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Abstract
We present multiparametric rational solutions to the Kadomtsev-Petviashvili equation (KPI). These
solutions of order N depend on 2N − 2 real parameters.
Explicit expressions of the solutions at order 3 are given. They can be expressed as a quotient of a
polynomial of degree 2N(N +1)− 2 in x, y and t by a polynomial of degree 2N(N +1) in x, y and
t, depending on 2N − 2 real parameters. We study the patterns of their modulus in the (x,y) plane
for different values of time t and parameters.
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1 INTRODUCTION
The Kadomtsev-Petviashvili equation (KPI)
is a well-known nonlinear partial differential
equation [1],[2] in two spatial and one temporal
coordinates which can be written in the following
form:

(4ut − 6uux + uxxx)x = 3uyy, (1.1)

with subscripts x, y and t denoting partial
derivatives.

The KP equation first appeared in 1970, in a
paper written by Kadomtsev and Petviashvili [3].
The discovery of the KP equation happened
almost simultaneously with the development of
the inverse scattering transform (IST) as it is
explained in Manakov et al. [4]. In 1974 Dryuma
showed how the KP equation could be written in
Lax form [5], and Zakharov extended the IST to
equations in two spatial dimensions, including
the KP equation, and obtained several exact
solutions to the KP equation.

In 1981 Dubrovin constructed for the first time
[6] the solutions to KPI given in terms of
Riemann theta functions in the frame of algebraic
geometry.

From the 1980’s, a lot of methods have been
found to solve that equation. We can quote
the nonlocal Riemann-Hilbert problem, the d-

bar problem or inverse scattering problem using
integration in the complex plane. More details
can be found in the book by Ablowitz and
Clarkson published in 1991 [7].

We can cite in particular the works of Krichever
[8], Satsuma and Ablowitz in 1979 [9], Matveev
in 1979 [10], Freeman and Nimmo in 1983
[11, 12], Pelinovsky and Stepanyants in 1993 [13],
Pelinovsky in 1994 [14], Ablowitz and Villarroel
[15, 16] in 1997-1999, Biondini and Kodama
[17, 18, 19] in 2003-2007.

This paper is part of a program of research of
rational solutions of partial differential equations.
New solutions of the KPI equation are presented
here. We express rational solutions in terms of a
quotient of a polynomial of degree 2N(N +1)−2
in x, y and t by a polynomial of degree
2N(N + 1) in x, y and t depending on 2N − 2
real parameters. This representation allows to
obtain an infinite hierarchy of solutions to the KPI
equation, depending on 2N − 2 real parameters.

That provides an effective method to construct
an infinite hierarchy of rational solutions of
order N depending on 2N − 2 real parameters.
We present here only the rational solutions
of order 3, depending on 4 real parameters,
and the representations of their modulus in the
plane of the coordinates (x, y) according to real
parameters a1, b1, a2, b2 and time t.

2 RATIONAL SOLUTIONS OF ORDER N TO THE KPI EQUA-
TION DEPENDING ON 2N − 2 REAL PARAMETERS

We consider the matrix M defined by:

mij =

i∑
k=0

ci−k

(√
p2 − 4

3
∂p

)k j∑
l=0

cj−l

(√
q2 − 4

3
∂q

)l

×
(

1

p+ q
exp

(
1

2
(p+ q)(−x+

3

4
t)− 1

4
(p2 − q2)iy)

))
p=q=−1

. (2.1)

The coefficients cj are defined by :

c2j = 0, c2j+1 = aj + ibj 1 ≤ j ≤ N − 1, (2.2)

where aj and bj are arbitrary real numbers.

Then we have the following result:
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Theorem 2.1. The function v defined by

v(x, y, t) = −2 ∂2
x (ln det(m2i−1,2j−1)1≤i,j≤N ) (2.3)

is a solution to the KPI equation (1.1), depending on 2N − 2 parameters ak, bk, 1 ≤ k ≤ N − 1.

Proof The ideas and arguments are the same as those set out in the article [20]. We give a sketch
of the proof.

If we consider

mij =

i∑
k=0

ci−k

(√
p2 − 4

3
∂p

)k j∑
l=0

cj−l

(√
q2 − 4

3
∂q

)l

×
(

1

p+ q
exp

(
1

2
(p+ q)(−ix1 +

3

32
ix3)−

1

4
(p2 − q2)x2)

))
p=q=−1

,

ϕi =

i∑
k=0

ci−k

(√
p2 − 4

3
∂p

)k

×
(
exp

(
1

2
p(−ix1 +

3

32
ix3)−

1

4
p2x2)

))
p=q=−1

,

and

ψj =

j∑
l=0

cj−l

(√
q2 − 4

3
∂q

)l

×
(
exp

(
1

2
q(−ix1 +

3

32
ix3) +

1

4
q2)x2)

))
p=q=−1

,

then we have the relations

∂x1mij = ϕiψj , ∂xnϕi = ∂n
x1
ϕi, ∂xnψj = (−1)n−1∂n

x1
ϕi, n = 2, n = 3.

