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ABSTRACT 
 

Computational chemistry is unique method in drug discovery which reduce cost. In this study 86 
molecules containing isatin core were subjected to quantitative structure-activity relationship 
analysis and docking study to find the structure requirements for ligand binding. The structures 
were sketched and optimized in Hyperchem. The structural invariants used in this study were those 
obtained from whole molecular structures: by both hyperchem and dragon software (16 types of 
descriptors). Four chemometrics methods including MLR, FA-MLR, PCR and GA-PLS were 
employed to make connection between structural parameters and anticancer effects. MLR analysis 
explained the positive effect of the number of urea derivatives, thio urea, amide, thioamide, 
hydrazone, thiocarbohydrazone, nBnz with the halogen substitution on 5 position of isatin ring on 
the antimicrobial activity. It also shows nArCN, nPyridines have negative effects on the 
antimicrobial activity of studied compound.  
The FA-MLR describes the effect of 3D-MORSE and Galvez Topological charge descriptors and on 
antimicrobial activity of the studied compounds. The quality of PCRA equation is better than those 
derived from FA-MLR. A comparison between the different statistical methods employed revealed 
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that GA-PLS represented superior results and it could explain and predict 73% and 68% of 
variances in the –LogMIC data, respectively. Comparison between QSAR and docking analysis 
revealed that by decreasing in number of ring and lipophilicity (also Logp) for design of new 
compounds can have better activity. Substitutions such as urea, thiourea, thiocarbohydrazone, 
benzhydrazide as on isatin ring, can cause better interaction with receptor. 
 

 
Keywords: Isatin; QSAR; docking; antibacterial. 
 
1. INTRODUCTION 
 

FabI was confirmed to be the only enoyl-acyl 
carrier protein (ACP) reductase required for the 
synthesis of fatty acids. FabI is required for the 
elongation of both long-chain saturated and 
unsaturated fatty acids in Escherichia coli. Thus, 
the activity of this enzyme plays a determinant 
role in completing cycles of fatty acid 
biosynthesis in E. coli. Indole compounds can 
inhibit FabI [1]. One of the best promising new 
indole compounds having many interesting 
activity profiles are isatin and isatin derivatives. 
The isatin (1H-indole-2,3-dione) moiety is 
responsible for a wide spectrum of biological 
property such as antibacterial, antifungal, 
antiviral, anticancer, anticonvulsant, anti-HIV and 
antiparkinsonian activity in many synthetically 
versatile molecules [2–9]. Among these 
properties antibacterial activities (against 
Escherichia coli) of this moiety was of our 
interest to study the quantitative structure-activity 
relationships of a series of 86 isatin derivatives 
reported in literature.  
 

Synthesis and evaluation of biological activity of 
novel compounds usually time consuming and 
take large amounts of money. Today, the use of 
computational methods for designing newly 
biologically active compounds have opened a 
new window to modern drug discovery study. 
Computational methods can accelerate the 
procedure of discovering new drugs by designing 
new compounds and predicting potency or 
activity of them. Quantitative structure activity 
relationship (QSAR) studies provide 
pharmaceutical chemists valuable information 
that is useful for drug design and prediction                 
of drug activity [10-14]. QSAR studies, as                 
one of the most important areas in 
chemometrics, give information that is useful for 
molecular  design and medicinal chemistry [8-
12]. QSAR models are mathematical equations              
constructing a relationship between                      
chemical scaffold and biological property.             
These models have another ability, which is 
providing a deeper knowledge about molecule 
design.  

Linear and nonlinear QSAR models are 
mathematical equations that display us enough 
information about the mechanism of biological 
activity of compounds by constructing a 
relationship between chemical structures and 
biological activities. The first step in constructing 
QSAR models is the proper representation of the 
structural and physicochemical features of 
chemical compounds [15-18]. These features 
named molecular descriptors that represent 
variation in the structural features property of the 
molecules by numerical and have high effect on 
the biological property of compound [19-22]. 
Molecular descriptors have been classified into 
different categories such as physiochemical, 
constitutional, geometrical, topological, and 
quantum chemical descriptors. Dragon and 
hyperchem are two famous computational 
softwares provide us more than 4000 of these 
descriptors [23,24].   
 

Different QSAR methods including multiple linear 
regression (MLR), partial least squares combined 
with genetic algorithm for variable selection (GA-
PLS), factor analysis–MLR (FA-MLR), principal 
component regression analysis (PCR) were used 
to make connections between structural 
descriptors and antibacterial activity of studied 
compounds [25-28]. An important approach of 
the researchers in modification of the isatin 
moiety has been to establish a comprehensive 
structure–activity relationship (SAR), for this 
class of antibacterial agents (against Escherichia 
coli).  
 
(Our research show that our studied series of 
compounds didn’t evaluate for QSAR studies). 
Our different QSAR analysis establishes 
mathematical relationship between biological 
activities and computable parameters such as 
chemical, topological, physicochemical, 
stereochemical or geometrical and so on    
indices. 
 

The molecular docking studies help us to 
understand the different interactions between the 
ligands and enzyme active sites (FabI) in detail 
and also help to design novel potent structure. 
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Molecular docking simulation technique was also 
performed on eighty six compounds to show the 
details molecular binding models for these 
compounds interacting with the key active site of 
protein. 
 

2. METHODS 
 

2.1 Data Set 
 
The biological data used in this study were 
antimicrobial activity against Ecoli, (in terms of –
log MIC), of a set of 86 isatin derivatives [29-35]. 
Firstly, the outlier data was removed from the 
data set according to principle component 
analysis, it was shown in Fig. 1. The data set 
was classified into calibration and prediction set 
by kenardston algorithm (26) of the 16           
prediction molecules from the spaces of the 
calculated descriptors. The structural features 
and biological activity of these compounds are 
listed in Table 1. 
 

2.2 Descriptor Generation 
 
The structural features of the studied compounds 
are listed in Table 1. The two-dimensional 
structures of molecules were drawn by 
Hyperchem 8.0 software (Hypercube Inc.) to 
calculate whole molecular structure-based 
descriptors. The final geometries were obtained 
with semi-empirical AM1 calculations in 
Hyperchem program. The molecular structures 

were optimized using the Polak-Ribiere algorithm 
until the root mean square gradient was 0.01 
kcal

-1
 mol [23]. Some physicochemical 

parameters including molecular volume (V), 
molecular surface area (SA), hydrophobicity (Log 
P), hydration energy (HE) and molecular 
polarizability (MP) were calculated using 
Hyperchem Software. In order to calculate some 
molecular descriptors including topological, 
constitutional and functional group descriptors 
the optimized molecules were transferred into the 
Dragon package, developed by the Milano 
chemometrics and QSAR Group [24]. The 
calculated descriptors from whole molecular 
structures are briefly described in Table 2. 
 

