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Abstract 
Finding a suitable space is one of the most critical problems for dimensional-
ity reduction. Each space corresponds to a distance metric defined on the 
sample attributes, and thus finding a suitable space can be converted to de-
velop an effective distance metric. Most existing dimensionality reduction 
methods use a fixed pre-specified distance metric. However, this easy treat-
ment has some limitations in practice due to the fact the pre-specified metric 
is not going to warranty that the closest samples are the truly similar ones. In 
this paper, we present an adaptive metric learning method for dimensional-
ity reduction, called AML. The adaptive metric learning model is developed 
by maximizing the difference of the distances between the data pairs in 
cannot-links and those in must-links. Different from many existing papers 
that use the traditional Euclidean distance, we use the more generalized 

2, pl -norm distance to reduce sensitivity to noise and outliers, which incor-
porates additional flexibility and adaptability due to the selection of appro-
priate p-values for different data sets. Moreover, considering traditional me-
tric learning methods usually project samples into a linear subspace, which is 
overstrict. We extend the basic linear method to a more powerful nonlinear 
kernel case so that well capturing complex nonlinear relationship between 
data. To solve our objective, we have derived an efficient iterative algorithm. 
Extensive experiments for dimensionality reduction are provided to demon-
strate the superiority of our method over state-of-the-art approaches. 
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1. Introduction 

Metric learning, which aims to supply a metric to measure the distance or simi-
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larity between the data, is a vital issue in the field of computer vision or pattern 
recognition. Metric learning has enormously wide spectrum of applications, 
such as classification [1] [2], person re-identification [3] [4], object tracking [5] 
[6], image retrieval [7], feature reduction [8] [9] and clustering [10] [11] [12] 
[13]. It should be noted that the performance of all these applications depends in 
part on the effectiveness of metric learning. Although some classical distance 
metric methods are proposed, such as Euclidean distance and cosine similarity, 
they do not distinguish the features with different importance. A great distance 
metric method should be able to apprehend the characters of the data of interest 
and enhance the robustness. 

According to different learning methods, distance metric learning can be divided 
into supervised learning, weakly-supervised learning and unsupervised learning. In 
unsupervised case, distance metric learning obtains the low-dimensional repre-
sentation by performing dimensionality reduction of the original data [14] [15] 
[16] [17]. In supervised case, some distance metric learning based methods 
adopt the training sets with label information and solve the objective functions 
to obtain a metric matrix [18] [19] [20] [21] [22]. Neighbourhood component 
analysis (NCA) [23] is a well-known supervised distance metric method, it uses 
stochastic nearest neighbors to perform metric learning. Maximally collapsing 
metric learning (MCML) [24] is another well-known supervised distance metric 
method, which tries to collapse all examples in the same class to a single point 
and push examples in other classes infinitely far away. Recently significant atten-
tion has been dedicated to the matter of learning a metric in the weakly-supervised 
case by using pairwise constraints: must-links and cannot-links [25] [26] [27]. In 
particular, Xiang et al. [10] learn the metric matrix by minimizing the ratio of 
the squared 2l -norm of two matrices, which describe the distances between 
pairs of point in must-links and those in cannot-links. Liao et al. [28] propose a 
two-stage metric learning method by combining 2,1l -norm with LDA. To ad-
dress the sensitive problem to outliers in [10], Liu et al. [26] introduced the 
not-squared 2l -norm instead of the squared 2l -norm in objective function. 
The above approaches try to produce a homogenous metric for all datasets. In 
fact, it is virtually impossible to find a metric that matches all training data. Re-
cently, 2, pl -norm is used to replace 2l -norm or 2,1l -norm as distance metric 
for improving the robustness, such as DCM [29] and 2, pl -PCA [30], 2, pl
-2-DPCA [31], and RDS [32]. In [32], robust discriminant subspace (RDS) 
learning model is developed for dimensionality reduction. It might be flexible to 
choose appropriate p in keeping with the data and thus obtains more robust me-
tric learning performance. 

