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Abstract

Among nutrients, nitrogen is required in the greatest quantities by bean culture. The objective of this work was
to evaluate growth, physiological responses and productivity of the common bean cultivar, ‘IAC Imperador’
under varying nitrogen doses in Brejo Paraibano. The experiment was carried out at Fazenda Experimental
Cha-de-Jardim (Cha-de-Jardim Experimental Farm), of the Centro de Ciéncias Agrarias of the Universidade
Federal da Paraiba, in the municipality of Areia, state of Paraiba. The treatments comprised 0, 50, 100, 150 and
200 kg of nitrogen ha™, applied in coverage at 35 days after sowing. To assess growth, plant height, stem
diameter and number of leaves were evaluated. For gas exchange, photosynthesis rate, internal CO,
concentration, transpiration, stomatal conductance, instantaneous water use efficiency and instantaneous
carboxylation efficiency were evaluated. For chlorophyll “a” fluorescence, minimum leaf fluorescence,
maximum leaf fluorescence, variable maximum fluorescence, potential quantum efficiency of PSII (Photosystem
IT) and ratio (F,/F,) were evaluated. For the components of primary productivity, the height of insertion of the
first pod, number of pods per plant and the number of grains per pod were evaluated. Nitrogen fertilization in
coverage significantly affected most of the growth, gas exchange and productivity variables, with the dose of
200 kg ha™ being responsible for the highest values (p < 0.05). Chlorophyll fluorescence showed no significant
differences among the nitrogen doses. The nitrogen doses influenced the growth, gas exchange and productivity
of the common bean in the region of Brejo Paraibano.
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1. Introduction

Beans (Phaseolus vulgaris L.) are one of the most economically important crops for Brazil (FAO, 2017),
generating employment and income, and are an important source of protein for the population. The expected
national production in 2017 exceeds 3.3 million tons (IBGE, 2017). However, the average productivity of 886 kg
ha™' (CONAB, 2017) is considered low and due mainly to the low level of technology employed (Nascente et al.,
2012).

The management of fertilization is considered fundamental to achieving better grain yields (Arf et al., 2011),
with nitrogen (N) being the most influential nutrient for bean crops. This macronutrient is of great importance to
the physiology of bean plants because it acts on the composition of the chlorophyll molecule by transforming
photoassimilates into grain, thereby increasing productivity (Soratto et al., 2006). When evaluating fertilization
with nitrogen in coverage, Crusciol et al. (2007) found productivity above 3,000 kg ha”, and obtained significant
responses for nitrogen doses up to a maximum of 120 kg ha™. High doses of nitrogen can stimulate vegetative
growth and cause morphological changes in plants (Marschner, 1995). Growth assessment is essential for
analyzing the effects of management systems on plants by providing information on plant productivity as a
function of time, which is impossible to obtain from only grain yield (Urchei et al., 2000).

Several Brazilian ecosystems are favorable for bean cultivation, including the Brazilian semi-arid region, which
possesses intrinsic edaphoclimatic conditions. However, there is a lack of studies in support of making the
management of nitrogen fertilization and the use of more productive genotypes feasible for achieving
satisfactory yields and results for producers.
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Knowing that climatic conditions influence gas exchange in plants (Taiz et al., 2017), temperature, radiation rate
and CO, concentration can influence plant growth and production. Therefore, the study of changes is an
important tool for determining the adaptation of plants to different environmental conditions since the reduced
morphological development may be related to photosynthetic activity (Paiva et al., 2005).

There are many studies in the literature related to the management of different doses nitrogen fertilization for the
common bean. However, the results vary depending on regional, climatic and management factors. Thus, the
objective of this work was to evaluate the growth and physiological responses of the common bean (Phaseolus
vulgaris) cv. IAC Imperador under different doses of nitrogen fertilization in coverage in the region of Brejo
Paraibano.