2.3 Data Screening & Model Building 
 
The selected descriptors from each class and the 
experimental data were analyzed by the stepwise 
regression SPSS (version 22.0) software. The 
calculated descriptors were collected in a data 
matrix whose number of rows and columns were 
the number of molecules and descriptors, 
respectively. Multiple linear regressions (MLR) 
and partial least squares (PLS) were used to 
derive the QSAR equations and feature selection 
was performed by the use of genetic algorithm 
(GA). MLR with factor analysis as the data pre-
processing step for variable selection (FA-MLR) 
and principal component regression analysis 
(PCRA) methods were also used to explore the 
QSAR equations. 

 

Table 1. Chemical structure of isatin derivatives used in this study 
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Compound R1 R2 R3 PMIC 
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14 H 5.18 
15 2-F 6.74 
16 3-Cl 5.95 
17 3-CH3 5.31 
18 2-Br 5.61 
19** 3-F 6.17 

**test set 
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Compound R R’ PMIC 
20 H H 3.60 
21 H 4-CH3 3.60 
22 H 4-CN 3.70 
23 4-OCH3 H 3.60 
24 4-OCH3 4-CH3 3.70 
25 4-OCH3 4-CN 3.82 
26 4-Cl H 3.60 
27 4-Cl 4-CH3 3.70 
28 4-Cl 4-CN 3.60 
29 4-CH3 H 3.70 



 
 
 
 

Sabet and Jafroudi; JPRI, 31(5): 1-24, 2019; Article no.JPRI.52361 
 
 

 
6 
 

Compound R R’ PMIC 
30 4-CH3 4-CH3 3.60 
31 4-CH3 4-CN 3.70 
32 4-Br H 3.30 
33 4-Br 4-CH3 3.60 
34 4-Br 4-CN 3.70 
35 4-F H 3.82 
36 4-F 4-CH3 3.82 
37 4-F 4-CN 4.10 
38 2-Cl,4-Cl H 3.60 
39** 2-Cl,4-Cl 4-CN 3.82 
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Compound R X PMIC 
47 

N

HN

O

 

F 4.60 

48 

N

HN

O

 

Cl 4.90 

 

N

N R1

O

R2

R

 
 

Compound R R1 R2 PMIC 
49 H 1-naphthyl _____ 3.78 
50 H 4-Chloro phenyl _____ 4.92 
51 H 4-Bromo phenyl _____ 3.78 
52 H 4-Methyl phenyl _____ 3.94 
53 H Phenyl hydrazino _____ 3.88 
54 H Thiosemicarbazino _____ 4.17 
55 CH3 1-Naphthyl _____ 3.85 
56 CH3 4-Chloro phenyl _____ 3.86 
57 NO2 1-Naphthyl _____ 4.39 
58 NO2 4-Bromo phenyl _____ 4.18 
59 NO2 4-Chloro phenyl _____ 3.78 
60 CH3 4-Methoxy phenyl _____ 3.58 
61 CH3 Thiosenicarbazino _____ 4.40 
62 Cl 4-chloro phenyl _____ 4.01 
63 Cl 4-Methyl phenyl H 4.85 
64 Cl Thiosemicarbazino H 4.00 
65 Br 1-Naphtyl H 3.78 
66 Br 4-Methoxy phenyl H 3.79 
67 H 4-Methyl phenyl CH2-N(C6H5)2 3.89 
68 Cl 4-Bromo phenyl CH2-N(C6H5)2 3.79 
* Br 4-Methoxy phenyl CH2-N(C6H5)2  

outlier data; ** test set 
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Compound R1 R2 PMIC 
71** H 5’,7’-diBr 4.30 
72** H 5’-F 4.30 
73** H 5’-Cl 4.30 
74 H 5’-Br 4.30 
75** H 5’-I 4.30 
76** H 5’-Me 4.60 
77 H 7’-Me 4.60 
78 H 5’-iPr 4.30 
79 Me H 4.90 
80 Et H 4.90 
81 n-Pr H 4.90 
82** n-Bu H 4.90 
83** i-Bu H 4.90 
84 Allyl H 4.00 
85 Bn H 4.00 
86 Phen H 4.00 

*outlier data/ **test set 
 

 
 

Fig. 1. Outlier data by principle component analysis before QSAR analysis 
 
The resulted models were validated by leave-one 
out cross-validation procedure (using MATLAB 
software) to check their predictability and 
robustness. 
 

A key step in QSAR modeling is evaluating 
model’s stability and prediction ability. We used 
cross-validation and external test set for these 
proposes. Cross-validation has different variants 
such as leave-one-out (LOO), leave-group-out 
(LGO) and -fold. It was shown previously that 
LOO can leads to chance and overfitted models 
whereas LGO is more sensitive to chance 
variables [36]. Therefore, we used LGO for 
model-validation utilizing correlation coefficient 
and root mean square error of cross-validation 
(q2 and RMSECV, respectively) as scoring 
function. In addition, an external test set 
composed of 6 molecules was also used. The 

molecules in this set did not have contribution in 
the model step and thus their predicted values 
can give a final prediction power of the models 
as measured by correlation coefficient, root 
mean square errors of prediction, relative error of 
prediction (R2

P, RMSEP and REP, respectively). 
 

The PLS regression method used in this study 
was the NIPALS-based algorithm existed in the 
chemometrics toolbox of MATLAB software 
(version 12 Math work Inc.). Leave-one-out 
cross-validation procedure was used to obtain 
the optimum number of factors based on the 
Haaland and Thomas F-ratio criterion [37]. 
 

2.4 Docking Procedures 
 

An in house batch script (DOCK-FACE) for 
automatic running of AutoDock 4.2 was used to 
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Table 2. Brief description of some descriptors used in this study 
 

Descriptor type Molecular Description 
Chemical LogP (Octanol-water partition coefficient), Hydration Energy (HE), Polarizability (Pol), Molar refractivity (MR), Molecular 

volume (V), Molecular surface area (SA). 
Constitutional mean atomic vander Waals volume (MV), no. of atoms, no. of non-H atoms, no. of bonds, no. of heteroatoms, no. of 

multiple bonds (nBM), no. of aromatic bonds, no. of functional groups (hydroxyl, amine, aldehyde, carbonyl, nitro, nitroso, 
etc.), no. of rings, no. of circuits, no of H-bond donors, no of H-bond acceptors, no. of Nitrogen atoms (NN), chemical 
composition, sum of Kier-Hall electrotopological states (Ss), mean atomic polarizability (Mp), number of rotable bonds 
(RBN), mean atomic Sanderson electronegativity (Me), number of Chlorine atoms (NCl), number of 9-membered rings 
(NR09), etc. 