Dimensionality reduction is a critical step in pattern recognition systems. It 
transfers the original data from a high-dimensional space to a low-dimensional 
space through mathematical transformations [33]. Many strategies are adopted 
for dimensionality reduction, which can be loosely classified into two categories: 
linear dimensionality reduction and nonlinear dimensionality reduction. Prin-
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cipal component analysis (PCA) [34] and linear discriminant analysis (LDA) [35] 
are the two classical linear dimensionality reduction methods and have been 
commonly used in different areas due to their relative effectiveness and simplic-
ity. Zhao et al. [36] combine PCA with LDA, and propose a joint framework to 
extract discriminant information. LDA employs 2l -norm to formulate objective 
function and is sensitive to outliers. To deal with this problem, Zhao et al. [37] 
use 2,1l -norm to develop a new LDA formulation for improving robustness. Al-
so, some other linear dimensionality reduction approaches using local informa-
tion of data have been proposed, such as locality preserving projections [38] and 
local linear embedding [39] [40]. These methods achieve significant discrimi-
nant performance to deal with linear problems. However, once the complexity 
and dimensionality of data increase, the distribution of data is typically nonli-
near and additional feature information is probably going to be hidden within 
the nonlinear structure. The linear versions of PCA and LDA only retain the li-
near structure in learning subspace, which may result in poor perfor_mance. To 
compensate the shortcoming of linear dimensionality reduction methods, some 
researchers introduce kernel trick into PCA and LDA, and propose kernelized 
versions, such as kernel PCA [41] and kernel LDA [42]. 

In this paper, we propose an adaptive metric learning method for dimensio-
nality reduction (AML). Inspired by [26], we formulate our objective function by 
using pairwise constraints: must-links and cannot-links. Different from [26], we 
construct the metric learning model for dimensionality reduction by minimizing 
the distances between pairs of points in must-links and maximizing those in 
cannot-links below the orthogonal constraint. Meanwhile, we use 2, pl -norm to 
measure the similarities, which can enhance the robustness of the model to out-
liers. Moreover, we present a kernel version of AML (KAML) to deal with the 
nonlinear problems. The main contributions of this paper are summarized as 
follows: 

• 2, pl -norm, instead of 2l -norm is used as distance metric in the proposed 
method, which is robust to outliers. Meanwhile, it might be flexibly chooses ap-
propriate p in keeping with the data and thus obtains better metric learning per-
formance.  

• An extension of the presented method is proposed in the reproducing kernel 
Hilbert space. The nonlinear relationship between samples can be captured to 
improve the discriminative power.  

• Developing an efficient algorithm to solve the proposed framework and dis-
cussing the efficiency of proposed approach in aspect of parameter sensitivity.  

• Experiments on various clustering tasks show that the proposed method can 
achieve competitive performance compared to the state-of-the-art approaches.  

The rest of this paper is organized as follows. In Section 2, we introduce the 
adaptive metric learning method for dimensionality reduction. In Section 3, we 
elaborate the details of an extension of the presented method. In Section 4, expe-
riments are designed to validate the proposed method and analyse parameter 
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sensitivity. Finally, we conclude this paper in Section 5. 

2. Linear Adaptive Distance Metric Learning  

In this section, we present the linear adaptive metric learning model (AML) for 
dimensionality reduction and the effective optimization algorithm. 

