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Abstract 
 
A long-standing problem is how to create a short-length presentation for finite groups of degree n. This paper 
aimed at presenting a concrete method for generating presentations for the groups Sm+n, S2m and Smn for all 
m,nZ+ with fewer relations than the existing literature from the presentations of Sm and Sn. The aim is 
achieved by considering finite groups acting on sets and Cartesian product of groups which lead to the 
construction of multiple transformations as representatives of some finite groups. 
 

 
Keywords: Cartesian product; group action; representation; symmetric group; permutation. 
 

1 Introduction 
 
The idea of Group arises in mathematics as “sets of symmetries (of an object), which are closed under 
composition and inverses”. A concrete example is the Symmetric group Sn whose elements consists of all 
possible permutations of n - objects; the group of even permutations in Sn called Alternating group An; the 
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Dihedral group D2n (also called geometric group) which is the group of symmetries of regular n-sided polygon; 
the Orthogonal group O(3) also known as the group of distance-preserving transformations in the Euclidean 
plane that fixes the origin. From geometric point of view, questions such as “Given a geometric object X, what 
is its group of symmetries?” aroused while the same question is reversed in Representation theory such as 
“Given a group G, what objects X does it act on?”. The attempt to answer such question leads to the 
classification of X up to isomorphism. 
 
In group theory, a presentation of a group G is described as a homomorphism from the group into another group, 
say K. It is considered as a compact way of describing the structure of any group. A representation of a group is 
also a presentation such that the target group is given by the group of automorphisms of a vector space. In this 
case, every element of the group is mapped to an invertible linear transformation in the space. Group 
representation theory also serves as a tool to study the structure of groups via their actions on vector spaces. 
Such result can be achieved by considering groups acting on sets such as the Sylow theorems. Also, more detail 
information about group can be obtained when the group act on vector space. This is the basic idea behind 
representation theory. It also served as a powerful tool to obtain information about finite groups with 
applications to many areas of sciences such as signal processing, cryptography, sound compression using Fast 
Fourier Transform (FFT) for finite groups [1,2]. It also provide information about finite groups through the 
methods of linear algebra. 
 
This paper aimed at addressing a long-standing problem for creating short-length presentation for finite groups 
of degree n. An attempt by Bray et al 2007, paved a way for such construction for which some short 
presentations for finite groups were derived. But these presentations can be made shorter with fewer relations 
which leads to the novelty of this paper. 
 

1.1 Preliminaries 
 
Let K be a field, V be a vector space over K and G be a group. Then a representation of G can be define as the 
pair (, V) where  is a homomorphism of G defined by :GGLK(V). Again, a K-algebra can be defined as a 
ring for which underlying Abelian group is a K-vector space with multiplication map RRR. We shall now 
define the following terms (see [3]). 
 
Definition 1.1.1: (Equivalence): The representations :GGL(V) and :GGL(W) are said to be equivalent if 

there is an isomorphism T:VW between the two representations such that 
1 TT gg   for all elements 

gG, i.e. gg TT   , gG. Hence, we write . 

 

Definition 1.1.2: (Irreducible representation): Let )(: VGLG   be a representation. Then  is irreducible 

if the only G-invariant subspace of V are {0} and V. 
 

Definition 1.1.3: (Completely reducible): A representation )(: VGLG   is completely reducible if and 

only if V = V1  V2 … Vn such that the Vi are non-zero G-invariant subspaces and each  |Vi is irreducible 

for all i = 1, 2,…,n. Equivalently, if     (1)  (2)  …  (n) where  (i) are irreducible representations, 

then   is completely reducible. 

 
Definition 1.1.4: (Decomposable): The space V is decomposable if and only if V = V1  V2 where V1 and V2 
are non-zero G-invariant subspaces. Otherwise, V is indecomposable. 
 
Definition 1.1.5: If (1, V1) and (2, V2) are representations, then the linear map T:V1V2 from V1 to V2 is 
called an intertwiner if it satisfies 
 

T(1(g)v) = 2(g)(T(v)) or T1(g) = 2(g)T for all gG [4]. 
 
Lemma 1.1.6: (Shur’s Lemma 1): Supposed K is algebra closed and V is finite dimensional simple 
representation of G, then every self-intertwiner T:VV is a scalar multiple of idV. 
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Note: Two distinct spaces V1 and V2 are said to be isomorphic if there exists a bijective intertwiner T:V1V2 
between them denoted by V1V2. 
 
