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ABSTRACT 
 

The present work is concerned with the development of a simple transient mathematical model for 
the oxygen diffusion-consumption in the eye lens. The model takes into account the transport of 
oxygen by diffusion and consumption of oxygen is assumed to follow the Michaelis- Menten’s 
kinetics. The partial differential equation governing the partial pressure of oxygen has been solved 
by using implicit Crank-Nicholson’s iteration scheme. The prime objective of the present study is to 
investigate the effect of model parameters: the Michaelis- Menten’s kinetic constant and maximum 
rate of consumption on the partial pressure of oxygen in the mammalian lens. The computational 
results of the model have been presented by graphs and effects of model parameters also have 
been shown through the graphs and discussed. The present mathematical analysis of oxygen 
diffusion in the lens may contribute to the knowledge of regulation of tissue oxygen in the lens and 
quantitative understanding achieved through the analysis may facilitate the design of new 
therapeutic procedures. This analysis may help in regulating the partial pressure of oxygen in the 
lens. 
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1. INTRODUCTION    
 

A mathematical model for flow and diffusion of 
oxygen in the lens of the eye has been 
developed. The model considers the eye lens as 
a spherical shell, bounded by an epithelium layer 
and which comprises two functionally different 
domains of fibre cells: differentiating fibres (DF) 
near the surface and mature fibres (MF) located 
in the central region of the tissue. 
 

Opacification of the lens nucleus is a major 
cause of blindness and is thought to result from 
oxidation of key cellular components [1]. The 
marked increase in oxygen consumption that 
occur when the lens is exposed to increase the 
oxygen is likely to result in the production of the 
higher levels of reactive oxygen species and may 
provide a link between elevated oxygen levels 
and the risk of nuclear cataract [2]. An increase 
in oxygen concentration is thought to be 
responsible for cataract formation [3]. Thus, the 
knowledge of oxygen concentration and 
distribution within the lens is of considerable 
interest clinically. 
 

Few polarographic and optode measurements 
report oxygen partial pressure from 1 mmHg in 
the cat lens posterior cortex and nucleus [4 to 
10-22 mmHg in the rabbit lens [5] and 0.8-4.0 
mmHg in the human anterior cortex [2].  These 
data indicate that to protect against age- related 
nuclear cataract formation, oxygen concentration 
in the lens has to be maintained at very low level. 

 
Eaton [3] and Harding [6] have suggested that 
partial pressure of oxygen through out the lens is 
low, if not zero. In vivo, the lens is situated in a 
relatively low oxygen environment and partial 
pressure of oxygen could be higher in the core of 
aged lens. Eaton [3] suggested that the effective 
exclusion of oxygen from the centre of lens could 
be one mechanism by which cell in this region 
preserve their transparency over a prolong 
period. This hypothesis is supported by the 
interesting observation that nuclear develop in a 
remarkable high proportion of patients following 
hyperbaric therapy [6]. Thus long-term 
preservation of lens clarity may depend on the 
maintenance of hypoxia in the lens nucleus [7]. 
 
The lens consists of a mass closely packed 
fibres cells bounded anteriorly by an epithelial 
monolayer and enveloped by thick basement 
membrane, the lens capsule. Fibres cells are 
continuously produced from the adult lens 
contains two kinds of fibres cells: those located in 

the lens core, which are mature and do not 
contain organelles, and those located in the lens 
outer layers, which are not yet mature and 
contains organelles (including mitochondria). 
Due to steady addition of newly formed fibres, 
the lens grows throughout life in layers 
somewhat like an onion. Thus, the lens contains 
two populations of fibres cells: an outer layer of 
differentiating fibres (DF) and a core of mature 
fibres (MF). The relevant difference between MF 
and DF is that the DF contains mitochondria, 
which consume oxygen, whereas the MF has no 
organelles. The schematic diagram of the lens of 
the eye is shown in image (2). 
 

Mitochondrial respiration account for 
approximately 90% of oxygen consumption by 
the lens, which suggests that the outer layer of 
fibres cells can be responsible for low oxygen 
concentration in the lens nucleus. Because 
oxygen is constantly consumed and oxygen 
consumption reactions are located inside the eye 
lens [3], it follows that there must be a gradient in 
oxygen concentration across the fibre cell layers 
that build the eye lens. Oxygen consumption is 
necessary to maintain the low oxygen 
concentration inside the eye lens. Despite 
numerous experimental studies [5,8-30] the 
mechanism leading to the opacification is not 
well understood. The knowledge of many 
important aspects of lens homeostasis is 
required. Any therapeutic strategy must be 
directed towards the long-term preservation of 
cellular components and to maintain the oldest 
cells (i.e. cells in the lens core) in a perpetually 
hypoxic state for maintaining tissue 
transparency. 
 