2.1. Objective Function Construction 

Suppose we have a high-dimensional data set which consists of n samples 

{ }
1

nD
i i

R
=

∈x , and two sets of pairwise constraints are defined as:  

( ){ }
( ){ }

, | if and are in the same class

, | if and are in the different class

i j i j

i j i j

 =


=

x x x x

x x x x




 

where   and   are named as must-links and cannot-links, respectively. 
Because of the large amount of noise, outliers and redundant features in the 

high-dimensional data, it makes the algorithm performance degradation. A 
straightforward idea is to use a linear transformation D dR ×∈W  such that each 
sample ix  in D-dimensional space is mapped into iy  in d-dimensional space, 
as follows:  

( )TD d
i i iR R d D∈ → = ∈x y W x   

Under this transformation, the 2, pl -norm distance of the point pairs in   
can be calculated as follows:  

( )
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w i jd
∈

= −∑
x x

W x x
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                  (1) 

Correspondingly, for the point pairs in  , we have  

( )
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2
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p
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∈

= −∑
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W x x
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                   (2) 

Our goal is to minimize the wd  and maximize cd  under the orthogonal 
constraint. The objective function can be formulated as:  

( )
( )

( )
( )T T

2 2
, ,

max
i j i j

p p

i j i jΤ = ∈ ∈

− − −∑ ∑
W W I x x x x

W x x W x x
 

       (3) 

Note that some existing methods use side information to learn the distance 
metric. They adopt the 2l  or 2,1l -norm to measure the distance between two 
data points. Unlike these methods, the model in Equation (3) uses the 2, pl
-norm as the distance metric function, which possesses flexibility in choosing the 
appropriate p according to different data and has stronger robustness. 

2.2. Optimization Algorithm 

The existence of 2, pl -norm makes it difficult to solve the objective function (3) 
directly. [30] adopts an iterative algorithm for solving the objective function in 
the form of 2, pl -norm. The similar approach is adopted in [43] to solve the LDA 
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minimization problem based on 2, pl -norm ( 0 2p≤ ≤ ). Inspired by these pa-
pers, we investigate the problem and give an efficient iterative method for solv-
ing our objective function. 

Let ( ) 2T

2

p

ij i jd x x
−

= −W , then Equation (3) can be transformed to  

( )
( )

( )
( )2 2T T

2 2
, ,

max
i j i j

ij i j ij i jd d
Τ = ∈ ∈

− − −∑ ∑
W W I x x x x

W x x W x x
 

       (4) 

Denote L  and L  as the indicator matrices of the must-links and can-
not-links, respectively:  
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With the indicator matrices, the objective function (4) can be expressed as:  

( ) ( ) ( ) ( )2 2T T

2 2, ,
max , ,ij i j ij i j

i j i j
i j d i j d

Τ =
− − −∑ ∑

W W I
L W x x L W x x      (5) 

We introduce two auxiliary variables L̂  and L̂  by defining  

( ) ( )ˆ , , iji j i j d=L L                        (6) 

and  

( ) ( )ˆ , , iji j i j d=L L                       (7) 

Moreover, we assume  

( )( )ˆ ˆdiag sumw = −L L L                     (8) 

( )( )ˆ ˆdiag sumc = −L L L                      (9) 

( )Sum .  is a vector that represents the sum of each row of the matrix. Then 
the optimization problem (5) becomes:  
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    (10) 

where c w= −D L L . 
By observing Equation (10), we can see that ijd  is not independent of the 

matrix of W . Hence, we propose an effective iterative strategy to optimize ijd  
and W  alternately. That is, when ijd  is fixed, the W  is updated; and then 
fixing W , updating ijd . Specifically, suppose that in t + 1 iteration, t

ijd  is 
given, then we know matrix D , so we can solve for W  by maximizing Equa-
tion (10). After that, we use the updated W  to update ijd , and this iterative 
process is repeated until the algorithm converges. Algorithm 1 summarizes the 
optimization procedure. 
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Algorithm 1. AML algorithm. 

Input: Data set D nR ×∈X ; The reduced dimension d, parameter p. Output: optimal 
transformation matrix D dR ×∈W .  

1: Initialize W  by using LDA [35]; 

2: Repeat step 3-step 5; 

3: Update t
ijd  by using ( ) 2T

2

p

ij i jd
−

= −W x x ; 

4: Update tW  by using the eigenvalue decomposition of Equation (10); 

5: 1t t= + ; 

6: Until Convergence; 

7: Return transformation matrix W . 