Lemma 1.1.7: (Shur’s Lemma 2): Let V1 and V2 be simple. Then every non-zero intertwiner of V1 and V2 is an 
isomorphism. Consequently, either V1V2 or HomG(V1, V2) = 0. 
 
We shall now write ϕg for ϕ(g) and the action of ϕg on v∈V by ϕg(v) or ϕgv. 
 
Note: We shall now define a Coxeter group W as a group with the following presentations: 
 

exxxxx ijn

jim )(|,...,, 21
 

 

where enij   and 2ijn  for ji   and the condition that ijn  means there is no any relation of the 

form 
n

ji xx )( . The pair (W,S) with set of generators },...,{ 1 nxxS   is called a Coxeter system. Hence, we 

have the following Coxeter relations: 
 

i. The relation enii   means that exxx iii  21 )()(  for all i; 

ii. If 2ijn , then the generators ix  and jx  commute since ebbaa   with eabab   implies that 

babbbaaabababaab  )()()( . Alternatively, the generators are involutions so that 
1 il xx  and 

thus, 
 

],[)( 112
jijijijijiji xxxxxxxxxxxx  

, 

 
equal to the commutator. 
 

iii. If redundancy among relations most be avoided, then it is necessary to assume that jiij nn   by observing 

that exx   and exy n )(  implies that 

 

xxyxxxyxxy nnn )()()(  . 

 
Alternatively, using conjugate elements, we have the relation 
 

 
mmm yxyyyxyxyy )()()( 11  

 
 

2 Review of Relevant Work 
 

If CZn :  and CZn :  are representations on Zn defined by n

im

m e



2

  and n

im

m e



2



  

respectively, then the sum    can be define by 

 

                    















 

n

mi

n

mi

m

e

e




 2

2

0

0)( . 

 
Now, since representations are considered as special homomorphism, suppose a set X generate the group G. 
Then any representation ϕ of G is uniquely determined by its values on X; [5]. Again if ϕ: G → GL(V ) is any 
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representation and W ≤ V is G-invariant subspace, then the representation ϕ can be restricted so as to obtain a 
new representation ϕ|W : G → GL(W) by setting (ϕ|W )g(w) = ϕg(w), w ∈ W. Thus, since W is G-invariant, then the 
element ϕg(w) ∈ W and ϕ|W is called a sub-representation of ϕ. Also, any degree one representation ϕ: G → C is 
irreducible where G = {1} and if ϕ: G → GL(V ) is a representation, then ϕ = e and if ϕ: G → GL(V) is another 
representation of degree 2, then we say that ϕ is irreducible if and only if there is no common eigenvector v to 
all ϕg with g∈G [5]. 
 
Despite the fact that numerous properties of group representations are presented in various literature, no attempt 
for generating and producing shorter length presentations for finite groups. In the quest to generate short 
presentations for finite groups, [6] derived new families of presentations for finite groups which is based on 
generators and relations from the presentations for the symmetric group Sn and the group of even permutations 
in Sn. The literature also includes presentations with length linear in logn and 2-generator presentations with a 
bounded number of relations independent of n. The authors were able to derived the presentations for finite 
groups Sm+n with |M| + |N| + 12 relations, S2m with |M| + 6 relations and Smn with |M| + |N| + 20 relations based 
on the presentation of Sn as follows: 
 

Theorem 2.1: Let }|{ MAP   and }|{ NBQ   be presentations for the finite groups Sm and Sn with 

m,n≥3 respectively and let the generating set A for Sm contains r and v representing transposition (1 2) and the 
m-cycle (1 2 … m) respectively and the generating set B for Sn contains elements s and w standing for the 
transposition (1 2) and the n-cycle (1 2 … n) respectively. Then 
 

]},][,[],,[],,[],,[],,[],,[],,[,,)(,)(,,,|,,,{ 111332 swwtwsttvrvtrvwvsvwrsrwtvytsrttNMytBA 

 
is a presentation for Sm+n on a generating set that includes the elements y standing for the (m + n)-cycle (1 2 … 
m + n) and t standing for a transposition fo the form (i, i+1). This presentation has |A| + |B| + 2 generators and 
|R| + |S| + 12 relations, and presentation length of at most l(P) + l(Q) + 64 where l(P) and l(Q) are the lengths of 
the presentations P and Q [6]. 
 