2. Method
2.1 Study Area and Cultivar

The research was carried out from July to September 2017 at Fazenda Experimental Cha-de-Jardim
(Cha-de-Jardim Experimental Farm) belonging to Centro de Ciéncias Agrarias of the Universidade Federal da
Paraiba, in the municipality of Areia of the state of Paraiba (Figure 1). The predominant climate in the region is
Aw’, according to the classification of Peel et al. (2007), characterized as tropical, with the highest rainfall in the
months of June and July. Data on rainfall, mean temperature and relative humidity during the experiment are
shown in Figure 2.

The bean cultivar was used ‘IAC Imperador’, which possesses genetic material with determined growth (type I),
semi-erect habit, and an early cycle that lasts around 70 to 75 days. The cultivar is resistant to anthracnose and
Fusarium wilt (Chiorato et al., 2012).

The properties of the soil indicated pH in H,O 4.8; 2.40 mg dm™ of P; 28.40 mg dm™ of K; 0.05 cmol. dm™ of
Na'; 5.49 cmol.dm™ of H" + AP**; 0.10 cmol.dm™ of AP’"; 0.81 cmol.dm™ of Ca*"; 0.30 cmol.dm™ of Mg**;
1.23 cmol, dm™ of base sum; 6.72 cmol, dm™ of effective CEC and 36.72 g kg™' of organic matter.

The experiment was fertilized with 30 and 50 kg ha™ of P,Os and K,O at planting (in the form of single
superphosphate and potassium chloride, respectively). For correction of the soil, liming with 4.8 t ha™ of
dolomitic limestone (PRNT = 100%), was performed a week prior to planting. Sowing was done in lines spaced
50 cm apart, with 12 seeds each per linear meter, in plots of 3x3m, in order to obtain a population of
approximately 240,000 plants per hectare.
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Figure 1. Geographic location of Fazenda Experimental Cha-de-Jardim, municipality of Areia,
state of Paraiba, Brazil
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Figure 2. Rainfall (mm), temperature (°C) and relative humidity (%) in the period of conducting the experimente,
between July and September of 2017. Obtaineds datas at the Estacdo Meteoroldgica do Centro de Ciéncias
Agrarias, Universidade Federal da Paraiba, municipality of Areia, state of Paraiba, Brazil

2.2 Growth

Growth was evaluated at 45 and 60 days after sowing (DAS) by: counting the number of photosynthetically
active leaves per plant (NL); measuring plant height (PH) (from the lap to the apical geme) in cm using a ruler;
and measuring stem diameter (SD) in mm using a digital caliper.

2.3 Gas Exchange

Data on gas exchange was collected by measuring: rate of photosynthesis (A) (umol m? s™); internal CO,
concentration (Ci) (umol m? s™); transpiration (E) (mmol de H,O m™ s); stomatal conductance (gs) (mol m™
s); instantaneous water use efficiency (IWUE — A/E) [(umol m™ s™)/(mmol de H,O m? s™)], calculated by
relating liquid photosynthesis to transpiration; and the instantaneous carboxylation efficiency (ICE — A/Ci)
[(umol m? s')/(umol m? s)], from the relationship between liquid photosynthesis and internal carbon
concentration. Measurements were made on healthy, unmarked and completely open leaves using a portable
infrared carbon analyzer (IRGA, Licor 6400XL) under natural atmospheric conditions. Measurements were
made between 10:00 h and 11:00 h, 60 days after sowing (DAS).

2.4 Chlorophyll “a” Fluorescence

2

Chlorophyll “a” fluorescence was measured and the following parameters determined: minimum fluorescence of
a dark adapted leaf (Fp); maximum fluorescence of a dark adapted leaf (F,,); maximum variable fluorescence (F,
= Fn, — Fo); potential quantum efficiency of PSII (F,/F,); and the ratio F,/F,. Measurements of chlorophyll
fluorescence were performed on intact leaves attached to plants previously adapted to dark for 30 minutes,
beginning at 10 hours, at 60 days post sowing, using a fluorimeter [OS-30p + (Optisci)].