3. Nonlinear Adaptive Distance Metric Learning  

In this section, we present the nonlinear adaptive metric learning model for di-
mensionality reduction and the effective optimization algorithm. 

3.1. Objective Function Construction 

Propelled by nonlinear generalization performance of kernel techniques in me-
tric learning, we present a kernel version of AML, namely KAML in short. Es-
sentially, KAML forms the distance metric in a reproducing kernel Hilbert space. 
That is, there exists a reproducing kernel Hilbert space H and a nonlinear map 

: DR Hϕ → , such that we have ( )ϕ→x x . After playing out the nonlinear 
map, the nonlinear adaptive metric learning issue can be planned as the follow-
ing maximization issue:  

( )
( ) ( )( )

( )
( ) ( )( )T T

2 2, ,

max
i j i j

p p

i j i j
ϕ

ϕ ϕϕ ϕ ϕ ϕ
∈ ∈

− − −∑ ∑
W

x x x x

W x x W x x
 

   (11) 

where ( )1, , dϕ ϕ ϕ=W W W  is the transformation matrix in the feature space. 

Denoting ( ) ( )( ) 2
T

2

p

ij i jdϕ
ϕ ϕ ϕ

−
= −W x x  and following the same algebraic cal-

culus of AML, Equation (11) can be transformed to  

( ) ( )( )T Tmax Tr
ϕ

ϕ ϕ ϕϕ ϕ
W

W X D X W                 (12) 

where the construction of ϕD  is similar to D  in Equation (10). 
According to the Representer Theorem [44], we define the coefficients as 
( )1, ,k k d= α , ϕW  can be represented as a linear combination of vectors 
( )ϕ x  in the space H:  

( ) ( )
1

n

k ki i k
k

ϕ ϕ ϕ
=

= =∑W x xα α                   (13) 

where the ( ) ( ) ( )( )1 , , nϕ ϕ ϕ=x x x  and ( )T
1, ,k k kn= α α α . 

Using the Gaussian kernel function to define the kernel similarity between the 

samples ix  and jx  as ( ) ( ) ( ) ( )2T

2
, expi j i j i jK ϕ ϕ σ= = − −x x x x x x , 

where σ  is the kernel width, which control the radial range of the Gaussian 
kernel function. According to Equation (13), we get:  
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( )T T
ϕ ϕ =W X Kα                        (14) 

where ( )T
1, , d= α α α  and ( ) ( )T

k kϕ ϕ=K X X  is the kernel matrix. 
Combining Equation (14), problem Equation (12) can be rewritten as:  

( )T Tmax Tr ϕKD K
α

α α                      (15) 

It can be seen that finding the transformation matrix ϕW  is equivalent to 
find a coefficient matrix α . 

3.2. Optimization Algorithm 

Inspired by [45], we use the eigenvectors decomposition of the matrix K:  
T=K U UΓ                          (16) 

where T =UU I . Combining Equation (15) and Equation (16), we further have:  

( ) ( )TT T Tmax Tr ϕU U D U U
α

α αΓ Γ                 (17) 

Suppose T= Uβ αΓ , we have:  

max T TU D Uϕ
β
β β                       (18) 

The optimization problem (18) can be solved by the eigenvalue decomposi-
tion. β  is composed of d eigenvectors that correspond to the d largest eigen-
values of the matrix T

ϕU D U , For a given β , there exists α  satisfying Equa-
tion (17) in the form 1−=Uα βΓ . For clarity, the detailed procedure is summa-
rized in Algorithm 2. 

 
Algorithm 2. KAML algorithm. 