In order to prolong the lens transparency and to 
get nuclear cataract delayed as long as possible 
there is a need to investigate physiological 
factors affecting the oxygen diffusion, 
consumption, and oxidation processes within the 
lens. For the purpose, the understanding of 
oxygen diffusion and consumption in the lens 
should be promoted. A mathematical analysis of 
oxygen diffusion and consumption in the lens 
may contribute to the knowledge of regulation of 
tissue oxygen in the lens and quantitative 
understanding achieved through the analysis 
may facilitate the design of new therapeutic 
procedures. McNutty et al. [29] developed a 
simple steady-state diffusion-consumption model 
for the partial pressure of oxygen in the lens and 
used it to calculate time constants for oxygen 
consumption in various regions of the lens and 
oxygen diffusion coefficient. This model may be 
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generalized and some more relevant predictions 
can be made.  

 

 
 

Image 1. Main components of the eye [9] 
 

 
 

Image 2. Diagrame of eye showing inter-relationship between lens, cornea, posterior and 
anterior chambers [9] 

 
The present work is concerned with the 
development of a simple transient mathematical 
model for the oxygen diffusion-consumption in 
the eye lens. The lens is modeled as a spherical 
shell, bounded by an epithelium layer and which 
comprises two functionally different domains of 
fibre cells: differentiating fibres (DF) near the 
surface and mature fibres (MF) located in the 
central region of the tissue. The model takes into 
account the transport of oxygen by diffusion and 
consumption of oxygen is assumed to follow the 
Michaelis- Menten’s kinetics. The partial 
differential equation governing the partial 
pressure of oxygen has been solved by using 

implicit Crank-Nicholson’s iteration scheme. The 
prime objective of the present study is to 
investigate the effect of model parameters: the 
Michaelis- Menten’s kinetic constant and 
maximum rate of consumption on the partial 
pressure of oxygen in the mammalian lens.       
     

2.  MATHEMATICAL FORMULATION 
 

The almost spherical ocular lens contains two 
populations of fibre cell: an outer layer of 
differentiating fires (DF) which contains 
organelles and a core of mature fibres (MF), 
which do not. The oxygen enters the lens by 



 
 
 
 

Nigam et al.; JSRR, 27(9): 32-40, 2021; Article no.JSRR.72926 
 
 

 
35 

 

diffusion from the surrounding humors and 
crosses many thousands of fibre cell plasma 
membrane readily. Some of the oxygen is 
consumed by mitochondria and non-
mitochondrial elements and the remaining 
reaches/diffuses readily into the centre of the 
lens. The illustration of physical model relevant to 
the present study is shown in Image (3). 
 

 
 

Image 3. Schematic diagram of lens of the 
eye 

 
The model treats the lens as a sphere with radius 
r2. If r is the redial distance from the lens centre, 
the outer shell of differentiating fibre (DF) is 
located at r1 ≤ r ≤r2, where r1 = 0.8r2 Thus mature 
fibre (MF) is at 0 ≤ r ≤r1. The border between DF 
and MF is located at a distance r1 from the 
centre. 
        

2.1 Governing Equation 
 
The Fick’s law of diffusion and Michaelis- 
Menten’s kinetics of consumption result in 
following P.D.E. describing the partial pressure of 
oxygen in the lens:   

2 2 max 0 (1)
2

2
max3 0 (2)

2

V PP P P
D , r

t r r P Kr

V PP P
D , r

t P Kr

   
    
    

  
   
   

 

 
where P is the partial pressure of oxygen, Vmax  is 
the maximum rate of consumption, K the 
Michaelis- Menten’s Kinetic constant for the 
reaction and D the diffusion coefficient. 
 

2.2 Boundary and Interaface Conditions 
                                        
In order to formulate a physiologically consistent 
and mathematically tractable model, boundary 
and interface conditions relevant to present 
model are described below: 
 

2 (3)

, 0 4( , )
1 1

1 1

0 (5)
0
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  

 

 

Eq. (3) shows that, the partial pressure of oxygen 
at the surface of the lens is same as that in the 
bathing solution i.e., P(bath). Eq.4 (a,b) 
represents that, there must be, all times, the 
continuity of oxygen concentration and flux at the 
interface between two adjacent layers. Eq. (5) 
depicts that at the centre of the lens there is no 
flux.  
 

