20.65		21.35	18.44		18.47	16.99	
	F value	SE m	CD	F value	SE m	CD	F value	SE m	CD	F value	SE m	CD	F value	SE m	CD
			(p= .05)			(p= .05)			(p= .05)			(p= .05)			(p= .05)
CO ₂	21120.1*	0.05	0.14	10656.7*	0.08	0.24	10408.3*	0.06	0.18	5736.0*	0.06	0.19	887.8*	0.09	0.27
Temperature (°C)	2682.5*	0.07	0.22	851.3*	0.13	0.38	1257.6*	0.10	0.28	953.4*	0.10	0.30	438.7*	0.14	0.42
Interaction	522.3*	0.10	0.31	163.2*	0.18	0.54	253.7*	0.14	0.40	86.1*	0.14	0.43	20.9*	0.20	0.60
(CO ₂ + Temp)															
ČV (%)	0.97			1.41			0.94			1.43			2.39		

Table 3. Effect of eCO₂ and eTemp on protein content of non-Bt cotton foliage

aCO₂ – 380 ± 25 ppm; eCO₂ – 550 ± 25 ppm; *Significant @ 5 % level of significance; NS – Non significant; DAS – Days after sowing

						Pro	tein (mg g	¹) conte	nt in Bt co	otton					
Temperature	30 DAS			45 DAS			60 DAS			75 DAS			90 DAS		
	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean	aCO ₂	eCO ₂	Mean
28 ± 1°C	22.33	20.50	21.41	27.57	23.59	25.58	31.42	28.25	29.83	26.27	22.00	24.13	23.26	19.5	21.38
29 ± 1°C	19.17	17.50	18.33	24.71	21.24	22.97	29.77	24.36	27.06	24.72	20.05	22.38	22.88	17.66	20.27
31 ± 1°C	18.09	17.03	17.56	22.30	19.50	20.90	27.78	22.59	25.18	23.06	17.11	20.08	20.89	16.11	18.5
33 ± 1°C	15.43	15.57	15.50	19.48	17.01	18.24	25.16	21.87	23.51	20.65	16.68	18.66	17.55	14.49	16.02
35 ± 1°C	14.09	13.99	14.04	17.18	16.82	17.00	24.77	20.22	22.49	19.14	15.62	17.38	16.03	13.96	14.99
Mean	17.82	16.91		22.24	19.63		27.78	23.45		22.76	18.29		20.12	16.34	
	F value	SE m	CD	F value	SE m	CD	F value	SE m	CD	F value	SE m	CD	F value	SE m	CD
			(p= .05)			(p= .05)			(p= .05)			(p= .05)			(p= .05)
CO ₂	4356.3*	0.13	0.40	250.8*	0.36	1.06	3669.8*	0.09	0.26	6460.4*	0.05	0.16	1357.7*	0.06	0.19
Temperature (°C)	240.5*	0.21	0.63	135.7*	0.57	1.67	358.8*	0.14	0.41	981.9*	0.09	0.25	816.5*	0.10	0.30
Interaction	36.5*	0.30	0.88	1.0	0.80	NS	102.3*	0.20	0.58	23.5*	0.12	0.35	37.8*	0.14	0.42
(CO ₂ + Temp)															
CV (%)	2.13			6.29			1.25			1.05			1.42		

Table 4. Effect of eCO₂ and eTemp on protein content of Bt cotton foliage

aCO₂ – 380 ± 25 ppm; eCO₂ – 550 ± 25 ppm; *Significant @ 5 % level of significance; NS – Non significant; DAS – Days after sowing

Larval	Du	ration	W	eight	RGR		
Cotton leaf	Non-Bt	Bt	Non-Bt	Bt	Non-Bt	Bt	
Carbohydrates in non-Bt	-0.99	-0.98	-0.99	-0.92	-0.93	-0.95	
Carbohydrates in Bt	-0.99	-0.98	-0.99	-0.92	-0.93	-0.95	
Proteins in non-Bt	0.86**	0.90**	0.88**	0.96**	0.95**	0.95**	
Proteins in Bt	0.91**	0.94**	0.92**	0.98**	0.97**	0.98**	

 Table 5. Correlation between foliar carbohydrate and protein content with larval growth and development of *H. armigera*

duration by 1- 2 days [32]. Similarly *S. litura* larval duration was prolonged over aCO_2 + aTemp by two days under eCO_2 +eTemp on groundnut [5]. As evident from Fig. 4, at eCO_2 larval duration increased over ambient by 13.6-17.18 % in non-Bt and 8.5-17.19 % in Bt cotton. It means per cent increase in larval duration was more in non- Bt at aTemp. And there is no difference in per cent increase in larval duration among Bt and non-Bt at eTemp.