2.5 Productivity

Harvesting was performed with the plants at stage R9—pod maturity—on 20 September 2017. At the time of
harvest, evaluations were made on the components of primary productivity. The height of insertion of the first
pod (HIFP) was measured with a ruler from the lap of the plant until the insertion of the first pod. The number of
pods per plant (NPP) was determined by counting the total number of pods and dividing the total by the total
number of plants. The number of grains per pod (NGP) was obtained by dividing the total number of grains by
the total number of pods.

2.6 Experimental Design

A randomized block design with five treatments and four replicates was used. Treatments consisted of the
application of increasing dosages of nitrogen in coverage, 35 days after sowing. Urea was used as a source of
nitrogen. Thus, treatments were: T1 (control, 0 kg ha™), T2 (50 kg ha™), T3 (100 kg ha™), T4 (150 kg ha) and
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T5 (200 kg ha™). The plots had a total area of 9.0 m? and a useful area of 6.0 m’, in which five plants were
chosen, at random from three central lines of each plot, so that they could be evaluated.

The data were submitted to analysis of variance, according to the design adopted. In the study of the effects of N
doses, data were submitted to regression analysis, with adjustment of representative curves, according to the
evaluated characteristics (Soares et al., 2016).

3. Results and Discussion
3.1 Growth Analyses

Table 1 provides F-test results that show that nitrogen fertilization did not affect plant height, but significantly
affected diameter and the number of leaves. The CVs of all of the variables analyzed were low. It should be
emphasized that the experiment was carried out in the field.

Figure 3A shows mean plant height at 45 and 60 days after sowing. Height did not differ significantly among
nitrogen doses, but maximum heights were obtained at doses of 0 and 200 kg ha™' for both evaluation periods,
with it being 8.3 cm at 45 days and 18.4 cm at 60 days. The dose of 100 kg ha™' produced the shortest height for
both evaluation periods.

These results are the opposite of those reported by Biscaro et al. (2012), who found a growth response up to the
dose of 125 kg ha™', and for Cunha et al. (2013) and Viana et al. (2013), where they obtained increases in growth
due to the application of up to 136 and 108 kg ha™, respectively. However, the results of Valderrama et al. (2012),
not found an effect of nitrogen fertilization on plant height, are similar to those of the present study. These
differing results may be related to different edaphoclimatic conditions where the experiments took place.
According to the edaphoclimatic conditions observed during the present experiment (Figure 2), accumulated
value (495.8 mm) was higher than the water requirement of the crop, which ranged from 300 to 400 mm
(Moreira et al., 2003). Souza et al. (2013) attributed these differences specifically to soil fertility levels and to the
production systems adopted by the authors, in addition to irrigation.

Studying different bean genotypes under varying doses of nitrogen fertilizer, Sousa et al. (2012) found higher
growth with the use of 80 kg ha', and a constant growth until the dose of 150 kg ha™, with doses higher than this
causing a negative effect on growth. Evaluating different doses of fertilization in different salinities, Sousa et al.
(2013) did not find differences between the doses of nitrogen applied up to 190% of the recommended dose for
bean crops. Similarly, working with sources and doses of N, on the surface and incorporated, Cunha et al. (2013)
also observed an increase in bean height with nitrogen supply.

Studying organomineral fertilization, Nakayama et al. (2013) observed linear growth as a function of the
application of nitrogen up to 250 kg ha”. These data are similar to those found by Salgado et al. (2012), who
evaluated different bean cultivars in nitrogen poor and rich soils and found that growth was better in soils with
high nitrogen concentrations.

Bean plant height did not respond well to fertilization even though it was expected that the increased availability
of the nutrient would lead to greater absorption and height growth since adequate doses of nitrogen are
associated with high photosynthetic activity and, consequently, vigorous vegetative growth (Souza et al., 2014).
Nitrogen uptake and crop use are strongly influenced by meteorological conditions, so it is important to discuss
agronomic characteristics in relation to precipitation, such as low soil water reserves and/or low precipitation,
since these factors can substantially reduce nitrogen uptake, particularly immediately after fertilization
(Vleugelsa et al., 2017), which indeed occured in the present study.

