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ABSTRACT
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1 INTRODUCTION

The calculus of variations is concerned with the
problem of extremizing functionals. It has many
appliacation in physics, geometry, engineering,
dynamics, control theory, and economics [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

The formulation of a problem of the calculus of
variations requires two step: the specification of
a performance criterion; and then, the statement
of physical constraints that should be satisfied.
The basic problem is stated as follows:

Minimize J(x(·)) =
∫ tf

t0

L(t, x(t), ẋ(t))dt (1.1)

subject to x(t0) = x0, x(tf ) = xf , (1.2)

where x(·) is the state variable and L(·, x(·), ẋ(·))
(function L, in short) is Riemann integrable
nonsmooth function and x0, xf are given vectors.

The traditional calculus of variation cannot
be used to obtain the Euler-Lagrange and
Hamilton equations of nonsmooth systems.
The main aim of this paper is to obtain
the corresponding generalized Euler-Lagrange
and Hamilton equations for above nonsmooth
variational problem (NSVP), within generalized
derivatives which is proposed by Kamyad et.al.
[13] that utilize in the next section. Other
generalized derivatives have been proposed are
not practical, for instance the limiting proximal
subgradient by Clarke [14], the approximate
subdifferential by Ioff [15, 16, 17, 18] and
the subdifferential by Mordukhovich [19, 20,
21]. Hence, theirs results include some
restrictions for examples the function L must
be locally Lipschitz or convex and may, the
set of generalized derivative of L on [t0, tf ],
either is empty. Then we almost can not use
them for obtainning the optimal solution of the
nonsmooth problem (1.1)-(1.2). It is noteworthy
that, these conditions are only criterions for
testing the optimality of a given state x(·).
We present a different definition to derive
generalized derivatives (GDs) for nonsmooth
functions, in which the involved functions are
Riemann integrable but not necessary locally
Lipschitz or continuous. It will be shown that this
kind of GDs is particularly helpful, practical and
dose not have the above restriction. There are

some conditions on function L in problem (1.1)
for existence of an optimal solution (see [22]).
For problem (1.1), by assuming differentiability,
one way to deal with this problem is to solve the
second order differential equation

∂L

∂x
− d

dt

∂L

∂ẋ
= 0, (1.3)

called the Euler-Lagrange (EL) equation.
The two given boundary conditions provide
sufficient information to determine the two
arbitrary constants. But if there are no
boundary constraints, then we need to impose
other conditions, called the natural boundary
conditions (see [23]),

[∂L
∂ẋ

]∣∣∣
t=t0

= 0 and
[∂L
∂ẋ

]∣∣∣
t=tf

= 0. (1.4)

Clearly, such terminal conditions are important
in models, the optimal control or decision
rules are not unique without these conditions.
Here, in non-differentiability (or nonsmoothness)
conditions, we compute Euler Lagrange
equations for unconstrained and constrained
nonsmooth variational problems, by using
generalized derivatives in the nonsmooth
analysis that was presented by Kamyad et al,.
The resulting equations are found to be similar
to those for smooth variational problems. In
other words, the results of nonsmooth calculus
of variations reduce to those obtained from
traditional smooth calculus of variations where
the derivative is replaced by generalized derivate.
Futhermore, we propose necessary optimality
conditions for nonsmooth control systems via
generalized Hamilton-Jacobi equation.

The plan of this paper is as follows: in section
2, we present a novel generalized derivative for
Riemann integrable nonsmooth functions and
state the assumptions, notations and the results
of the literature needed in the sequel. Section
3, reviews a generalized Euler-Lagrange (GEL)
equation for problem (1.1). Our contribution
is then given in section 4: we analyze the
generalized Hamilton equation for nonsmooth
optimal control (NSOC) system. Finally, in
section 5, we explain the novelties of our results.
Section 6, is devoted to our conclusions.
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2 PRELIMINARIES ON GEN-
ERALIZED DERIVATIVES

Here, at first, we brifly introduce a practical
GD which is proposed by [24, 25] and use the
new GDs for nonsmooth calculus of variations.
Let Ω be a connected and compact set and
L : Ω ⊂ R → R is a one-variable Riemann
integrable nonsmooth function. Assume that
C(Ω) and C1(Ω) are the spaces of continuous
and continuous differentiable functions on the

set Ω, respectively. Assume that φj(·), j =
0, 1, 2, . . ., are the continuously differentiable
basic functions for the space C(Ω) and Nδ(s) is
the neighbourhood of s with radius δ. Divide Ω
into the similar sets Ωi, i = 1, 2, . . . ,m (m is a
sufficiently big number), such that Ω = ∪m

i=1Ωi

and int(Ωi) ∩ int(Ωj) = ∅, i ̸= j. Given
si ∈ int(Ωi), i = 1, 2, . . . ,m, and δ > 0
is sufficiently small number. Now consider the
following optimization problem which we use it for
the GD of L(·):