Theorem 2.2: Let }|{ MAP   be a presentation for the symmetric group Sn of degree n ≥ 3, such that the 

generating set A contains x and w standing for the transposition (1 2) and the n-cycle (1 2 … n) respectively.  
 
Then 
 

}],[,],[],,[],,[,)(,,|,{ 2121121122  nnnn yxyxwyxwwwyxxyyMyA
 

 
is a presentation for S2n on a generating set that includes the elements y standing for the 2n-cycle (1 2 … 2n) and 
x standing for a transposition fo the form (i, i+1). This presentation has |A| + 1 generators and |R| + 6 relations 
[6]. 
 

Theorem 2.3: Let }|{ MAP   and }|{ NBQ   be presentations for the finite groups Sm and Sn with m,n≥3 

respectively and let the generating set A for Sm contains r and v representing transposition (1 2) and the m-cycle 
(1 2 … m) respectively and the generating set B for Sn contains elements s and w standing for the transposition 
(1 2) and the n-cycle (1 2 … n) respectively. Then 
 

,)(,)(,,)(,,)(,,,|,,,{ 313221111111112 rwtwtrvvtvyrvywtvwvyywwvtwvstNMytBA nmm 
 

],,[],,[],,[],,[,,],,[],,[],,[ 111111221112 vwwvrwwvvwwrrwwrrwtywyrvvytyvyrtrvvtr 
 

]},[],,[],,[],,[ 11 swwvwsvswwrwsr 

 
 
gives a presentation for the group Smn on a generating set which includes the elements y representing the mn-
cycle (1, 2, …, mn) and t representing a transposition of the form (i, i+1). This presentation has |A| + |B| + 2 
generators and |R| + |S| + 20 relations [6] 
 



 
 
 
 

Samaila et al.; JAMCS, 36(9): 37-47, 2021; Article no.JAMCS.75595 
 
 

 
41 

 

It is observed that the generated presentations in this literature can be obtained with fewer relations. This work 
therefore, presents a concrete technique for generating shorter presentations for finite groups with few relations. 
 

3 Methodology 
 
In this section, the method of constructing presentations for the finite group Sn of length linear in n is presented 
as discussed by Bray et al. [6]. But we shall first present the Cartesian product of non-empty sets S1, S2, …, Sn 
called the set of all ordered n-tuples {x1, x2, …, xn | xiSi}. The Cartesian product of these sets is denoted by 
either 

 nSSS  ...21  or by i

n

i
S

1
 . 

 
Now, let the binary operations on the groups G1, G2, …, Gn be multiplication. Regarding the Gi as sets, we can 

form the Cartesian product i

n

i
G

1
  of the groups G1, G2, …, Gn. It is also easy to make i

n

i
G

1
  into a group by 

means of a binary operation of multiplication by components. Hence, new groups can be formed from Cartesian 
product of known groups as presented by the following theorems: 

Theorem 3.1: (see [7]): Let G1, G2, …, Gn be groups. For (x1, x2, …, xn) and (y1, y2, …, yn) in i

n

i
G

1
 , define (x1, 

x2, …, xn)(y1, y2, …, yn) = (x1 y1, x2 y2, …, xn yn). Then i

n

i
G

1
  is a group called the External Direct Product of the 

groups G1, G2, …, Gn under this binary operation. 
 
Remark 3.2: It can be deduced from the above theorem that for the groups G1, G2, …, Gn with orders r1, r2, …, 
rn respectively, we have 
 
|G1  G2  …  Gn| = |G1| |G2| … |Gn| = r1r2…rn where the product G1  G2  …  Gn is a new group which 
may or may not be isomorphic to the group Gr1r2…rn. 
 
Theorem 3.3: (see [7]): The isomorphism Zm  Zn  Zmn is possible if and only if (m, n) = 1. 
 
Now, let G = Sn whose elements are bijections on the set S. Then to obtain a presentation for G, we introduced 

an n-cycle  = (1, 2, …, n) as a new generator which is used from the fact that 1)1,( 
  j

j
i

j jj   

to eliminate the generator i for 1  j < n. If we take an arbitrary generator  and then eliminate further 
redundancy from the relations under conjugation by , then the presentation is given by 
 

  }2/,...,2;)(,)(,)(|,{ 23122 njeee jjn    . 