Topological Molecular size index, molecular connectivity indices (X1A, X4A, X2v, X1Av, X2Av, X3Av, X4Av), information content index 
(IC), Sum of topological distances between F..F (T(F..F)), Ratio of multiple path count to path counts (PCR), Mean 
information content vertex degree magnitude (IVDM), Eigenvalue sum of Z weighted distance matrix (SEigZ), reciprocal 
hyper-detour index (Rww), Eigenvalue coefficient sum from adjacency matrix (VEA1), radial centric information index, 2D 
petijean shape index (PJI2), mean information index on atomic composition(AAC), Kier symmetry index(S0K), mean 
information content on the distance degree equality (IDDE), structural information content (neighborhood symmetry of 3-
order) (SIC3), Randic-type eigenvector-based index from adjacency matrix (VRA1), sum of topological distances between 
N..N (T(N..N)), sum of topological distances between O..O(T(O..O)),etc. 

Geometrical 3D-Balaban index (J3D), span R (SPAN), length-to-breadth ratio by WHIM (L/BW), sum of geometrical distances between 
N..N (G(N..N)), sum of geometrical distances between N..O (G(N..O)), sum of geometrical distances between O..O 
(G(O..O)), ect. 

Mol -Walk molecular walk count of order 08 (MWC08), self-returning walk count of order 05 (SRW05), total walk count (TWC), etc. 
Burden matrix highest eigenvalue n. 1 of Burden matrix / weighted by atomic masses (BEHM1), highest eigenvalue n. 7 of Burden matrix / 

weighted by atomic masses (BEHM7), lowest eigenvalue n. 1 of Burden matrix / weighted by atomic masses (BELM1), 
highest eigenvalue n. 1 of Burden matrix / weighted by atomic van der Waals volumes (BELV1), highest eigenvalue n. 2 of 
Burden matrix / weighted by atomic Sanderson electronegativities (BEHE2), etc. 

Galvez topological charge index of order 1 (GGI1), topological charge index of order 6 (GGI6),topological charge index of order 7 
(GGI7), global topological charge index (JGT), etc. 

2D 
autocorrelation 

Broto-Moreau autocorrelation of a topological structure - lag 7 / weighted by atomic Sanderson electronegativities (ATS7E), 
Moran autocorrelation -lag 4 / weighted by atomic Sanderson electronegativities (MATS4E), Broto-Moreau autocorrelation 
of a topological structure - lag 3 / weighted by atomic Sanderson electronegativities (ATS3E), Broto-Moreau autocorrelation 
of a topological structure - lag 3 / weighted by atomic van der Waals volumes (ATS3V), etc. 

Charge maximum positive charge (QPOS), partial charge weighted topological electronic charge (PCWTE), etc. 
Aromaticity HOMA Harmonic Oscillator Model of Aromaticity index,RCI;Jug RC index aromaticity indices,HOMT;HOMA total (trial) , etc. 
Randic DP0;molecular profile, SP0;shape profile; SHP;average shape profile index , etc. 
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Descriptor type Molecular Description 
RDF Radial Distribution Function - 7.0 / unweighted(RDF070U),Radial Distribution Function - 13.5 / 

unweighted(RDF135U),Radial Distribution Function - 1.0 / weighted by atomic masses(RDF010M),Radial Distribution 
Function - 3.0 / weighted by atomic masses(RDF030M),Radial Distribution Function - 4.5 / weighted by atomic 
masses(RDF045M),Radial Distribution Function - 12.5 / weighted by atomic masses(RFD125M),Radial Distribution Function 
- 2.0 / weighted by atomic van der Waals volumes(RDF020V),Radial Distribution Function - 8.5 / weighted by atomic van 
der Waals volumes(RDF085V),Radial Distribution Function - 1.0 / weighted by atomic Sanderson 
electronegativities(RDF010E), etc. 

3D-MoRSE 3D-MoRSE - signal 01 / unweighted (MOR01U)(01U,02U,…,32U), 3D-MoRSE - signal 01 / weighted by atomic van der 
Waals volumes (MOR01V)( 01V,02V,…,32V), ect. 

WHIM 1st component symmetry directional WHIM index / weighted by atomic polarizabilities (G1P), 2st component symmetry 
directional WHIM index / weighted by atomic electrotopological states (G2S), D total accessibility index / weighted by atomic 
van der Waals volumes (DV), etc. 

GETAWAY H autocorrelation of lag 1 / lag2/ lag3 weighted by atomic Sanderson electronegativities (H1E,H2E,H3E), total information 
content on the leverage equality (ITH), R maximal autocorrelation of lag 3 / lag4 unweighted (R3U+,R4U+), R maximal 
autocorrelation of lag 6 / weighted by atomic masses (R6M+), R maximal autocorrelation of lag 5 / weighted by atomic van 
der Waals volumes (R5V+), R maximal autocorrelation of lag 1 / lag 4 weighted by atomic Sanderson electronegativities 
(R1E+), R maximal autocorrelation of lag 3 / weighted by atomic polarizabilities (R3P+), etc. 

Functional number of total secondary C(sp3) (NCS), number of ring tertiary C(sp3) (NCRHR), number of secondary C(sp2) (n=CHR), 
number of tertiary amines (aliphatic) (NNR2), number of N hydrazines (aromatic) (nN-NPH), number of nitriles (aliphatic) 
(NCN), number of phenols (NOHPH), number of ethers (aromatic) (NRORPH), number of solfures (NRSR), etc. 

Atom-Centred CHR3 (C-003), CR4 (C-004), X--CR..X (C-034), Ar-C(=X)-R (C-039), R-C(=X)-X / R-C#X / X-=C=X (C-040), X--CH..X (C-
042), H attached to C1(sp3) / C0(sp2) (H-047), RCO-N< / >N-X=X (N-072),R2S / RS-SR (S-107), etc. 

connectivity indices X0(connectivity index chi-0), connectivity index chi-1(x1), average connectivity index chi-0(XOA) 
information indices Uindex(Balaban U index), IC0(information content index), TIC0(total information content index) 
edge adjacency indices EEig01x(Eigenvalue 01),EEig01r(Eigenvalue 01 from edge)  
eigenvalue-based indices Eig1v(Leading eigenvalue from van der Waals weighted distance matrix), SEigm Eigenvalue sum from mass weighted 

distance matrix eigenvalue-based indices 
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carry out the docking simulations [38] in a 
parallel mode [39]. To prepare the receptor 
structure, the three dimensional crystal structure 
of isatin (PDB:1Lx6) was acquired from Protein 
Data Bank (PDB data base; http://www.rcsb.org) 
[40] and water molecules and co-crystal ligand 
were removed from the structure. The PDB were 
then checked for missing atom types with the 
python script as implemented in MODELLER 
9.17 [41]. The ligand structures were made by 
Hyper Chem software package (Version 7, 
Hypercube Inc). For geometry optimization, 
Molecular Mechanic (MM

+
), followed by semi 

empirical AM1 method was performed. The 
prepared Ligands were given to 100 independent 
genetic algorithm (GA) runs. 160 population size, 
a maximum number of 2,600,000 energy 
evaluations and 26,000 maximum generations 
were used for Lamarckian GA method. The grid 
points of 40, 40, and 40 in x-, y-, and z directions 
2.299, 19.177 and 136.7 were usedAll 
visualization of protein ligand interaction was 
evaluated using VMD software [42]. Cluster 
analysis was performed on the docked results 
using a root mean square deviation (RMSD) 
tolerance of 1.76 Å. 
 