The studied bean ‘IAC imperador’, which is adapted to the region, may have developed a capacity for plasticity
and translocated nutrients from other plant sites and invested in growth. This factor could lead to a reduction in
other aspects of the plant, such as productivity.

The mean diameter of bean plants responded positively to the doses of nitrogen, mainly at 60 days after sowing.
The dose of 200 kg ha™' promoted the greatest growth in stem diameter, with an increase of 5% and 16% relative
to the control treatment at 45 and 60 days post-sowing, respectively (Figure 3B). These data are similar to those
found by Nakayama et al. (2013), who obtained linearly increasing values in diameter using nitrogen fertilizer up
to a dose of 250 kg ha'. On the other hand, Salgado et al. (2012) and Sousa et al. (2013) did not find significant
difference for stem diameter in situations of low and high availability of nitrogen in the soil, but confirm that
differences can occur depending on the conditions of the growth environment or the use of different cultivars.

Studying nitrogen fertilization of up to 150 kg ha™ at different times, Vleugelsa et al. (2017) did not find
differences in plant diameter among applied doses. This may have been due to the fact that nitrogen is a very
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volatile nutrient in the soil and its value changes rapidly depending on, most importantly for bean crops, soil and
climate conditions (Rodriguez et al., 2016; Yuan et al., 2017).

Increased nitrogen dosage produced a greater number of photosynthetically active leaves on the bean plants, with
a greater increase at 60 days post-sowing, ranging from 8.6 leaves per control plant to 11.3 leaves per plant at the
maximum dose used (Figure 3C). These data differ from those of Sousa et al. (2013), who did not find
significant differences for the number of leaves while studying saline water and different doses of nitrogen up to
the maximum recommended dose for the crop.

Nitrogen is fundamental for good leaf development and a greater number of leaves since it acts on plant
metabolism favoring the physiological processes of growth, distance between nodes and cell division. Thus, the
more available nitrogen the greater the quantity of leaves produced up to a limit considered optimal (Kurtz et al.,
2012).

Table 1. F test for plant height; stem diameter; and number of leaves (NL) of cultivated beans under different
doses of nitrogen

L. F Test
Source of Variation - -
Height Diameter NL
N rates ns ok ok
Quadratic Reg. ns Hx *
Block ns ns *
C.V. (%) 5.35 12.34 17.21

Note. ns, ¥* | * respectively, not significant, significant at p <0.01 and p <0.05, by F-test.
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Figure 3. Plant height (A), stem diameter (B) and number of leaves (C) of cultivated beans under
different doses of nitrogen

3.2 Gas Exchange

The F-test results show that nitrogen fertilization significantly affected the rate of photosynthesis, transpiration,
internal CO, concentration, instantaneous water use efficiency and instantaneous carboxylation efficiency (p <
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0.05), but not stomatal conductance (Table 2). Evaluating the effect of nitrogen fertilization on growth and gas
exchange of bean plants, Soares et al. (2013), found a significant effect of nitrogen doses only for transpiration.

Figure 4 provides the mean values for the physiological responses of beans to the effects of N doses, specifically
for photosynthetic rate (A), internal CO, concentration (Ci), transpiration (E), stomatal conductance (gs),
instantaneous water use efficiency (IWUE) and instantaneous carboxylation efficiency (ICE).

Regarding gas exchange, the values for photosynthetic rate (A) exhibited an increasing linear response to the
effect of the doses of N and, according to the regression equation, the values range from 15.552 pmol m™ s™
(control, 0 kg of nitrogen ha™) to 17.891 pmol m™? s (200 kg of nitrogen ha™') (Figure 4A). The dose of 200 kg
of nitrogen ha" had the highest values of photosynthetic rate, which may be related to there being a sufficient
amount of nitrogen since the nutritional state of plants influences photosynthesis. According to Taiz et al. (2017),
the deficiency of some nutrients, such as nitrogen and magnesium, in the soil causes chlorosis in the leaves,
which interferes with the process of photosynthesis. According to Larcher (2004), the highest photosynthetic
rates are achieved through fertilization.