 

However, if we define 
j

j   , then ejj  2)(   is replaced by .)( 21 ejj    Hence, we have 

the following: 
 
Theorem 3.4: [6]: For all n3, the finite group Sn has the following presentation: 
 

})(,,)(,)(|,...,,{ 211
11

3
1

1
1

1
11

2
2/1 eeee jjjj

nn
n  


 

 
 
with 1 + n/2 generators and n + 2 relations. 
 

Again, let 10|  niS in   where  is any bijection from 1 to n such that ,0 en   the identity 

element of G. Then we shall have the following relations: 
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If ),1,(  iii  then 

 

Relation 1: ;)( 2 ei 
 

 

Relation 2: for all i, eii 
3

1)(  ; ))2,1,()(),1,2,(( 1
11  
 iiiiii iiii  ; 

 

Relation 3: for all i, j, |i – j| ≥ 2, ;)( 2 eji 
 

 

So that if ,10|2  niP i  iijjiQ ji  ||,,)( 2  and 

,10|)( 3
1   niR ii  taking M as a finite group such that ,RQPM   then any finite 

group ,| MXGn   }1|{ niX i    is isomorphic to Sn. 

 
From the methods presented above, the presentations for Sm+n, S2n and Smn with less relations are obtained in the 
next Section. 
 

4 Results and Discussion 
 
Following the methodology above, we present in this section the key idea for obtaining short presentations for 
finite groups Sm+n and Smn for all m,nZ+ from the presentations of Sm and Sn. When m = n, we avoid repetition 
and this enable us to efficiently construct a shorter presentation for the group S2m from the presentation of Sn. 
Hence, an inductive process for obtaining a presentation for finite groups is achieved. 
 

Theorem 4.1: Let }{ MXSm   and }{ NYSn   be presentations for Sm and Sn with generating sets X and 

Y respectively, where M and N denote the set of relations for Sm and Sn. Let ,  be transpositions and ,  be 

rotations through 
k

2
  rad such that X ,  and Y , . Then the presentation for Sr where r = m+n, is 

given by 
 

 }],,[],,[],,[],,[],,[],,[,)(,)(,,,,,,{ 111332  NMYX
 

 

where   represent the m+n – cycle (1, 2, …, m+n) and v represent a transposition ).1,( ii  The given 

presentation has |X| + |Y| + 2 generators and |M| + |N| + 10 relations. 
 
Proof: Suppose G is the group described by the given presentation. Define ,,,G by 
 

  ,1   ,)( ii    ,1   
jj )( 
 

 
for all i = 1, 2, …, m-1 and j = 1, 2, …, n-1. Then the presentation is transformed into a 2-generator presentation 

in terms of   and   subject to at most |M| + |N| + 10 relations. Now, defined a homomorphism rSG :  

from G to Sr where nmr   and 
 

  )1,()(  ii  for all transpositions ;G   );,...,2,1()( m   

  );,...,2,1()( nmmm   ).,...,1,,...,2,1()( nmmm   

Then the permutations satisfy the above relations in G. Again, if we let ,1  m  ,1
ii

im


    

,1  m  
jj

jm  
 1  for all mi 1  and mj 1 , then these relations satisfy the Coxeter 
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relations on the group Sr and generate G. Again from the relations 1 to 3 (Section 3), if , ji  then 

1  ij . Thus, 

 

  vvv 11111 )(],[     = vv 1111    = vv 11    

    = vv )()( 1111    

    = vv 1
 where 

1  and 

  vvv  11)(],[   = vv  111 
 = vv 1

 

    = vv )()( 1  
 

    = vv 1
 where   . 