3. RESULTS AND DISCUSSION 
 

3.1 MLR Analysis 
 
In the first step, separate stepwise selection-
based MLR analyses were performed using 
different types of descriptors, and then, an MLR 
equation was obtained utilizing the pool of all 
calculated descriptors. The resulted QSAR 
models from different types of descriptors for the 
compounds (86 molecules as calibration and 16 
molecules as prediction sets) are listed in    
Table 3. 
 

The equation E1 of Table 3 shows among 
chemical descriptors, the negative effect of log P 
of the molecules on the antimicrobial activity. 
This equation shows the hydrophilic molecules 
shows better antimicrobila effect. The second 
equation of Table 3 demonstrated the effect of 
constitutional descriptors on the activity of these 
compounds. It also explain the negative effects 
nCIC (number of rings), and nR10 (number of 
10-membered rings) on activity (such as 
molecule series 20-39, 49, 55, 65 have 
intermediate activity and inactive compounds). 
 
The effect of topological group counts parameter 
on antimicrobial activity of the studied 
compounds has been described by equation E3 

of Table 3. It shows that among topological 
descriptors spanning tree number (STN) has the 
negative effect on cytotoxic activity of the 
compounds.  

 
 The equation E4 of Table 3 was found by using 
Mol-Walk descriptors (E4), which explains the 
negative effect of PIPC09 of studied compounds 
on the activity of the compounds. The equation 
E5-E16 and E16 of Table 3 demonstrated the effect 
of posititive and negative effects of BCUT, Galvz 
topological Charge indices, 2D autocorrelations, 
Charge, Burden eigenvalues, RDF, 3D MoRSE, 
WHIM, GETAWAY and charge descriptors on the 
anti-cancer activity of these compounds.  

 
The MLR equation of Table 3 obtained from the 
pool of functional groups descriptors, E17, 
explained the positive effect of the number of 
urea derivatives (nCONN), thiourea (nCSNN) 
(such as molecules of 1-9, 69-86), 
amide(nCONH2), thioamide (nRCONHR), 
hydrazone (nC=N-N), thiocarbohydrazone  (such 
as molecules of 1-9) on the antimicrobial  activity. 
It also indicate the positive effect of nBnz 
(number of benzene rings) with the halogen 
substitution on 5 position of isatin ring F > Cl > Br 
(nArX) (molecules series 14-19). This equation 
also shows nArCN (Aromatic nitrile such as 
compounds 22, 25, 28, 31, 34, 37, 39), 
nPyridines (pyridine derivetives) have negative 
effects on the antimicrobial activity. May be there 
isn't any electron with drawing group in the 
receptor site, thus for design of new compounds 
it's better to don't use these substitution on the 
backbone of compounds. The negative sign of 
this group proposed that a decrease in the 
number of these descriptors resulted in an 
activity enhancement. This equation, which has a 
high statistical quality (R

2 
= 0.63, Q

2 
= 0.59).  

 

The statistical parameters of prediction, listed in 
Table 4, indicate the suitability of the proposed 
QSAR model based on MLR analysis of 
molecular descriptors. The correlation coefficient 
of prediction is 0.62, which means that the 
resulted QSAR model could predict 62% of 
variances in the antimicrobial activity data. It has 
root mean square error of 0.21. 

 
3.2 GA-PLS Model 
 
Multicolinearity is a real problem in MLR 
analysis. This problem in the descriptors is 
omitted by PLS analysis. In fact, in PLS analysis, 
the descriptors data matrix is decomposed to 
orthogonal matrices with an inner relationship 
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between the dependent and independent 
variables. This modeling method coincides with 
noisy data better than MLR, because a minimal 
number of latent variables are used for modeling 
in PLS. In GA-PLS analysis a variable selection 
method is used to find the more convenient set of 
descriptors because redundant variables 
degrade the performance of PLS analysis, similar 
to other regression methods. In the present 
study, GA was used as variable selection 
method. The data set (n = 86) was divided into 
two groups: calibration set (n = 70) and 
prediction set (n = 16). Given 70 calibration 
samples; cross-validation procedure was used to 
find the optimum number of latent variables for 
each PLS model. In this work, in each run of GA-
PLS method a large number of acceptable 

models were created. GA produces apopulation 
of acceptable models in each run. In this work, 
many different GA-PLS runs were conducted 
using different initial set of populations (50-250) 
and therefore a large number of acceptable 
models were created. The most convenient GA-
PLS model that resulted in the best fitness 
contained 8 descriptors including, one 
constitutional descriptor (nCIC), one 3D MoRSE 
descriptors (MOR30M) parameter, two WHIM 
descriptor (P1P, E1U) and four functional 
descriptors (nRCONHR, nCONN, nArCN, 
nPyridines). The majority of these descriptors are 
functional indices All of them being those 
obtained by different MLR-based QSAR models. 
The PLS estimate of the regression coefficients 
are shown in Fig. 2. 

 

Table 3. The results of MLR analysis with different types of descriptors 
 

Equation Descriptors (+) effect (-) effect R
2 

F Q
2
 SE 

E1 chemical -- Logp 0.72 5.3 0.67 0.21 
E2 constitutional -- NCIC,nR10 0.58 18.52 0.52 0.32 
E3 topological -- STN 0.214 18.53 0.17 0.43 
E4 Walk and path 