The results for transpiration (E) followed the same trend of stomatal conductance with a linear response to the
effect of N doses, with values varying between 2.926 mmol m™ s (control, 0 kg of nitrogen ha™) and 4.010
mmol m? s (200 kg of nitrogen ha™) (Figure 4B). The elevation of leaf transpiration rate not only increases
water flow in the xylem, but also raises the concentration of cytokinin synthesized in the roots, which is an
important mechanism for delaying leaf senescence, as evidenced in the present study (Larcher, 2004; Marschner,
1995; Soares et al., 2013; Taiz et al., 2017).

The internal carbon concentration (Ci) exhibited an increasing linear response to the effect of the doses of N and,
according to the regression equation, increased the most with the dose of 200 kg of nitrogen ha™ (Figure 4C).
The internal carbon values varied between 188.72 pmol m™ s (control, 0 kg of nitrogen ha™) and 534.19 pmol
m” s (200 kg of nitrogen ha™). Ferraz et al. (2012) analyzed gas exchange of cultivated beans in the field in the
semi-arid region of Northeast Brazil, and found no significant responses to the different doses, with the most
expressive results being 277.0 and 289.6 umol m™ s™'. Evaluating the effects of nitrogen on gas exchange of the
common bean, Anjos et al. (2014) found no significant effect of the different doses on internal carbon
concentration.

Stomatal conductance (gs) exhibited a linear response among doses, with the lowest values being for the control
(0 kg of nitrogen ha™), which had values varying between 0.157 mol m™ s™' (control) and 0.264 mol m™ s™ (200
kg of nitrogen ha™). This response may be related to a high degree of closure of the stomata at the lowest N
doses in order to void losses to the water conduction system. Nitrogen is a nutrient involved in protoplasmic
processes, enzymatic reactions and photosynthesis, causing an osmotic gradient that allows the movement of
water, thereby regulating the opening and closing of stomata (Epstein & Bloom, 2006; Silva et al., 2013).

Regarding instantaneous water use efficiency (IWUE), a reduction of 28% was observed between the highest
value of 102.50 [(umol m? s™) (mmol m? s)"] for the 200-dose kg of nitrogen ha™, and the lowest value of
84.75 [(umol m™ s™") (mmol m™ s™')"'] for the control (Figure 4E). The increase in IWUE for the 100-dose kg of
nitrogen ha™' may be associated with the already established benefits that this dose provides to gas exchange in
bean plants, which provides better development of the photosynthetic process. This parameter is determined by
the relationship between the rate of photosynthesis and the rate of transpiration (A/E), in which the values
measured relate to the amount of carbon the plant receives for each unit of water it loses (Jaimez et al., 2005).

The instantaneous carboxylation efficiency (ICE), calculated by ratio A/Ci, differed among the different doses.
Plants that received the dose of 200 kg of nitrogen ha™ had the highest instantaneous carboxylation efficiency,
with 0.560 [(umol m? s') (umol mol™')'] (Figure 4F). The instantaneous carboxylation efficiency (ICE)
obtained by Machado et al. (2005) bears little resemblance to the internal CO, and the carbon dioxide
assimilation rate. Some authors, such as Silva (2012), have found high values for internal CO, concentration,
associated with increased stomatal conductance, indicating an increase in the instantaneous carboxylation
efficiency. Similar results were found in the present work, with ICE values varying among the doses of N applied
(Figure 4F). Evaluating the effect of nitrogen fertilization on three bean-cultivars, Ferraz et al. (2012) recorded
ICE values ranging from 0.03 to 0.08 [(umol m™ s (umol mol™)"].
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Table 2. F test for rate of photosynthesis (A); transpiration (E); internal CO, concentration (Ci); stomatal
conductance (gs); instantaneous water use efficiency (IWUE); and the instantaneous carboxylation efficiency
(ICE) of cultivated beans under different doses of nitrogen