But if H and K are subgroups of G such that 
1 H  and ,K  then obviously, .KH   

 

Similarly, vvv 11 ],[     where  1  and vvv 1],[    where    so that if 

 1M  and N , then .NM   

 
 

Furthermore, by hypothesis, the subgroup  ivK   Sm and satisfies the Coxeter relation and similarly the 

subgroup  imvL  is isomorphic to Sn and satisfy the Coxeter relation. Thus, the element iv  for 

nmi 1  satisfies Coxeter relations and since ,)()( 33 e   we have ev ii 
3

1 )(   for all 

.11  nmi  The relation ejiji  2),(],[   holds for i<j<m from the presentation of Sm and 

holds for m<i<j from the presentation of Sn and if i<m<j, then it follows from the relations 

e ],[],[],[  . Similarly, since   and 
1  generate a subgroup K of index m in 

mS  ,  which contain the involutions mvvv ,...,, 21  and   and  1
 generate a subgroup L of 

index n in nS  ,  which contain the involutions nmmm vvv  ,...,, 21 , the relation 

e  ],[],[],[],[ 11   implies that the element v centralizes  mvvv ,...,, 21  and 

  nmmm vvv ,...,, 21  so that emi ],[   and ejm ],[   for all mi 1  and .nmjm   
 

Hence, the involution nmmm vvvvv  ,...,,,...,, 121  generates a subgroup that satisfies the Coxeter relations for 

Sr. But the relations in Sm (and Sn) implies that each of its elements can be expressed as a word in 

nmmm vvvvv  ,...,,,...,, 121  and the relation e  1
 imposed the same condition for  . Thus the same 

involution generates G. Hence, rSG   and the result follows. 

 
Next, we consider the case m = n such that Sr = Sm+n = S2m. 
 
Corollary 4.2: Let Sm = {X|M} be a presentation for Sm, m3 and let ,X such that  = (i, i+1) and  = (1, 2, 
…, m). Then 
 

  }],[],,[],,[,)(,,|,{ 21 miirrMX  
 

is the representation for Sr where r = 2m, 1 ≤ i ≤ m and a generating set that includes ),...,2,1( r , |X| + 1 

generators and |M| + 5 relations. 
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Proof: This follows directly from Theorem 4.2.1 above with m = n and the fact that if 
1 w  and w  , 

then 
 

    wwwww 111],[ , 
21111112 )())((],[    wwwwwwwww  and 

so on, for all 
iw . 

 
The next result is derived from Cartesian product of two groups such that given two groups H and K, then the 
product HK is given by the set 
 

  }.,:{ KkHhhkxHK   
 

Theorem 4.3: Let }{ MXSm   and }{ NYSn   be presentations for the groups Sm and Sn, m,n3 with 

generating sets X and Y respectively, where M and N denote the set of relations for Sm and Sn. Let ,  be 

transpositions and ,  be rotations through 
k

2
  rad such that X ,  and Y , . Then the 

presentation for Smn is given by 
 

],,[],,[,)(,)(,,)(,,,,,,{ 2231322111112 vvvvvNMYX i    

  ],,][,[],,[],,[],,[,,],,[ 1111112211   vv  

 ]},[],,[],,[ 11  

 
 

where   represent the mn – cycle (1, 2, …, mn) and v represents a transposition ).1,( ii  The given 

presentation has |X| + |Y| + 2 generators and |M| + |N| + 18 relations. 
 

Proof: Supposed G is the finite group defined by the given presentation, define a function mnSG :  from 

G to Sr such that ),1,( ii  ),,...,2,1( m  ),1,( jj

),,...,2,)...()1(2,...,2,2)()1(1,...,1,1( nmmmmnmmnm   ),1,( kkv   and 

).,...,12,2,...,2,1,,...,2,1( mnmmmmm   
 

Then   is a homomorphism and for some m, n, mw  and nw . In particular, )(  and )(  

generate a subgroup H of Sm such that mSH   and the conjugate of H defined by the multiples of   generate 

the direct product of n-copies of Sm. Now, let 1v , ,1
ii

iv  
   

ii
i  
 1  and 

i
j

i
jim vv  

   

for mi 1  and nj 1  in G. Then we shall show that the (mn – 1) elements qvvv ,...,, 21 , q=mn – 1 

satisfies the Coxeter relations on Smn and also generate the group G. To see this, note that 

   1111 )( vvv  where    is an mn – cycle and 
1  v  is an (mn – 1) 

– cycle,   2211 )()( v  where    is an mn – cycle. Thus, both the product 

 1211121 )()(   wwvvwvw , 
21 )(    is an (mn – 1) – cycle, and 

jiwvww  1111    are mn – cycles. 