Minimize

m∑
i=1

∫
Nδ(si)

∣∣∣L(x)− L(si)− (x− si)

∞∑
j=0

ajφj(si)
∣∣∣dx (2.1)

where aj ∈ R, j = 0, 1, 2, . . ., are unknown variables of this problem. By assumptions g(s) =
Σ∞

j=0ajφj(s), s ∈ Ω, the problem (2.1) is equivalent to the following problem:

Minimize

m∑
i=1

∫
Nδ(si)

∣∣∣L(x)− L(si)− (x− si)g(si)
∣∣∣dx (2.2)

It is obvious that if g∗(·) ∈ C(Ω) is an optimal solution for problem (2.2) then there exist a∗
j , j =

0, 1, 2, . . ., such that g∗(si) =
∑∞

j=0 a
∗
jφj(si), i = 1, 2, . . . ,m.

Theorem 2.1. Lef L ∈ C1(Ω) and δ > 0 be a sufficiently small number. the unique optimal solution
of the optimization problem (2.2) is the function L

′
(·).

Here, we state a Lemma such that we use it for converting the nonsmooth optimization problem (2.2)
to the smooth problem.

Lemma 2.2. Let the pair (u∗(·), v∗(·)) be the optimal solution of the following smooth problem:

Minimize v(x)

subject to

v(x) ≥ u(x), v(x) ≥ −u(x),

u(·), v(·) ∈ C(Ω), x ∈ Ω. (2.3)

where Ω is a compact set. Then u∗(·) is the optimal solution of the following nonsmooth problem:

Minimize |u(x)|
subject to u(·) ∈ C(Ω).

Proof. See [24].

Now, using Lemma (2.2), we can approximate the nonsmooth optimization problem (2.2) into a
corresponding smooth optimization problem as follows:

Minimize

m∑
i=1

∫
Nδ(si)

v(x, si)dx

subject to

− v(x, si) ≤ L(x)− L(si)− (x− si)g(si), i = 1, 2, . . . ,m,

− v(x, si) ≤ −L(x) + L(si) + (x− si)g(si), i = 1, 2, . . . ,m,

x ∈ (si − δ, si + δ), g(·) ∈ C(Ω),

v(·, ·) ∈ C(Ω2), v(·, ·) ≥ 0. (2.4)
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Theorem 2.3. Let L : Ω ⊂ R → R be a Riemann
integrable nonsmooth function and g∗(·) be the
optimal solution of the optimization problem (2.4).
The GD of function L(·) denoted by ∂L(·) and is
defined as ∂L(·) = g∗(.).

Proof. See [24].

Remark 2.1. We refer the interested reader to
[24], where this functional optimization problem
is approximated with the corresponding linear
programming problem that we can solve it by
linear programming methods such as simplex
method. Indeed, we can approximate the
obtained GDs of nonsmooth function L(·) with
Fourier series [26]. So for any Riemann
integrable nonsmooth function L(·), if a∗

j , j =
0, 1, 2, . . ., is the optimal solution of the problem
(2.1), then g∗(.) =

∑∞
j=0 a

∗
jφj(.) is an optimal

solution for the problem (2.2) and we have the
GDs as ∂L(·) =

∑∞
j=0 a

∗
jφj(.). For computing

applications, we approximate the GDs by a finite
Fourier series.

The next section is to write the Euler-Lagrange
and the corresponding Hamiltonian equations.

3 GENERALIZED EULER-
LAGRANGE EQUATIONS

Now, we shall think in terms of finding
state trajectories that minimize performance
measures. In control problems, trajectories
are determined by control histories and initial
conditions; however to simplify the discussion it
will be assumed initially that there are no such
constraints and that the states can be directly and
independently varied.

In this line of thought, we consider the functional
(1.1) defined on the set of continuous curves x :
[t0, tf ] → R that satisfying prescribed boundary
conditions (1.2).

Definition 3.1. The functional J(.) is said to have
a local minimum (resp. local maximum) at x(.) if

there exists a δ > 0 such that J(x(.)) ≤ J(x̂(.))
(resp. J(x(.)) ≥ J(x̂(.))) for all x̂(.) satisfying
∥x(.)− x̂(.)∥ < δ.

It is desired to find the function x∗, among all
curves x(t) satisfying the boundary conditions
(1.2), for which the functional (1.1) has a relative
extermum. Rockafellar and Clarke began the
studies where L for any t ∈ [0, 1] is convex
and Lipschitz continuity function respectively but
here, L is a continuous nonsmooth function. Now
by obtaining the GD of L from last section, a
necessary condition for this problem, is given by
the next result.