F Test
Source of Variation
A E Ci gs IWUE ICE
Nrates sk sk sk ns sk sk
Linear Reg. ok *ok *k * ok .
Block ns ns * ns ns *
C.V. (%) 6.32 15.49 15.01 16.07 3.70 22.02

Note. ns, ** | * respectively, not significant, significant at
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Figure 4. Means of rate of photosynthesis (A); transpiration (B); internal CO, concentration (C); stomatal
conductance (D); instantaneous water use efficiency (E); and the instantaneous carboxylation efficiency (F) of
cultivated beans under different doses of nitrogen

3.3 Chlorophyll “a” Fluorescence

Table 3 presents the results of the analysis of variance of minimum fluorescence (Fj), maximum fluorescence
(F.), variable fluorescence (F, = F,, — Fy), potential quantum efficiency of PSII (F,/F,) and ratio F,/F, in bean
plants under different doses of nitrogen (Table 3).
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In relation to chlorophyll fluorescence, no significant differences were observed among doses applied and the
analyzed variables (Table 3). The doses of nitrogen applied to the bean plants did not significantly interfere with
minimum fluorescence (Fy), indicating all reaction centers were open (Figure 5A). According to previous
experiments (Baker & Rosenqvst, 2004; Konrad et al., 2005; Suassuna et al., 2010), maximum fluorescence (F,)
represents the maximum intensity of fluorescence, when practically all the quinone is reduced and the reaction
centers reach their maximum capacity of photochemical reactions. In the case of the present study, the doses of
nitrogen applied did not interfere with the reduction of quinone. Maximum variable fluorescence (F,), potential
quantum efficiency of PSII (F,/F,) and the ratio between maximum variable fluorescence and minimum
fluorescence (F,/Fy) also did not differ significantly among doses (Table 3 and Figure 5).

There have been other studies relating fertilization to fluorescence efficiency in beans. Studying different
irrigation levels and fertilization of the eggplant, Silva et al. (2014) found similar values of F,,, where increased
irrigation depth and nitrogen doses did not interfere with F,,. Therefore, in the present study (Figure 5B), the
highest values of F,, found, although not significant, may be related to the availability of water during the
conduction of the experiment being favorable for the development of the crop (495.8 mm), thus showing that it
did not cause deficiency in quinone A (QA) photoreduction and the flow of electrons between photosystems
(Tatagiba et al., 2014).

All of the values for potential quantum efficiency of PSII were greater than 0.75 electrons quantum™ (Figure 5D),
indicating that the photosynthetic apparatus is intact and performing all its functions. Previous works carried out
with stress from fertilization and irrigation levels have verified that this is the threshold for a good response of
plants to photosynthetic potential with no damage being caused (Reis & Campostrini 2008; Santos et al., 2010;
Suassuna et al., 2010).

The ratio F,/F is usually used in studies to evaluate different factors in several species, among them fertilization,
shading and water stress. When studying the effects of salinity and fertilization on fluorescence parameters of P
vulgaris, Zanandrea et al. (2006) observed a maximum value of 4.578 electrons quantum™ when 80 mmol L™ of
NaCl was applied. Studying gas exchange and chlorophyll fluorescence in six legume cultivars under aluminum
stress, Konrad et al. (2005) found that the Fv/FO ratio did not differ significantly among the six cultivars
evaluated. In view of this, it can be seen that the type and dose of nitrogen can affect the physiological behavior
of plants, but soil nitrogen my have been sufficient to supply the minimum fluorescence needs of the bean in this
experiment (Figure 5E).