3.11 RGR in Non-Bt Cotton

In the first generation, under eCO₂, RGR decreased by 16.02 % at aTemp and 12.48 % at eTemp. Under eTemp, RGR decreased by 22.98 % at aCO₂ and 19.74 % at eCO₂. The interaction effect of eCO₂ and eTemp has significant effect of 32.59 % in the first, 27.42 % in second and 28.07 % in the third generation. Mean RGR decreased under eCO₂ by 14.63 % at aTemp and 10.90 % at eTemp and under eTemp decreased by 20.66 % at aCO2 and 17.19 % at eCO₂. The mean RGR is significantly influenced by the interaction effect with 29.30 % increase at elevated over ambient conditions (F = 21.38, P < .05). RGR of *H. armigera* in tomato increased by 25.17 % with 5 °C increase in temperature [33]. RGR in H. armigera on chickpea, significantly reduced by 9.53, 11.03, 10.23 and 9.72 % in first, second, third and fourth generation, respectively under eCO₂ over aCO₂ [26].

3.12 RGR in Bt Cotton

In the first generation, RGR decreased under eCO_2 by 15.91 % at aTemp and 7.80 % at eTemp. Bt cotton and eCO_2 caused significant decrease in RGR of American bollworm by 5.7 % [20]. Under eTemp, RGR decreased by 17.91 % at aCO_2 and 9.99 % at eCO_2 . The interaction effect of eCO_2 and eTemp showed significant influence of 24.31 % in first, 23.85 % in second and 22.08 % in the third generation. The mean RGR decreased under eCO_2 by 14.79 % at aTemp and by 7.81 % at eTemp. Mean RGR decreased under eTemp, by 16.89 % at aCO_2

and 10.09 % at eCO_2 . Mean interaction effect showed significant decrease of 23.38 % on RGR of larvae (F = 92.01, P < .05). There is no difference in per cent decrease of RGR among Bt and non-Bt at aTemp (Fig. 5). Under eTemp, and eCO_2 RGR decreased more at non-Bt cotton than Bt cotton implicating that RGR of *H.armigera* is relatively more affected in non-Bt over Bt cotton.

3.13 Correlation Analysis of Host Plant Nutrition with Larval Growth

Correlation was worked out between leaf carbohydrates and proteins at 60 DAS under all the temperatures and eCO_2 and the mean larval growth parameters (Table 5). Mean larval duration, weight and RGR have non-significant correlation with carbohydrates (r= -0.9**). The analysis revealed a significant positive correlation with leaf protein (r= 0.9**) content at P = .01. It was reported that RGR of *H.armigera* had significant positive correlation with protein content and significant negative correlation with starch content of chickpea grown under eCO_2 condition [34].

4. CONCLUSION

In the present study H. armigera larval duration increased with eCO2 and decreased under eTemp and also eCO₂ + eTemp compared to aCO₂ + aTemp. Further, increase of duration is relatively less in Bt cotton over non-Bt cotton by 0.4-1.5 days based on temperature, indicating that under climate change scenario, Bt cotton may get comparatively less affected by larvae. Hence non-Bt cotton may support the larvae for a longer time. Larval weight increased with eCO₂ and decreased under eTemp; but increased with eCO_2 + eTemp compared to aCO_2 + aTemp. Increase of weight is relatively more in Bt cotton over non-Bt cotton by almost 60-75 mg, but was not significant. Longer larval durations, higher larval weights and increased consumption of foliage were reported in Ostrinia furnacalis grown on maize under eCO_2 over the larvae in aCO_2 [35]. Relative growth rate (RGR) decreases with both eCO_2 , eTemp and eCO_2 + eTemp. Decrease in RGR is more in Bt cotton over non-Bt cotton by 4-13 mg g⁻¹ day⁻¹. It was reported that RGR decreased in Bt cotton under eCO₂ in H. armigera [20]. In the present investigation, carbohydrates increased under eCO₂ + eTemp by approximately 20 % which did not vary greatly among non-Bt and Bt cottons having a mere difference of 0.04-0.55 mg g⁻¹. It was established earlier that CO₂ increases total carbohydrates by 27.93 % and decreases N content by 2.58 % in wheat, stimulating H. armigera to consume more in order to obtain enough nutrients and extending their larval duration by 12.43 % [28]. Protein content decreased under eCO₂ in Bt over non-Bt cotton by 1.6-3.3 mg g⁻¹. The observation that leaf protein content has significant positive correlation with RGR (r= 0.9**) explains the reason for reduced growth rate of H. armigera at eCO₂ + eTemp. Further investigations into these aspects will aid in providing comprehensive understanding of climate mediated effects on crops and their pests.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Tebaldi C, Smith RW, Nychka D, Mearns LO. Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multi-model ensembles. J. Clim. 2005;18:1524– 1540.
- Mauney JR, Kimball BA, Pinter PJJr., La Morte RL, Lewin KF, Nagy J et al. Growth and yield of cotton in response to a Free-Air Carbon Dioxide Enrichment (FACE) environment. Agric. Meteorol. 1994;70:49– 67.
- Bhattacharya N, Radin J, Kimball B, Mauney J, Hendrey G, Nagy J et al. Leaf water relations of cotton in a Free-Air CO₂-Enriched environment. Agric. Meteorol. 1994;70:171–182.
- Lincoln DE, Couvet D, Sionit N. Response of an insect herbivore to host plants grown in carbon-dioxide enriched atmospheres. Oecologia. 1986;69:556– 560.