Input: Data set D nR ×∈X ; the reduced dimension d, parameter p, σ . Output: Coeffi-
cient matrix n dR ×∈α .  
1: Construct the kernel matrix K ; 
2: Decompose K  by using eigenvectors decomposition; 
3: Initialize α  by using KDA[42]; 
4: Repeat step 5-step 9; 
5: Update kϕW  base on (13) ; 

6: Update ( ) ( )( ) 2
T

2

p

ij i jdϕ
ϕ ϕ ϕ

−

= −W x x ; 

7: Update β  by using the eigenvalue decomposition of (18); 

8: Update α  by 1−=Uα βΓ ; 

9: 1t t= + ; 
10: Until convergence; 
11: Return coefficient matrix α . 

4. Experiments  

In the experiments, six datasets, including three UCI datasets (wine, breast and 
the lonosphere dataset), two benchmark image datasets (coil-20 [46] and Cal-
tech101 [47]), one palmprint dataset, are adopted to test the performance of the 
proposed AML and KAML on classification. To display the competitive perfor-
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mance of our methods, we compare them with some existing methods: PCA [34], 
LDA [35], Discriminant component analysis (DCA) [7], Learning a Mahalanobis 
distance metric (MDL) [10], Large Margin Nearest Neighbor Classification 
(LMNN) [48], A new formulation of linear discriminant analysis for robust di-
mensionality reduction (RLDA) [37], MCML [24], NCA [23]. All these com-
pared methods are implemented by following the original papers. The 1-NN 
classifier is applied to the projected samples for classification. All the compared 
methods are implemented in MATLAB (R2019a). The computer processor is 
Intel (R) Core (TM) i7-7700HQ CPU @ 2.80GHz 2.80 GHz, and the memory is 
16-GB. 

4.1. Data Description 

The six databases include: 
UCl databases: We evaluate our methods on three UCI databases, which in-

clude Breast, Ionosphere, and Wine databases. We choose half of the subjects for 
training and the other half for testing. 

COIL-20 object dataset [46]: It contains 20 different objects and each object 
has 72 images taken at pose intervals of 5 degrees. All images have a pixel size of 
64 × 64. In our experiments, we randomly choose ( )10,20,30Ts Ts =  images of 
each subject for training, and the others are used for testing. Figure 1(a) shows 
some image examples on this dataset. 

Caltech101 [47]: The Caltech101 dataset consists of a total of 9146 images and has 
101 different object categories. Each category has about 40 to 800 images and each 
image is about 300 × 200 pixels. In this paper, these images are cropped and resized 
to 60 × 50 pixels. In our experiments, we randomly select ( )10,20,30Ts Ts =  im-
ages of each subject for training, and the others are used for testing. 

 

 
Figure 1. Some image examples on the COIL-20, Caltech 
101 and 2D plus 3D palmprint databases. 
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2D plus 3D palmprint database [49]: The 2D plus 3D palmprint database 
contains 400 different palms with a total of 8000 samples, which means that 
there are two independent sessions of 10 palm samples per session. The interval 
between the two sessions is approximately 30 days. Each sample consists of a 2D 
region of interest and its corresponding 3D region of interest. All samples are 
cropped to a size of 64 × 64. In this paper, the performances of the algorithms 
are evaluated using 2D images. To point out various evaluation purposes, we di-
vided the experiments into two groups. In each group, there are 10 palm print 
samples for each palm, two of which are randomly assigned for training and the 
other eight for testing. 

4.2. Classification Results Comparisons 

In this section, we show the classification results of various methods on different 
databases. The best combination of parameters is chosen for our methods. We 
repeat the experiments for 10 times and the average value is taken. The results 
are shown in Tables 1-4. 

 
Table 1. Classification rates for different approaches on the UCI database (mean ± std 
(%)). 