Table 3. F test for minimum fluorescence (Fy); maximum fluorescence (F,,); variable maximum fluorescence (F,);
potential quantum efficiency of PSII (F,/F,,); and the ratio (F,/Fy) of cultivated beans under different doses of
nitrogen

F Test
Source of Variation
F, F F, F,/F, Fy/F,
N rates ns ns ns ns ns
Quadratic Reg. ns ns ns ns ns
Block ns ns ns ns ns
C.V. (%) 9.38 7.65 10.00 431 13.63

Note. ns, **, * respectively, not significant, significant at p <0.01 and p < 0.05, by F-test.
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Figure 5. Minimum fluorescence (Fy) (A); maximum fluorescence (F,) (B); variable maximum fluorescence (F,)
(C); potential quantum efficiency of PSII (F,/F,,) (D); and the ratio (F,/F,) (E) of cultivated beans under different
doses of nitrogen

3.4 Components of Primary Productivity

Table 4 provides the F-test results for the productivity components. The number of grains per pod (NGP) and the
number of pods per plant (NPP) were found to be influenced significantly by the different doses of nitrogen (p <
0.01) (Table 4). The insertion height of the first pod (HIFP) did not exhibit significantly different responses
among the different nitrogen doses (Table 4). All these variables exhibited significant linear responses as a
function of the different doses of N (p < 0.05) (Table 4).

The insertion height of the first bean pod ranged from 12.9 cm (control, 0 kg of nitrogen ha™) to 15.2 cm (200 kg
of nitrogen ha™) (Figure 6A). Insertion height of the first pod is an important characteristic at the time of harvest
because plants with upright and lower positioning obtain maximum efficiency during this process (Mendes et al.,
2009). Oliveira et al. (2014) emphasized that AIPV values greater than 12 cm should be considered acceptable
because they facilitate mechanized harvesting. Therefore, all N doses applied to bean plants in this study
presented satisfactory results for the insertion of the first pod.

According to Portes (1996), bean plants with good nutritional status produce more flowers and, consequently,
more pods per plant. Therefore, the different doses of N used in the present study resulted in an increase in the
number of pods, with values ranging from 3.25 (control, 0 kg of nitrogen ha™) to 5.20 (200 kg of nitrogen ha™)
(Figure 6B). The mean number of pods per plant was similar to that found by Binotti et al. (2010), and Flores et
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al. (2014). Binotti et al. (2014) did not observe a significant effect on the number of pods per plant when
evaluating different nitrogen doses in the coverage,

For the number of grains per pod, the values were found to increase as a function of the different doses of N,
varying from 3.0 (control, 0 kg of nitrogen ha™) to 4.3 (200 kg of nitrogen ha™) (Figure 6C). Similar results were
found by Arf et al. (2011), who reported a mean of 4.13 grains per pod for the Pérola cultivar. For the ‘Aporé¢’
cultivar, Silva and Silveira (2000) recorded higher productivity than the present study, with approximately 5.05
grins per pod. In their studies with nitrogen fertilization of beans, Bernardes et al. (2015), and Cardoso (2011)
found no significant responses in the number of grains per pod.

Table 4. F test for height of insertion of the first pod (HIFP); number of pods per plant (NPP); and the number of
grains per pod (NGP) (C) of cultivated beans under different doses of nitrogen

F Test
Source of Variation
HIFP NPP NGP
N rates ns H* **
Linear Reg. * *ok *ok
Block ns ns ns
C.V. (%) 14.70 14.70 433

Note. ns, **, * respectively, not significant, significant at p < 0.01 and p < 0.05, by F-test.
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Figure 6. Height of insertion of the first pod (HIFP) (A); number of pods per plant (NPP) (B); and the number of
grains per pod (NGP) (C) of cultivated beans under different doses of nitrogen

4. Conclusion

Nitrogen doses of up to 200 kg N ha™ were not significant for height, but there were significant differences in the
number of leaves and stem diameter. With the exception of stomatal conductance, gas exchange was influenced
by different doses of nitrogen, with the dose of 200 kg N ha™' having the most efficient response. Fluorescence
did not change with increasing nitrogen dose, however, it can be stated that the evaluated plants exhibited a rate
of photosynthetic efficiency above the culture mean. The number of grains per pod and the number of pods per
plant were influenced by the nitrogen doses, with the highest average values being for the dose of 200 kg N ha™.
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