Sravan et al.; JEAI, 43(3): 42-54, 2021; Article no.JEAI.68522

- Shwetha, Sreenivas AG, Ashoka J, Nadagoud S, Kuchnoor PH. Effect of elevated CO₂ and temperature on biochemistry of groundnut and inturn its effect on development of leaf eating caterpillar, *Spodoptera litura* Fabricius. Leg. Res. 2019;42(3):399-404.
- 6. Addicott FT. Aging, senescence and abscission in plants. Phytogerontology. Hort. Sci. 1969;4:114-116.
- Baker DN, Hesketh JD, Duncan WG. The Simulation of Growth and Yield in Cotton. Gross Photosynthesis, respiration and growth. Crop Sci. 1972;12:431-435.
- 8. Karasov WH, del Rio CM. Physiological Ecology:How animals process energy, nutrients, and toxins. Princeton University Press, Princeton; 07.
- Deans CA, Sword GA, Behmer ST. Revisiting macronutrient regulation in the polyphagous herbivore *Helicoverpa zea* (Lepidoptera:Noctuidae):New insights via nutritional geometry. J. Insect Physiol. 2015;81:21-7.

DOI:10.1016/j.jinsphys.2015.06.015. Epub 2015 Jun 30.

- Burrows D. CO₂ rises could fuel obesity as plants "carb-load". 2016. Accessed 17 April 2021. Available:https://www.foodnavigator.com/a rticle/2016/04/14/co2-rises-could-fuelobesity-as-plants-carb-load.
- 11. Marks S, Lincoln DE. Antiherbivore defense mutualism under elevated carbon dioxide levels:a fungal endophyte and grass. Environ. Entomol. 1996;25:618–623.
- Srinivasa Rao M, Srinivas K, Vanaja M, Rao GGSN, Venkateswarlu B, Ramakrishna YS. Host plant (*Ricinus communis* Linn) mediated effects of elevated CO₂ on growth performance of two insect folivores. Curr. Sci. 2009;97(7):1047-1054.
- Coviella CE, Trumble JT. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conserv. Biol. 1999;13(4): 700-712.
- 14. Armes NJ, Jadhav DR, Bond GS, King ABS. Insecticide resistance in *Helicoverpa armigera* in South India. Pesticide Sci. 1992;34:355-364.
- 15. Van Handel E. Rapid determination of glycogen and sugars in mosquitoes. J. Am.

Mosq. Control Assoc. 1985;1(3):299-301.