 Breast Wine Ionosphere 

PCA 95.02 ± 1.20 95.45 ± 1.07 87.89 ± 1.17 

LDA 95.42 ± 0.96 98.18 ± 2.02 88.63 ± 2.66 

DCA 94.59 ± 1.33 96.93 ± 1.32 88.57 ± 3.06 

MDL 95.39 ± 0.67 98.52 ± 1.32 89.37 ± 3.06 

LMNN 94.56 ± 1.01 97.05 ± 1.71 88.57 ± 2.88 

RLDA 93.58 ± 1.19 88.75 ± 2.36 89.77 ± 2.02 

MCML 95.87 ± 0.92 97.95 ± 1.17 86.52 ± 2.93 

NCA 94.93 ± 0.83 96.93 ± 1.61 88.12 ± 1.92 

AML 95.70 ± 0.75 98.98 ± 0.98 91.37 ± 1.23 

KAML 96.27 ± 0.67 95.23 ± 0.74 92.34 ± 1.29 

 
Table 2. Classification rates for different approaches on the Coil-20 database (mean ± std 
(%)). 

 Ts = 10 Ts = 20 Ts = 30 

PCA 89.15 ± 1.25 94.60 ± 0.55 97.23 ± 0.64 

LDA 91.04 ± 1.39 94.80 ± 1.05 96.48 ± 1.07 

DCA 5.37  ± 0.65 90.24 ± 1.09 94.26 ± 0.77 

MDL 85.80 ± 1.69 90.01 ± 1.48 91.56 ± 1.52 

LMNN 90.56 ± 1.32 95.50 ± 0.44 98.56 ± 0.55 

RLDA 88.53 ± 1.25 94.39 ± 0.61 97.27 ± 0.62 

MCML 89.29 ± 1.22 94.40 ± 0.57 97.21 ± 0.54 

NCA 81.87 ± 2.14 80.27 ± 4.34 70.70 ± 20.03 

AML 93.07 ± 1.30 97.51 ± 0.78 99.45 ± 0.09 

KAML 92.74 ± 1.39 95.83 ± 0.52 98.20 ± 0.56 
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Table 3. Classification rates for different approaches on the caltech101 database (mean ± 
std (%)). 

 Ts = 10 Ts = 20 Ts = 30 

PCA 46.93 ± 1.24 56.88 ± 0.70 62.76 ± 0.43 

LDA 53.66 ± 1.02 49.85 ± 0.61 39.02 ± 24.20 

DCA 23.76  ± 1.65 41.76 ± 2.62 51.08 ± 1.42 

MDL 7.50 ± 1.50 13.89 ± 1.90 62.82 ± 1.60 

LMNN 49.92 ± 0.95 56.81 ± 1.34 63.11 ± 1.43 

RLDA 50.79 ± 0.72 58.05 ± 0.75 62.92 ± 0.52 

MCML 23.78 ± 2.39 27.97 ± 1.98 31.31 ± 1.18 

NCA 39.06 ± 0.72 42.01 ± 3.34 38.59 ± 2.11 

AML 61.22 ± 0.88 68.95 ± 1.02 63.79 ± 0.43 

KAML 14.67 ± 5.65 56.43 ± 0.73 60.24 ± 0.78 

 
Table 4. Classification rates for different approaches on the 2D plus 3D palmprint data-
base (mean ± std (%)). 

 Session1 Session2 

PCA 98.09 ± 0.28 98.70 ± 0.27 

LDA 96.35 ± 0.37 97.68 ± 0.34 

DCA 95.66 ± 0.44 97.00 ± 0.02 

MDL 94.74 ± 0.68 96.48 ± 0.22 

LMNN 98.59 ± 0.59 98.24 ± 1.10 

RLDA 91.02 ± 0.75 92.71 ± 0.58 

MCML 97.44 ± 0.31 98.31 ± 0.32 

NCA 91.82 ± 1.82 91.95 ± 2.40 

AML 98.63 ± 0.20 99.13 ± 0.23 

KAML 96.34 ± 0.36 97.41 ± 0.37 

 
Comparisons on the UCI database: The average and standard deviations of 

the classification accuracies are calculated and reported. The classification re-
sults are summarized in Table 1. It can be observed that the performance is sig-
nificantly improved after performing distance metric learning. Compared to the 
classical dimensionality reduction methods PCA and LDA, which consider the 
Euclidean distance, our method achieves better classification rates. From the re-
sults of breast and ionosphere datasets, our KAML obtains classification rates of 
96.27% and 92.34% respectively, which are higher than others. It indicates that 
the interesting data points in low dimensional space are more separable after 
mapping to the kernel space. 