Now, by the hypothesis on Sm, the elements mvvv ,...,, 21  and qimimim vvv  ,...,, 21  respectively generate the 

subgroups H and K of Sm such that mSH  and mSK   for .1 ni   Again, the commutator relations 

 

  e  ],[],[],[],[ 1111 
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describe the subgroup H as   ,,...,, 21 mvvvH  which commute with its conjugate 

  mmm vvvH 2211 ,...,,  under . The relations 

 

 e  ],[],[],[],[ 11 
 

 

implies that the subgroup H is centralized by the set    1
1 ,N  such that 

 

  n  ],:,[ 1  and nSN   ,2 . 

 
Hence, if Ni = {HSm: H is a subgroup}, then N2 permutes all the subgroups Ni by conjugation which follows 
from the natural action of the group Sn on the index set {1,2,…,n}. 
 

Next, the transposition v satisfy the relation evi 2)(  for all i and the relations 

evvv   31322 )()(   implies that evv ii 
3

1 )(  for all 11  mi  and then conjugation by 

multiples of  gives all the remaining relations. Again, to see that evvvv jiji  2)(],[  for 

mnji 1 , we first consider the presentation for Sm. If ,mji   then the result follows directly from 

the presentation for Sm and also conjugation by 
i  gives the same result for mkjikm )1(   for some 

k . Also, evv ji ],[  is true if both iv  and jv  lie in different conjugate sets of the subgroup H since 

the conjugates commutes with each other. And the relations evv   ],[],[ 1  ensure that iv  commute 

with all the elements in .,...,,, 21
1  

mvvv  The rest of the relations will follow if 

evvv    11221111],[  gives the conjugation of   on each 

successive pair of the elements in }.,...,,{ 21 mnvvv  Thus, since 
1  centralizes ,  we have 

 

  2
111

1 vv     
 

and we find by induction on i, for ,21  mi that 

 

  ))(()( 1111111
1


   iii vvv  

   2
1

2
1

1
1

1
1 )()( 










  iiii vvvvvv 
 

 

since v commute with each vi, 1v  commute with .2iv  Also, 

 

  mm vv  


1221
1   and 1

1
1

111


  mm vvvv 
 

 

and since   centralizes ,m   we find that 

 

11
111







  jim
i

j
ii

j
ii

j
i

jim vvvvv 
 

 

for ni 1  and .1 mj   
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Again, conjugation by powers of   satisfy all the relations of the form evv ji ],[  for .1 mnji   

Thus, the 1mn  involutions },...,,{ 121 mnvvv  generate subgroups that satisfy the usual Coxeter relations for 

Smn. 
 
Finally, it can be shown that each generator of G can be expressed as a word in vi by first considering the 

relations in Sm. Obviously, the set M satisfy this condition for each element in the set X. In particular, 1v  

and 

 121
1)3(3)2(2 ...))...()(( vvv mm

mmmm


  
 

 
which follows that 
 

 1221 ... 
  imimmimmim

ii vvvv
 

 

for ni 1  and similarly, mvv   and mi
ii vv )1( 

   for .21  ni  Hence, we deduced from 

1)(  nv  and 1221 ... 
  imimmimmim

ii vvvv  that 

 

 12211211212)1(1)1(1 ...)...()......()...( vvvvvvvvvvvvvv mnmnmmmmmnmnmmn  
 

 

and from the relations 
m   and ,)( 111 mv    it shows that both elements  and  can be 

expressed as words in the set vi. Hence, the involutions },...,,{ 21 mnvvv  generate G so that mnSG   and the 

result follows. 
 

5 Conclusion 
 
This work presented some new families of group presentations by generators and relations. The result gives 
shorter presentations for the finite groups Sm+n, S2n and Smn with |M| + |N| + 10 relations, |M| + 5 relations and 
|M| + |N| + 18 relations respectively (Theorem 4.1, Corollary 4.2 and Theorem 4.3). For demonstration purpose, 

with n ≥ 3, },{ X ,  },,{ Y   and },,,{ Z , we have: 

 

 ;)(: 232
3  eXS   

;)(: 342
4  eXS   

;)(,: 212352
5   eeYS   

;,: 11111252
6   eeZS   

;)(,: 21111111222
7   eeZS   and 

;,)(: 1411111222
8   eeZS   

 
As group representation theory shows that new representations can be constructed from direct product or tensor 
product of two or more representations, this work clearly presents a shorter and simpler method for building 
representations for the finite groups Sm+n, S2n and Smn from the representations of Sm and Sn with less number of 
relations than the existing literature. 
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