Lemma 3.1. Suppose that
∫ tf
t0

η(x)g(x)dx = 0

for all η(.) ∈ C[t0, tf ]. If g : [t0, tf ] → R is a
continuous function then g ≡ 0 on the interval
[t0, tf ].

Proof. See [13].

Theorem 3.2. A necessary condition for
the differentiable functional J(x) to have an
extermum for x = x∗ is that its variation vanishes
for x = x∗

δJ = 0.

Proof. See [23].

Theorem 3.3. Let x be a extermizer of J as in
problem (1.1)-(1.2), then, for all t ∈ [t0, tf ], x is a
solution of the GEL equation

∂xL(t, x(t), ẋ(t))−
d

dt
∂ẋL(t, x(t), ẋ(t)) = 0.

(3.1)

Proof. Suppose that x is an extermizer of J . We
can proceed as Lagrange did, by considering the
value of J at a nearby function x̃ = x+ ϵh, where
ϵ ∈ R be a real number with |ϵ| ≪ 1, and h be an
admissible variation such that h(t0) = h(tf ) = 0.
Now consider the increment of the functional J as
follows:

δJ = J(x+ ϵh)− J(x) =

∫ tf+δtf

t0+δt0

L(t, x+ ϵh, ẋ+ ϵḣ)dt−
∫ tf

t0

L(t, x, ẋ)dt
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Here we have∫ tf+δtf

t0+δt0

L(t, x+ ϵh, ẋ+ ϵḣ)dt =

∫ tf

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt

+

∫ tf+δtf

tf

L(t, x+ ϵh, ẋ+ ϵḣ)dt−
∫ t0+δt0

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt

By using the generalized first order Taylor expanision of the nonsmooth function L(t, x + ϵh, ẋ + ϵḣ)
at point (t, x, ẋ) [24], we obtain∫ tf

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt =

∫ tf

t0

L(t, x, ẋ)dt+

∫ tf

t0

ϵh(t)∂xL(t, x, ẋ)dt

+

∫ tf

t0

ϵḣ(t)∂ẋL(t, x, ẋ)dt+ Eϵ,∂L(t, x, ẋ)

Where limϵ→0 Eϵ,∂L(t, x, ẋ) = 0 [24]. Now using integration by parts, we obtain∫ tf

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt ≃
∫ tf

t0

L(t, x, ẋ)dt

+

∫ tf

t0

ϵh(t)
(
∂xL(t, x, ẋ)−

d

dt
∂ẋL(t, x, ẋ)

)
dt+

[
ϵh(t)∂xL(t, x, ẋ)

]∣∣∣tf
t0

We also have ∫ tf+δtf

tf

L(t, x+ ϵh, ẋ+ ϵḣ)dt ≃ δtfL(t, x, ẋ)
∣∣∣
t=tf

,

∫ t0+δt0

t0

L(t, x+ ϵh, ẋ+ ϵḣ)dt ≃ δt0L(t, x, ẋ)
∣∣∣
t=t0

.

So finally we obtain

δJ ≃
∫ tf

t0

ϵh(t)
(
∂xL(t, x, ẋ)−

d

dt
∂ẋL(t, x, ẋ)

)
dt+

[
ϵh(t)∂xL(t, x, ẋ)

]∣∣∣tf
t0

+ δtfL(t, x, ẋ)|t=tf − δt0L(t, x, ẋ)
∣∣∣
t=t0

Since h, ϵ, δt0, δtf are arbitrary, according to theorem (3.2), equating δJ to zero yields the result.
Now, we present the Euler-Lagrange equation for functionals containing dependent variables.

Theorem 3.4. Let x be a extermizer of J as in problem (1.1)-(1.2), where x = (x1, . . . , xn), ẋ =
(ẋ1, . . . , ẋn), and xk, k = 1, 2, . . . , n, are continuous real-valued functions defined on [t0, tf ]. Then x
is a solution of the GEL equation

∂xkL(t, x(t), ẋ(t))−
d

dt
∂ẋkL(t, x(t), ẋ(t)) = 0

k = 1, 2, . . . , n, for all t ∈ [t0, tf ].

We give new necessary optimality conditions for:
(i) functionals of form (1.1) with free boundary
conditions; (ii) nonsmooth isoperimetric problem;
and (iii) nonsmooth problem with subsidiary
holonomic constraints.

3.1 Natural Boundary Conditions

Determine continuous curves x such that the
functional J , defined in (1.1), has an extermum
at x. Note that no boundary conditions are now
imposed.