Comparisons on the COIL-20 object database: We report the average and 
standard deviations of the classification accuracies and the results are shown in 
Table 2. We can see that our linear model outperforms all compared approaches 
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and the accuracies are 93.07%, 97.51% and 99.45%, respectively. In addition, our 
nonlinear method also achieves good experimental results on the three subsets. 

Comparisons on the Caltech101 database: The classification accuracies are 
reported in Table 3. We note that most methods do not perform well in classifi-
cation when the number of training samples is small ( 10Ts = ), but our linear 
method still maintains better results. Moreover, we can see that our linear model 
achieves stable classification accuracies of over 60% in all three subsets, especial-
ly in subset 2, which reaches 68%, much better than other methods. Although 
the classification effect of the proposed KAML is relatively poor when the train-
ing set size is 10Ts = , the classification accuracy of KAML increases rapidly 
with the increase of sample size. It is possible that the classifier produces overfit-
ting when the training set is too small. In addition, the performance of KAML is 
affected by the kernel function and kernel parameters in addition to the d and p 
values. Without knowing the sample distribution, we empirically choose Gaus-
sian kernel function as our kernel function, and the value of kernel parameter σ 
is also selected according to the heuristic principle, which may not be the most 
suitable for Caltech101. However, compared with the classical supervised di-
mensionality reduction methods such as LDA and DCA, the classification effect 
of our method is better with the increase of sample size. 

Comparisons on the 2D plus 3D palmprint database: The average classifica-
tion accuracies and the standard deviations are calculated and reported. The re-
sults are listed in Table 4. We can see that with the exception of DCA, MDL and 
RLDA, all other algorithms can obtain the accuracies higher than 96%. The best 
performance is achieved by our linear method and the classification accuracies 
are 98.63% and 99.13%, respectively. It indicates that our distance metric model 
is effective in reducing dimensionality and thus improving classification perfor-
mance. 

4.3. Impact of Dimension Reduction  

We investigate the effect of reduced dimension d on different datasets by differ-
ent methods. On the three UCI datasets, we set d as { }2,3, ,7,8 . On the 
Coil20, Caltech101 and 2D plus 3D palmprint databases, d values are changed by 
{ }200,250, , 450,500 . Each experiment is repeated ten times, and the mean 
value is recorded. The results are shown in Figure 2. Through observation, the 
following conclusions can be summarized: 

- Not everyone of the methods can accomplish better outcomes when d is in-
creased, which demonstrates that dimension reduction can successfully enhance 
classification performance. 

- Some distance metric learning methods will cause performance degradation 
due to excessive information loss when only a small dimension is retained. 

- Our approach performs better than the existing methods on small dimen-
sions. Also, ideal outcomes are normally acquired on the small dimensions, 
which show that our model can effectively choose the important features in the 
data. Overall, our approach yields better results in most cases. 
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Figure 2. Classification rates of the different methods with different value of d on the various databases. (a) Breast. (b) Ionosphere. 
(c) Wine. (d) Coil20. (e) Caltech101. (f) 2D plus 3D palmprint. 

4.4. Parameter Sensitivity Analysis 

To comprehend the impact of the parameters p and σ on the results of the classi-
fication experiments, we discuss one of the parameters while the other is fixed. 
As can be seen from Figure 3 and Figure 4, both p and σ have great influence on 
the final classification accuracy. We fist analyse the impact of p. From the expe-
rimental results, we observe that the changes of p affect the classification results. 
Especially in the classification accuracies on the Caltech101 and Breast databases, 
the performances of AML and KAML are incredibly impacted by p. It can be 
seen that the best results of each database are acquired at various p, which im-
plies that it is not fitting to use the same distance metric for each data set. 
Moreover, the results further demonstrate that the effective of our adaptive me-
tric learning strategy. 