counts 
-- PIPC09 0.283 26.81 0.21 0.53 

E5 Connectivity 
indices 

X4A -- 0.63 18.99 0.58 0.34 

E6 Information 
indices 

BIC5 -- 0.38 19.685 0.32 0.36 

E7 2D 
autocorrelation 

GATS1M MATS3E 0.64 10.417 0.58 0.17 

E8 Edge 
adjacency 
indices 

-- EEIG03X 0.231 20.45 0.18 0.55 

E9 Burden 
eigenvalues 

-- BEHm1 0.63 28.562 0.58 0.28 

E10 Topological 
charge indices 

-- JGI5 0.68 7.50 0.54 0.34 

E11 Eigenvalue-
based indices 

-- LP1 0.25 23.358 0.17 0.54 

E12 Geometrical 
descriptors 

-- G(N..F),DISPV 0.46 8.704 0.39 0.41 

E13 RDF 
descriptors 

RDF030M RDF020M 0.65 10.05 0.59 0.23 

E14 3D MoRSE 
descriptors 

-- MOR30M,MOR24U 0.69 17.67 0.62 0.38 

E15 WHIM 
descriptors 

E1U,G1M E3U,P1P 0.61 15.25 0.56 0.46 

E16 GETAWAY 
descriptors 

R4M R2V,HOU,HTM 0.59 10.88 0.53 0.39 

E17 Fuctional 
group counts 

nBnz, nCONN, 
nRCONHR, 
nArX, nC=N-N 

nArCN, nPyridines 0.63 15.29 0.59 0.34 

E18 Atom-centred 
fragments 

C-039,C-034 -- 0.56 13.51 0.49 0.24 

E19 Charge 
descriptors 

QMEAN, 
QPOS 

 0.58 13.52 0.52 0.54 



This model not only has a high cross
statistics, but also represents a high ability for 
modeling external test samples. It could explain 
and predict about 75% of variances in the 
antimicrobial activity (against Ecoli) of the studied 
molecules. There is a close agreement between 
the experimental and predicted values of 
antimicrobial activity data. 

 
To measure the significance of the 8 selected 
PLS descriptors in the protein tyrosine kinase 
inhibitory activity; In order to investigate the 
relative importance of the variable appeared in 
the final model obtained by GA-
variable important in projection (VIP) was 
employed [43]. VIP values reflect the importance 
of terms in PLS model. According to Erikson 

Table 4. Statistical parameters for testing prediction ability of the MLR, GA

  
R

2
LOOCVR

2
 Model 

0.62 0.67 MLR 
0.75 0.81 GA-PLS 
0.68 0.73 PCR 
0.59 0.64 FA-MLR 

R2: Regression Coefficient for Calibration set
 R2

LOOCV: Regression Coefficient for Leave One Out Cross Validation
 RMSEcv: Root Mean Square Error of cross validation

R2p: Regression Coefficient for prediction set

 

 
Fig. 2. PLS regression coefficients for the
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This model not only has a high cross-validation 
statistics, but also represents a high ability for 
modeling external test samples. It could explain 
and predict about 75% of variances in the 

) of the studied 
here is a close agreement between 

the experimental and predicted values of 

To measure the significance of the 8 selected 
protein tyrosine kinase 

In order to investigate the 
relative importance of the variable appeared in 

-PLS method, 
variable important in projection (VIP) was 
employed [43]. VIP values reflect the importance 
of terms in PLS model. According to Erikson et 

al. X-variables (predictor variables) could be 
classified according to their relevance in 
explaining y (predicted variable), so that VIP > 
1.0 and VIP < 0.8 mean highly or less influential, 
respectively, and 0.8 < VIP< 1.0 means 
moderately influential. The VIP analysis of PLS 
equation is shown in Fig. 3. As it is observed, 
nRCONHR, P1P and E1U indices represent the 
most significant contribution in the
QSAR model. In addition, parameters such as 
nArCN and MOR30M have been found to be 
moderately influential parameters. 
 
3.3 FA-MLR and PCRA 
 
FA-MLR was performed on the dataset. Factor 
analysis (FA) was used to reduce the number of

 
Statistical parameters for testing prediction ability of the MLR, GA-PLS, PCR, and FA

MLR models 

RMSEpR
2
p RMSEcv LOOCV 

0.180.74 0.21 
0.230.87 0.19 
0.220.78 0.16 
0.140.70 0.15 

: Regression Coefficient for Calibration set 
: Regression Coefficient for Leave One Out Cross Validation 

: Root Mean Square Error of cross validation 
p: Regression Coefficient for prediction set; RMSEp: Root Mean Square Error of prediction set
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Fig. 3. Plot of variables important in projection (VIP) for the descriptors used in GA-PLS model 
 
variables and to detect structure in the 
relationships between them. This data-
processing step is applied to identify the 
important predictor variables and to avoid 
collinearities among them [44]. Principle 
component regression analysis, PCRA, was tried 
for the dataset along with FA-MLR. With PCRA 
collinearities among X variables are not a 
disturbing factor and the number of variables 
included in the analysis may exceed the number 
of observations [45]. In this method, factor 
scores, as obtained from FA, are used as the 
predictor variables [44]. In PCRA, all descriptors 
are assumed to be important while the aim of 
factor analysis is to identify relevant descriptors. 
 

Table 5 shows the nine factor loadings of the 
variables (after VARIMAX rotation) for the 
compounds tested for cytotoxic activity. As it is 
observed, about 81.2% of variances in the 
original data matrix could be explained by the 
selected nine factors.  

 
Based on the procedure explained in the 
experimental section, the following two-
parametric equation was derived (Table 6). 
 
Y= 5.766(±0.547) -0.031(±0.012) MOR30m -
2.336(±0.721) JGI5 
 

R
2 

= 0.64  S.E = 0.24  F = 14.69   Q
2 

= 0.59  
RMScv = 0.12   
 

This equation could explain about 59% of the 
variance and predict 64% of the variance in pMIC 

data. It has a root mean square error of 0.12. 
This equation describes the effect of 3D-MORSE 
and Galvez Topological charge descriptors 
(MOR30m and JGI5) and on antimicrobial activity 
of the studied compounds. 
 

When factor scores were used as the predictor 
parameters in a multiple regression equation 
using forward selection method (PCRA), the 
following equation was obtained (Table 7): 

 
Y=4.285(±0.57)-0.258(±0.031)F1-.189(±0.021) 
F7+0.124(±0.027)F6+0.123(0.057)F8  
 
R2 = 0.73  S.E. = 0.34  F = 15.54   Q2 = 0.68  
RMScv = 0.15          
 
This equation could explain and predict 68% and 
73% of the variances in pMIC data, respectively. 
The root mean square error of PCRA analysis 
was 0.15. Since factor scores are used instead of 
selected descriptors, and any factor-score 
contains information from different descriptors, 
loss of information is thus avoided and the quality 
of PCRA equation is better than those derived 
from FA-MLR. Whilst the data of this analysis 
show acceptable prediction, we see that the 
predicted values of some molecules are near to 
each other.  
 

As it is observed from Table 5, in the case of 
each factor, the loading values for some 
descriptors are much higher than those of the 
others. These high values for each factor indicate 
that this factor contains higher information about 
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which descriptors. It should be noted that all 
factors have information from all descriptors but 
the contribution of descriptor in different factors 
are not equal. For example, factors 1 and 2 have 
higher Constitutional, Charge, WHIM, Atom-
center, Connectivity, Functional, MORSE and 

GETAWAY whereas information about RDF, 
MORSE, burden eigenvalues 2Dautocorrelations 
and functional descriptors are highly incorporated 
in factor 3 and 4. Factor score 5, 6, 7 and 8 
signify the importance of functional chemical and 
Atom-center descriptors. 