From [21], this proves that τ = det(mij) satisfy the bilinear equation

(D4
x1

− 4Dx1Dx3 + 3D2
x2
)τ · τ

So the function ṽ defined by ṽ = 2∂2
X ln(τ) verify the equation

(uT + 6uuX + u3x)X = u2Y

with x1 = X, x2 = iY , x3 = −4T .
The next transformation given by X = −ix, T = it and Y = y proves that the new function v defined
by v(x, y, t) = ṽ(X = −ix, Y = y, T = it) is a solution to the KPI equation (1.1).
In particular, the function v defined by

v(x, y, t) = −2 ∂2
x (ln det(m2i−1,2j−1)1≤i,j≤N )

is a solution to the KPI equation (1.1), depending on 2N − 2 parameters ak, bk, 1 ≤ k ≤ N − 1.
So we get the result. 2

3 RATIONAL SOLUTIONS OF ORDER 3 DEPENDING ON 4
PARAMETERS

In the following, we explicitly construct rational solutions to the KPI equation of order 3 depending on
4 parameters.

Because of the length of the expression of the solution, we only give the expression without parameters
and we present it in the appendix.
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We give patterns of the modulus of the solutions in the plane (x, y) of coordinates in functions of
parameters a1, b1, a2, b2 and time t.

In all the following figures, if the parameters are not quoted then there are equal to 0.

Fig. 1. Solution of order 3 to KPI, on the left for t = 0, a1 = 104; in the center for t = 0,
a2 = 108; on the right for t = 0, b1 = 104

Fig. 2. Solution of order 3 to KPI, on the left for t = 0, b2 = 108; in the center for t = 0,
a1 = 104, a2 = 104; on the right for t = 0, a1 = 104, a2 = 104, b1 = 104, b2 = 108

Fig. 3. Solution of order 3 to KPI, on the left for a1 = 103; in the center for a2 = 105; on the
right for b1 = 104; here t = 1
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Fig. 4. Solution of order 3 to KPI, on the left for t = 1, b2 = 107; in the center for t = 1, a1 = 103,
a2 = 105, b1 = 104, b2 = 107; on the right for t = 1, a1 = 105, a2 = 105, b1 = 105, b2 = 105

Fig. 5. Solution of order 3 to KPI, on the left for t = 10, a1 = 104; in the center for t = 10,
a2 = 104; on the right for t = 10, b1 = 104

Fig. 6. Solution of order 3 to KPI, on the left for t = 10, b1 = 108; in the center for t = 10,
a1 = 108, a2 = 108, b1 = 108, b2 = 108; on the right for t = 102, a1 = 108, a2 = 108, b1 = 108,

b2 = 108
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The previous study shows the appearance of
different types of configurations.

If a1 ̸= 0 and the other parameters equal to 0, we
get 12 peaks on two concentric rings, 6 on the
first and 6 on the second one.

For a2 ̸= 0 and the other parameters equal to
0, we get 10 peaks on a ring and a peak in the
center of the ring.

If b1 ̸= 0 and the other parameters equal to 0, we
get 6 peaks on a triangle.

For b2 ̸= 0 and the other parameters equal to 0,
we get 5 peaks on a ring and one peak in the
center of the ring.

In the case where two parameters a1 and a2 are
not equal to 0, the other parameters being equal
to 0, for the same values of parameters, we get
12 peaks on two concentric rings, which shows
the predominance of the parameter a1 over the
parameter a2 on the structure of the solutions.

In the case where two parameters b1 and b2 are
not equal to 0, the other parameters being equal
to 0, for the same values of parameters, we get
6 peaks on a ring with a peak in the center of
the ring, which shows also the predominance of
the parameter b1 over the parameter b2 on the
structure of the solutions.

In the case where all parameters a1, a2, b1,
b2, are not equal to 0, for the same values of
parameters, we get 6 couples of 2 peaks on two
rings.

4 CONCLUSION

In this article, rational solutions to the KPI
equation have been built in terms of quotients
of a polynomial of degree 2N(N + 1) − 2 in x, y
and t by a polynomial of degree 2N(N + 1) in x,
y and t, depending on 2N − 2 parameters.

Other approaches to build solutions of KPI
equation had been realized, and we can mention
those most significant. In 1990, Hirota and Ohta
[22] built, the solutions as particular case of a

hierarchy of coupled bilinear equations given
in terms of Pfaffians. In 1993, the Darboux
transformations was used to obtain among others
the solutions of the multicomponent KP hierarchy
[23], but no explicit solutions were given. More
recently, in 2013, wronskians identities of bilinear
KP hierarchy were given [24]. In 2014, solutions
of KPI equation were constructed [25]; an explicit
solution at order 1 was built and only one
asymptotic study has been carried out for order
higher than 2.

In 2016, three types of representations of the
solutions were given in [26], in terms of Fredholm
determinants, wronskians and degenerate
determinants.

The structures of the solutions given in this paper
looks like to these given in [26] which were
deduced from the solutions to the NLS equation
[27, 28, 29].

But, to the best of my knowledge, some of the
structures of these solutions had never been
presented. It will be relevant to find explicit
solutions for higher orders and try to describe
the structure of these rational solutions.
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APPENDIX

The general solution depending on 4 parameter being too large, we present only the solution without
parameters. In can be written as:

v(x, y, t) = −2
n3(x, y, t)

(d3(x, y, t))2

with
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