In addition, we empirically take the values of σ changing by { }6 5 5 62 , 2 , , 2 , 2− −
 . 

As listed in Figure 4, the classification accuracies of most databases are not high 
when 02σ < . For example, in Figure 4(e), the results of 02σ <  are almost 
close to 0 on the Caltech101 database, but increasing rapidly when 02σ > . In 
addition, with the change of σ, the classification results of all databases have the 
conspicuous peaks. Specifically, it could achieve the best performance of the 
proposed KAML when the values of parameter σ are set as 23, 22, 22, 22, 23 and 26 
for Breast, Ionosphere, Wine, Coil-20, Caltech101 and 2D plus 3D palmprint 
databases, respectively. The above perception is extremely helpful for parameter 
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selection, that is, the parameter value can be approximately determined by find-
ing which range of results is better. 

4.5. Comparison of the Speed of the Algorithms 

In this section, we conduct experiments to compare the speed of the proposed 
methods with the compared algorithms. To this end, we choose three datasets to 
test the speed of the algorithms. For a fair comparison, we set the d value as 2 in 
all experiments. The experiments are independently repeated 10 times and the 
average runtime is shown on Table 5. It can be seen that running speeds of PCA, 
LDA, DCA and RLDA are fast because they can directly obtain the projection 
matrix by the eigenvalue (or generalized eigenvalue) decomposition method. 
Our methods are slower than these algorithms. The reasons are: 1) AML and 
KAML work on pair-wise distances; 2) We need to adopt an alternate iterative 
strategy to optimize ijd  and W . In addition, the running speed of MCML is 
the slowest. The main reason is the optimization of the objective function using 
the projected gradient method, which makes it necessary to recalculate the con-
ditional distribution of each training point on other points at each iteration. 
 

 

Figure 3. Classification rates of the proposed AML and KAML with different value of p. 
(a) AML. (b) KAML.  

 
Table 5. Test time on UCI databases(s). 

Methods Breast Ionosphere Wine 

PCA 0.018 0.006 0.002 

LDA 0.044 0.015 0.004 

DCA 0.026 0.010 0.008 

MDL 0.263 0.025 0.017 

LMNN 0.018 0.026 0.013 

RLDA 0.029 0.015 0.008 

MCML 18.862 22.956 3.230 

NCA 5.644 2.497 0.198 

AML 0.151 0.049 0.013 

KAML 0.339 0.065 0.014 
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Figure 4. Classification rates of the proposed KAML with different value of σ on the different databases. (a) Breast. (b) Ionosphere. 
(c) Wine. (d) Coil20. (e) Caltech101. (f) 2D plus 3D palmprint. 

5. Conclusions  

In this paper, we present an adaptive metric learning method (AML), which in-
tegrates the 2, pl -norm distance metric and pairwise constraints into a unified 
framework. Specifically, the proposed method learns the distance or similarity 
based on 2, pl -norm rather than the traditional Euclidean, which enhances the 
flexibility and adaptability of metric learning. Meanwhile, we introduce the ker-
nel technique to AML and propose a nonlinear metric learning method for di-
mensionality reduction. Furthermore, we present an effective optimization ap-
proach to deal with the new objective function. Extensive experiments show that 
the proposed approach could achieve competitive performance on metric learn-
ing tasks. 

It is worth noting that the method in this paper can only manually select the 
parameter p for different data sets when determining the p value of the 2, pl
-norm, and the size of the p value is determined by the performance of the algo-
rithm at different p value. However, this is still not representative enough. 
Therefore, the effect of p value on the performance of the algorithm and the de-
termination of p value remain key issues for future research. Can our distance 
metric model automatically adjust the parameter p according to the features of 
different data sets? If the answer is yes, how to design the scheme? In addition, 
the different initialization methods will result in different performances. How to 
select an effective initialization method is also a key issue. Our future work will 
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focus on these topics. 
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