 
Table 5. Numerical values of factor loading numbers 1–9 for descriptors after VARIMAX 

rotation 
 

 Component  

 F1 F2 F3 F4 F5 F6 F7 F8 F9 extraction 

LOGP .190 .152 .038 -.175 .002 .091 .724 -.083 -.123 .646 

NCIC .897 .188 -.017 -.184 -.060 -.107 .013 .137 -.030 .909 

NR10 .774 .073 -.091 -.021 .210 .398 .064 .254 -.063 .887 

X4A -.655 -.587 -.004 -.101 -.173 -.085 .006 .283 .105 .912 

BIC5 -.304 -.314 .059 .025 -.444 .461 -.225 .373 -.035 .795 

MATS3E .456 .541 -.085 -.100 .145 -.301 .304 .094 -.286 .812 

GATS1M -.293 .306 -.664 .155 -.050 .184 -.002 .004 -.106 .691 

BEHM1 -.006 .183 .851 .034 -.011 -.074 -.017 .001 -.147 .785 

JGI3 .004 -.125 -.106 .094 .009 .932 .078 -.006 -.017 .910 

JGI5 .325 .150 -.009 .105 .818 .107 -.040 -.074 .049 .830 

L/Bw -.319 -.787 .151 -.090 -.008 -.197 .129 .042 .059 .813 

DISPV -.059 -.107 .286 -.194 .547 -.357 .240 -.047 -.179 .653 

RDF020M -.176 .316 .653 .314 -.214 -.022 .245 -.027 -.144 .783 

RDF030M .019 .893 .188 -.021 .007 .026 .182 .003 -.023 .869 

RDF025P .485 .724 -.104 -.190 .170 -.219 .190 .045 -.078 .927 

MOR24U .230 -.099 -.006 -.719 .283 -.156 .092 .312 .046 .792 

MOR30M .631 .100 -.125 .102 -.282 -.142 .221 -.394 .014 .738 

MOR32V -.002 .245 .067 .757 .268 .076 -.113 .104 .011 .739 

E1U -.736 -.493 -.028 -.006 -.211 -.136 .002 .148 .011 .872 

E3U .128 .543 .089 .457 -.215 -.196 .215 -.259 .278 .803 

G1M -.073 -.677 .092 -.079 -.148 .237 -.312 -.159 .293 .764 

P1P -.013 -.898 -.035 -.285 .090 .011 .048 .159 -.065 .930 

H0U .150 .257 -.114 .322 .354 -.172 .537 -.259 .226 .767 

HTM .020 .747 .581 .092 .172 -.120 .073 .039 .015 .956 

R4M .079 .709 .444 .218 .029 .062 .052 -.032 .259 .829 

R2V .773 .204 .144 .154 .031 -.063 .225 .018 .401 .900 

nCb .728 -.199 .158 -.150 .180 -.237 -.069 -.010 -.096 .720 

NRCONHR -.592 -.406 .136 .290 -.107 -.205 -.411 .066 .006 .845 

NCONN -.708 .282 -.109 .211 .162 .125 .290 .300 -.136 .872 

NARCN .617 .033 .028 .203 .179 .036 .107 .112 -.012 .480 

nC=N-N -.687 .035 -.107 -.158 .158 -.006 .139 .540 .080 .851 

NArX .140 -.046 .652 -.024 .229 .173 -.350 -.160 .260 .746 

nPyridines -.062 -.069 -.037 -.007 .000 -.009 -.084 -.025 .876 .784 

C-034 .008 -.037 -.064 -.052 -.151 .010 -.119 .839 -.051 .752 

C-039 -.868 -.138 -.051 .082 -.260 -.087 -.092 .070 .016 .870 

QPOS -.367 .881 -.057 .111 .027 -.161 .082 .029 -.038 .962 

QMEAN -.732 .348 -.053 .222 .085 .161 -.304 .123 .048 .853 

% variance 21.769 19.668 7.805 5.894 5.753 5.520 5.368 5.277 4.153 81.208 
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Table 6. The results of FA-MLR analysis with different types of descriptors 
 

 Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig.  
R

2
 

 
F 

 
Q

2
 

 
SE 

 B Std. Error Beta       
(Constant) 5.766 .547  10.537 .000 0.64 14.691 0.59 0.24 
MOR30m -0.031 .012 -.303 -2.619 .000     
JGI5 -2.336 0.721 -.442 -3.240 .002     

 

Table 7. The results of PCR analysis 
 

 Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig.  
R2 

 
F 

 
Q2 

 
SE 

 B Std. Error Beta       
(Constant) 4.285 .057  75.368 .000     
F1 -.258 .031 -.409 -4.510 .000 0.73 17.16 0.68 0.34 
F7 -.189 .021 -.300 -3.305 .001     
F6 .124 .027 .197 2.176 .033     
F8 .123 .057 .196 2.159 .034     

 

3.4 Robustness and Applicability Domain 
of the Models  

 
Leverage is one of standard methods for this 
purpose. Warning leverage (h*) is another 
criterion for interpretation of the results. The 
warning leverage is, generally, fixed at 3k/n, 
where n is the number of training compounds 
and k is the number of model parameters. A 
leverage greater than warning leverage h* 
means that the predicted response is the result 
of substantial extrapolation of the model and 
therefore may not be reliable [46]. The calculated 
leverage values of the test set samples for 
different models and the warning leverage, as 
the threshold value for accepted prediction, are 

listed in Table 8. As seen, the leverages of all 
test samples are lower than h* for all models. 
This means that all predicted values are 
acceptable. 

 
3.5 Molecular Docking Studies 
 
All the eighty six isatin derivatives were docked 
into the active site of the enzymes bacterial 
enoyl-ACP reductase (FabI) (PDB:1lx6). All the 
docking protocols were done on validated 
structures, with RMSD values below 2 Å. The 
conformation with the lowest ones was 
considered as the best docking result. Docking 
binding energies of these active compounds 
were summarized in Table 9. 