- 16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin Phenol Reagent. J Biol Chem. 1951;193:265–275.
- Xie H, Wu S, Yu L, Xu Ch, He K. Effects of elevated CO₂ and temperature on two spotted spider mite (Acari:Tetranychidae) feeding on maize. J.Entomol. Sci. 2018;53(2):205-218.
- Yilmaz O, Kahraman K, Ozturk L. Elevated carbon dioxide exacerbates adverse effects of Mg deficiency in durum wheat. Plant. Soil. 2017;410:41–50.
- 19. Soares JC, Santos CS, Carvalho SMP, Pintado MM, Vasconcelos MW. Preserving the nutritional quality of crop plants under a changing climate:importance and strategies. Plant. Soil. 2019;443:1–26.
- Chen F, Wu G, Ge F, Parajulee MN, Shrestha RB. Effects of elevated CO₂ and transgenic Bt cotton on plant chemistry, performance and feeding of an insect herbivore, the cotton bollworm. Entomol. Exp. Appl. 2005;115:341-350.
- Deekshita K. Effect of elevated CO₂ and temperature on the toxicity of certain insecticides against *Spodoptera litura* (Fab.) on sunflower. Doctoral Thesis submitted to ANGRAU, Guntur, A.P., India;2020.
- 22. Haba DLP, Mata DL, Molina E, Augera E. High temperature promotes early senescence in primary leaves of sunflower (*Helianthus annuus* L.) plants. Canadian J. Plant Sci. 2014;94:659-669.
- Yin J, Sun YC, Wu G, Ge F. Effects of elevated CO₂ associated with maize on multiple generations of the cotton bollworm, *Helicoverpa armigera*. Entomol. Exp. Appl. 2010;136:12–20.
- 24. Wang J, Chen Y, Yao M, Li Y, Wen Y, Chen Y, Zhang X, Chen. The effects of high temperature level on square Bt protein concentration of Bt cotton. J. Integ. Agri. 2015;14(10):1971–1979.
- 25. Wu G, Harris MK, Guo JY, Wan FH. Response of multiple generations of beet armyworm, *Spodoptera exigua* (Hübner), feeding on transgenic Bt cotton. J. Appl. Entomol. 2009;133:90–100.
- 26. Abdul KB, Prabhuraj A, Srinivasa Rao M, Sreenivas AG, and Nagangoud A. Effects

of elevated CO₂ associated with chickpea chemistry and its impact on developmental biology of *Helicoverpa armigera* (Hubner). Appl. Ecol. Environ. Res. 2014;12(2):345-353.

- Mallikarjuna S, Rachappa V, Sreenivas AG, Raju GT, Hanchinal SG, Rathod PS. Climate change variables effect on variation in damage and development of *Helicoverpa armigera* (Hubner) (Lepidoptera : Noctuidae) and its host plant chickpea. J. Exp. Zool. India. 2020;23(1):381-386.
- Yin J, Sun YC, Wu G, Parajulee M, Ge F. No effects of elevated CO₂ on the population relationship between cotton bollworm, *Helicoverpa armigera* Hubner (Lepidoptera: Noctuidae) and its parasitoid, *Microplitis mediator* Haliday (Hymenoptera: Braconidae). Agr. Ecosyst. Environ. 2009;132:267-275.
- 29. Srinivasa Rao M, Srinivas K, Vanaja M, Rao GGSN, Venkateswarlu B, Ramakrishna YS. Impact of elevated CO₂ and temperature on castor semilooper (*Achaea Janata* Linn.). Proceedings of national conference on impacts of climate change with particular reference to agriculture organized by TNAU during 22-24th, August 2007. 121-123.
- Srinivasa Rao M, Srinivas K, Vanaja M, Manimanjari D, Rama Rao CA, Venkateswarlu B. Response of multiple generations of semilooper, *Achaea janata* L. (Noctuidae: Lepidoptera) feeding on castor - to elevated CO₂. J. Environ. Biol. 2013;34:877-883.
- Akbar SM, Pavani T, Nagaraja T, Sharma HC. Influence of CO₂ and temperature on metabolism and development of *Helicoverpa armigera* (Noctuidae: Lepidoptera). Environ. Entomol. 2016;45(1):229-36.
- Chen, F., Wu, G, Ge, F. Growth, development and reproduction of the cotton bollworm, *Helicoverpa armigera* (Hubner) reared on milky grains of wheat grown in elevated CO₂ concentration. Acta Entomologica Sinica. 2004;47(6):774-77.
- Dalal PK, Arora R. Impact of temperature on food consumption and nutritional indices of tomato fruit borer, *Helicoverpa armigera* (Hubner) (Noctuidae: Lepidoptera). J. Agromet. 2016;18(1):62-67.

Sravan et al.; JEAI, 43(3): 42-54, 2021; Article no.JEAI.68522

- 34. Abdul KB. Influence of elevated carbon dioxide on tritrophic interactions of chickpea, pod borer and a parasitoid as a model, Doctoral Thesis submitted to the University of Agricultural Sciences, Raichur, Karnataka, India; 2017.
- Xie H, Liu K, Sun D, Wang Z, Lu X, He K. A field experiment with elevated atmospheric CO₂-mediated changes to C4 crop-herbivore interactions. Sci. Rep. 2015;5:13923. DOI:10.1038/srep13923.

© 2021 Sravan et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/68522