2.3 Initial Condition 
 

A study state solution [1] to the governing Eqs. 
(1)- (2) subject to the boundary and interface 
conditions (3), 4(a,b), and (5) and the case P<< 
K, which serves as an initial condition for our 
transient state problem, is given by: 

 

2
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where P1 is the common term of the solution of Eqs. (1) – (2)  is given by: 
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1

2 1 2 1 1cosh tanh tanh
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Here be λDF and λMF are length constant for DF 
and MF regions 
 

3. SOLUTION TO THE PROBLEM 
 
3.1 General Consideration  

 
Finite difference Crank Nicholson implicit scheme 
require discretisation of the spatial and temporal 
domains and they may vary according to 
requirements of each particular problem. For the 
purpose of this model, the spatial domain ‘r’ has 
been discretised into 25 equidistant points. The 

distance between any two points is given by r= 

0.02cm so that rj =jr, j=1, 2…..25. The time 

domain has been discretised using t as a 

constant time step so that t= kt, be k ε N. The 

value of P(r, t) in discretised domain is thus 
represented by Pj, k. 
 
This method ensures that the equation to be 
solved is satisfied at the mid-point between the 

solution at time t= kt and the time that t= 

(k+1)t. Central finite difference are employed to 

find the temporal derivative at (jr,(k+1)t) and 
the average between the spatial derivative 

evaluated at the points (jr, kt) and 

(jr,(k+1)t). Hence finite difference 
approximation of equations (1) and (2) 
representing the oxygen diffusion and 
consumption are given by  
 

 1, 1 , 1 1, 1 , (7)i j k i j k i j k i j ka P b P c P f P        

 

Where  ,i j kf P denote the term corresponding 

to the equation for location j in the grid and is 
given by: 
  

 
 
The finite difference analogues of the boundary and interface conditions are given by: 
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Here j=1,  j=21 and j=26 in equations (10), (11), (12) are respectively centre of the lens, border of MF 
and DF region and the outer surface of DF region. 
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Image 4. Crank Nicholson implicit scheme 

 
Table 1. Input parameters for our model 

 

Constant Symbol Numerical value 

Partial pressure of oxygen in bathing solution P(bath) 36 mmHg 
Michaelis- Menten’s Kinetic constant K 4.834       
Diffusion coefficient D 3x10-5 cm2s-1  
Maximum rate of consumption Vmax 9.9µl-h-1 
Length constant for DF region 

DF  0.8 mm 

Length constant for MF region 
MF  0.9 mm 

Radius of lens r2 5.0 mm 

 

3.2 Solution to the Algebraic Equation 
 

The implicit iterative scheme given by Eq.(7,8) is 
simplified in light of the finite difference 
analogues of the initial, boundary and interface 
conditions and the resulting system of algebraic 
equation written in the trigonal matrix form 

 , 1 ,j k j kAP f P   was solved by using Thomas 

algorithm. 
 

These parameter values are supported by [9,1]. 
 

4. RESULT AND DISCUSION 
 

The computational results to the model are 
obtained by using the physiological values of the 
parameters listed in Table 1 and discussed 
through the graphs:  
 

Figs. 1. and 2  shows that from centre of lens to 
outward, the partial pressure of oxygen increases 
with increase in  Michaelis- Menten’s Kinetic 
constant  K  at different time. 
 

Fig. 7 and 8 shows that from centre of lens to 
outward, the partial pressure of oxygen increases 

with increase in maximum rate of consumption at 
different time.          
        

  
 

Fig. 1. Partial pressure of oxygen profile for 
different values K at 1 hour 

 

 
 

Fig. 2. Partial pressure of oxygen profile for 
different values K at 2 hour 
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Fig. 3-6. Distribution of partial pressure of oxygen in lens of the eye 
 

     

  
 

Fig. 7. Partial pressure of oxygen profile for 
different values of maximum rate of 

consumption at 1 hour 

Fig. 8. Effect of maximum rate of 
consumption on pressure distribution 

along radius at hour 
 
These graphs show that partial pressure of 
oxygen increases with increase of ‘K’ and 
decreases with increase of Vmax Therefore Partial 
Pressure can be regulate by regulating ‘K’. 
 

5. CONCLUSION 
 
The present mathematical analysis of oxygen 
diffusion in the lens may contribute to the 
knowledge of regulation of tissue oxygen in the 
lens and quantitative understanding achieved 
through the analysis may facilitate the design of 
new therapeutic procedures. This analysis may 
help in regulating the partial pressure of oxygen 

in the lens. Simple mathematical models 

developed for flow and diffusion phenomena in 
the lens of the eye may encourage academicians 
to develop more generalized mathematical 
models by incorporating non-linearities involved 

and observed in the flow systems and oxygen 
diffusion in future models. Many scientific 
problems involved in the developing realistic, 
tractable models and in interpreting, the results of 
mathematical analysis may be reduced, thus 
facilitating theoretical research in the area. 
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