 

Table 8. Leverage (h) of the external test set molecules for different models. The last row (h*) is 
the warning leverage 

 

FA-MLR PCR GA-PLS MLR Molecule .no 
0.028202 0.026426 0.084802 0.117418 3 
0.034729 0.03644 0.067963 0.058532 7 
0.035335 0.131804 0.157524 0.087443 10 
0.021066 0.092915 0.093302 0.071099 11 
0.037432 0.03296 0.08314 0.054337 19 
0.040156 0.136844 0.077263 0.081619 39 
0.056011 0.13121 0.134119 0.097168 41 
0.036003 0.152167 0.144921 0.158855 45 
0.068055 0.06149 0.101806 0.045048 69 
0.022631 0.023009 0.13409 0.109807 71 
0.060281 0.041009 0.297308 0.102708 72 
0.063121 0.022111 0.198805 0.105906 73 
0.025659 0.018691 0.127991 0.087529 75 
0.045611 0.021734 0.084609 0.04769 76 
0.016686 0.022526 0.058078 0.081846 82 
0.014426 0.016547 0.07017 0.077447 83 
0.108571 0.191429 0.342857 0.214286 h* 



Docking analysis showed that Compounds 1
with thiocarbazone moiety, was good inhibitor for 
FabI, because of good interaction between 
enzyme and cofactor. With suitable orientation of 
thiocarbazone group, hydrogen and hydrophobic 
bounds can occur. An electron rich group such 
as NH2 substitution on phenyl ring that increase 
electron charge can create better interaction with 
receptor and has low binding energy. Also 
compounds have benzhydrazide substitution 
hydrogen binding interaction between tyrosine 
156 and benzhydrazide. Halogen and methyl 
substitution on isatin ring of this series (1
cause better interaction with receptor. Benzyl 
 

 

(A) 
 

 

(C) 

Fig. 4. The docked configuration of  2 (A), 14(B), 27(C) and 40 (D) in the binding site of FabI
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Docking analysis showed that Compounds 1-9 
with thiocarbazone moiety, was good inhibitor for 
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compounds have benzhydrazide substitution 
hydrogen binding interaction between tyrosine 

nd benzhydrazide. Halogen and methyl 
substitution on isatin ring of this series (1-9) can 
cause better interaction with receptor. Benzyl 

amide, methyl and halogen groups on isatin ring 
of compound 10-19 showed good docking 
score. But Halogen and methyl 
isatin ring of series (40-43) can cause bad 
interaction with receptor. Urea moiety can show 
good interaction between tyrosine 156 and 
coenzyme. Our results indicated 
group show good interaction but OH group 
has bad interaction with receptors. Compounds 
47 and 48 with isonicotine amide group on 
isatin ring showed good interaction with receptor.
The interaction modes of 2, 14 and 27, 40 
those with the best docking score are shown in 
Fig. 4. 
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Table 9. Binding interaction of some studied compounds in active site of enzyme 
 

Compounds  ΔG kcal/mol Ki (μM) Atom of the ligand Receptor/Coenzyme  Interaction Distance(A◦) 
1 -8.46 631.45 C=O (isatine) 

C=O (isatine) 
Tyr 156 
2'-OH (ribose)NAD

+
 

Hydrogen bond 
Hydrogen bond 

1.80 
1.85 

2 -9.01 248.47 C=O (isatine) 
C=O (isatine) 
Isatine 
Indole 
Indole 

Tyr 156 
2'-OH (ribose)NAD

+
 

NAD+   -Pyridine 
Phe 94 
Ala 95 

Hydrogen bond 
Hydrogen bond 
Pi-Pi 
H-Pi 
H-pi 

1.82 
1.83 

3 -8.58 512.32 C=O (isatine) 
C=O (isatine) 
Isatine 

Tyr 156 
2'-OH (ribose)NAD

+ 

NAD+  -Pyridine 

Hydrogen bond 
Hydrogen bond 
Pi-Pi 

1.81 
1.89 

4 -8.86 322.58 C=O (isatine) 
C=O (isatine) 
C=S 
Isatine 
Indole 

Tyr 156 
2'-OH (ribose)NAD

+ 

NH2- NAD+ 
Pyridine- NAD

+
 

Phe 94 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 
Pi-Pi 
H-Pi 

1.77 
1.94 
2.66 

5 -8.67 443.90 C=O (isatine) 
C=O (isatine) 
Isatine 
Indole 

Tyr 156 
2'-OH (ribose)NAD

+
 

NAD+   -Pyridine 
Phe 94 

Hydrogen bond 
Hydrogen bond 
Pi-Pi 
H-Pi 

1.78 
1.89 

6 -8.24 912.17 C=O (isatine) 
C=O (isatine) 
Isatine 

Tyr 156 
2'-OH (ribose)NAD

+ 

NAD+  -Pyridine 
 

Hydrogen bond 
Hydrogen bond 
Pi-Pi 

1.85 
1.88 

7 -8.51 577.86 C=O (isatine) 
C=O (isatine) 
Isatine 

Tyr 156 
2'-OH (ribose)NAD+ 

NAD
+  

-Pyridine 

Hydrogen bond 
Hydrogen bond 
Pi-Pi 

1.95 
2.09 

8 -8.46 630.94 C=O (isatine) 
C=O (isatine) 

Tyr 156 
2'-OH (ribose)NAD

+
 

Hydrogen bond 
Hydrogen bond 

1.89 
1.95 

9 -8.47 614.00 C=O (isatine) 
NH-thiocarboydrazone 
N-thiocarboydrazone 
Isatine 

2'-OH (ribose)NAD
+ 

Met 159 
Tyr 156 
Ala 95 

H-Pi 
Hydrogen bond 
Hydrogen bond 
H-Pi 

 
1.87 
2.35 
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Compounds  ΔG
 
kcal/mol

 
Ki (μM) Atom of the ligand Receptor/Coenzyme  Interaction Distance(A◦) 

14 -7.44 3.52 C=O(benzohydrazide) 
C=O(benzohydrazide) 
C=O(isatine) 

Tyr 156 
2´-OH-ribose(NAD

+
) 

Gly 93 
 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 

2.22 
2.17 
2.66 

15 -7.94 1.52  C=O(benzohydrazide) 
C=O(benzohydrazide) 
C=O(isatine) 

Tyr 156 
2´-OH-ribose(NAD

+
) 

Gly 93 
 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 

1.88 
1.52 
2.02 

16 -7.87 1.66  C=O(benzohydrazide) 
C=O(benzohydrazide) 
C=O(isatine) 
Phenyl 

Tyr 156 
2´-OH-ribose(NAD+) 
Gly 93 
Tyr 146 
 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 
H-Pi 

2.19 
2.03 
2.36 

17 -7.79  1.95 C=O(benzohydrazide) 
C=O(benzohydrazide) 
C=O(isatine) 
Phenyl 

Tyr 156 
2´-OH-ribose(NAD+) 
Gly 93 
Tyr 146 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 
H-Pi 

1.97 
2.12 
2.92 

18 -7.81 1.88  C=O(benzohydrazide) 
C=O(benzohydrazide) 
C=O(isatine) 
 

Tyr 156 
2´-OH-ribose(NAD

+
) 

Gly 93 
 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 
 

1.98 
1.63 
3.15 
 

19 -7.86 1.72 C=O(benzohydrazide) 
C=O(benzohydrazide) 
C=O(isatine) 

Tyr 156 
2´-OH-ribose(NAD

+
) 

Gly 93 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 

1.79 
2.23 
2.46 

20 -6.57 15.30 Pyrazole 
 

Tyr 156 H-Pi  

21 -6.42 19.80 Pyrazole Tyr 156 H-Pi  
22 -6.21 28.20     
23 -6.28 25.03     
24 -6.30 26.91     
25 -6.79 10.57 Pyrazole Tyr 156 H-Pi  
26 -6.33 27.55     
28 -6.25 26.00     
29 -6.46 18.25     
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Compounds  ΔG
 
kcal/mol

 
Ki (μM) Atom of the ligand Receptor/Coenzyme  Interaction Distance(A◦) 

30 -6.03 38.14     
31 -6.37 21.35     
32 -6.35 22.18     
33 -6.12 32.63     
34 -6.30 24.20     
35 -6.02 23.42     
36 -6.26 26.17     
37 -6.65 13.38     
38 -6.65 13.38 2-Cl Leu100 Hydrogen bond 2.90 
39 -6.68 12.61 2-Cl Leu100 Hydrogen bond 2.83 
40 -8.47 618.68  

nano 
C=O (isatine) 
N-H (isatine) 
C=O (imidazolidine) 
C=O (imidazolidine) 

NH2( NAD
+
) 

Phosphate ( NAD+) 
Tyr 156 
2'-OH (ribose)NAD

+
 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 
Hydrogen bond 

2.18 
2.33 
1.81 
1.83 

41 -8.30 828.33 nano C=O (isatine) 
C=O (isatine) 
Isatine  

Tyr 156 
2'-OH (ribose)NAD

+
 

NAD+   -Pyridine 

Hydrogen bond 
Hydrogen bond 
Pi-Pi 

1.70 
1.76 

42 -8.08 1.19 C=O (isatine) 
C=O (isatine) 
Isatine 

Tyr 156 
2’-OH (ribose)NAD

+ 

NAD+  -Pyridine 

Hydrogen bond 
Hydrogen bond 
Pi-Pi 

1.81 
1.89 

43 -7.93 1.53  C=O (isatine) 
C=O (isatine) 
Isatine 

Tyr 156 
2'-OH (ribose)NAD+ 
NAD

+   
-Pyridine 

Hydrogen bond 
Hydrogen bond 
Pi-Pi 

1.77 
1.94 
 

44 -8.39 709.17 nano C=O (isatine) 
C=O (isatine) 
NH2 (urea) 
NH2 (urea) 

Tyr 156 
2'-OH (ribose)NAD+ 
Phosphate ( NAD

+
) 

Phosphate ( NAD+) 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 
Hydrogen bond 

1.91 
1.64 
2.81 
3.74 

46 -8.24 912.17 C=O (isatine) 
C=O (benzamide) 
C=O (benzamide) 

Gly 93 
Tyr 156 
2'-OH (ribose)NAD

+
 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 

2.44 
1.86 
2.30 

47 -8.33 778.55 nano C=O (isatine) 
C=O (isatine) 
C=O (nicotinamide) 

Tyr 156 
2'-OH (ribose)NAD+ 

Gly 93 

Hydrogen bond 
Hydrogen bond 
Hydrogen bond 

1.81 
1.81 
2.10 

48 -8.22 943.86 nano C=O (isatine) Tyr 156 Hydrogen bond 1.97 
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Compounds  ΔG
 
kcal/mol

 
Ki (μM) Atom of the ligand Receptor/Coenzyme  Interaction Distance(A◦) 

 C=O (isatine) 
C=O (nicotinamide) 
 

2'-OH (ribose)NAD
+ 

Gly 93 
Hydrogen bond 
Hydrogen bond 
 

1.63 
2.80 

49 -8.57 519.34  C=O (isatine) 
C=O (isatine) 

Tyr 156 
2'-OH (ribose)NAD+ 

Hydrogen bond 
Hydrogen bond 
 

1.83 
1.68 

50 -8.47 618.68 C=O (isatine) 
C=O (isatine) 
 

Tyr 156 
2'-OH (ribose)NAD

+
 

Hydrogen bond 
Hydrogen bond 
 

2.01 
1.76 

52 -7.58 2.79 (μM) C=O (isatine) 
C=O (isatine) 
 

Tyr 156 
2'-OH (ribose)NAD

+ 

 

Hydrogen bond 
Hydrogen bond 

1.81 
1.85 

53 -7.80 1.90 
(μM) 

C=O (isatine) 
C=O (isatine) 
Isatine  

Tyr 156 
2'-OH (ribose)NAD

+ 

NAD+ 

Hydrogen bond 
Hydrogen bond 
Pi-Pi 

1.87 
2.05 
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4. CONCLUSION 
 

Quantitative relationships between molecular 
structure and antibacterial activity of isatin 
derivatives were discovered by four 
chemometrics methods: MLR, GA-PLS, PCR and 
FA-MLR. MLR analysis explained the positive 
effect of the number of urea derivatives 
(nCONN), thio urea (nCSNN), amide (nCONH2), 
thioamide (nRCONHR), hydrazone (nC=N-N), 
thiocarbohydrazone on the antimicrobial  activity. 
It also indicate the positive effect of nBnz 
(number of benzene rings) with the halogen 
substitution on 5 position of isatin ring F > Cl > Br 
(nArX). This equation also shows nArCN, 
nPyridines (pyridine derivetives) have negative 
effects on the antimicrobial activity of studied 
compound. The FA-MLR describes the effect of 
3D-MORSE and Galvez Topological charge 
descriptors (MOR30m and JGI5) and on 
antimicrobial activity of the studied compounds. 
The quality of PCRA equation is better than 
those derived from FA-MLR. Whilst the data of 
this analysis show acceptable prediction, we see 
that the predicted values of some molecules are 
near to each other. Factors 1 and 2 have higher 
Constitutional, Charge, WHIM, Atom-center, 
Connectivity, Functional, MORSE and 
GETAWAY whereas information about RDF, 
MORSE, burden eigenvalues 2Dautocorrelations 
and functional descriptors are highly incorporated 
in factor 3 and 4. Factor score 5, 6, 7 and 8 
signify the importance of functional chemical and 
Atom-center descriptors. A comparison between 
the different statistical methods employed 
revealed that GA-PLS represented superior 
results and it could explain and predict 73% and 
68% of variances in the –LogMIC data, 
respectively. Comparison between QSAR and 
docking analysis revealed that by decreasing in 
number of ring and lipophilicity (also logp) for 
design of new compounds can have better 
activity. Substitutions such as urea, thiourea, 
thiocarbohydrazone, benzhydrazide as on isatin 
ring, can cause better interaction with receptor. 
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