5
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Theorem 3.5. Let x be a local extermizer to
problem (1.1). Then, x satisfies the following GEL
equation

∂xL(t, x(t), ẋ(t))−
d

dt
∂ẋL(t, x(t), ẋ(t)) = 0

(3.2)
for all t ∈ [t0, tf ]. Morever, if x(t0) is not specified,
then [

∂ẋL(t, x(t), ẋ(t))
]∣∣∣

t=t0

= 0 (3.3)

and [
∂ẋL(t, x(t), ẋ(t))

]∣∣∣
t=tf

= 0. (3.4)

Proof. If in previous proof picking curves such
thet h(t0) = 0 and h(tf ) ̸= 0, and others such
that h(tf ) = 0 and h(t0) ̸= 0, we deduce the
natural boundary conditions (3.3).

3.2 The Nonsmooth Isoperimetric
Problem (NSIP)

We want to find the extermizer of a given
functional, when restricted to a prescribed
integral constraint. Problems of this type have
found many applications in differential geometry,
discrete and convex geometry, probability,
Banach space theory and multiobjective
optimization [27, 28]. We state the NSIP in the
following way: find the function x that satisfies the
boundary conditions (1.2), the integral constraint

I(x(·)) =
∫ tf

t0

g(t, x(t), ẋ(t))dt = κ, κ ∈ R

(3.5)
and we obtain a minimum or maximum for (1.1).
Similarly as before, we assume that L is a
continuous nonsmooth function and suppose that
κ is a specified real constant.

Theorem 3.6. Let x be an extermizer of J given
by (1.1) under the condition (1.2) and (3.5).
Suppose that x is not an extermal for I in (3.5),
then, there exists a costate variable λ such that x
satisfies the GEL equation

∂xF − d

dt
∂ẋF = 0

for all t ∈ [t0, tf ] where F = L− λg.

Proof. Let ϵ1, ϵ2 ∈ R be two sufficiently
small parameters, such that ∥ϵi∥ ≪ 1; i =
1, 2. Consider a variation curve of x with two
parameters, say x(t) + ϵ1h1(t) + ϵ2h2(t) where
h1 and h2 are two continuous curves satisfying
hi(t0) = hi(tf ) = 0, i = 1, 2. First, we define
function ȷ and ℓ by

ȷ(ϵ1, ϵ2) = J(x+ ϵ1h1 + ϵ2h2)

and

ℓ(ϵ1, ϵ2) = I(x+ ϵ1h1 + ϵ2h2)− κ

Doing calculations as in the proof of theorem
(3.3), we obtain

∂ℓ

∂ϵ2

∣∣∣
(0,0)

=

∫ tf

t0

(
h2∂xg + ḣ2∂ẋg

)
dt =∫ tf

t0

(
∂xg − d

dt
∂ẋg

)
h2dt

Since x is not an extermal for I, by the
fundamental Lemma of the calculus of variations,
there must exist a function h2 for which

∂ℓ

∂ϵ2

∣∣∣
(0,0)

̸= 0. (3.6)

By the implicit function theorem there exist
function ϵ2(.) defined in an open neighborhood of
zero as we may write ℓ(ϵ1, ϵ2(ϵ1)) = 0. Because
(0, 0) is an extermum ȷ subject to the constraint
ℓ(0, 0) = 0, and (∂ϵ1ℓ, ∂ϵ2ℓ)(0, 0) ̸= 0, by
the Lagrange multiplier rule [23], there exists λ
verifying the equation

∇
(
ȷ− λℓ

)∣∣∣
(0,0)

= (0, 0)

in particular,

∂ȷ

∂ϵ1

∣∣∣
(0,0)

− λ
∂ℓ

∂ϵ1

∣∣∣
(0,0)

= 0 (3.7)

Similarly as before, we obtain

∂ȷ

∂ϵ1

∣∣∣
(0,0)

=

∫ tf

t0

(
h1∂xL+ ḣ1∂ẋL

)
dt =

∫ tf

t0

(
∂xL− d

dt
∂ẋL

)
h1dt

6
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and

∂ℓ

∂ϵ1

∣∣∣
(0,0)

=

∫ tf

t0

(
h1∂xg + ḣ1∂ẋg

)
dt =

∫ tf

t0

(
∂xg − d

dt
∂ẋg

)
h1dt

By using this relations in (3.7), we have∫ 1

0

[
∂xL− d

dt
∂ẋL− λ

(
∂xg − d

dt
∂ẋf

)]
h1(t)dt = 0 (3.8)

As (3.8) holds for any function h1 and by Lemma (3.1), one has

∂xL− d

dt
∂ẋL− λ

(
∂xg − d

dt
∂ẋg

)
= 0.

Introducing F = L− λg we get the desired result.

3.3 Holonomic Constraints
In this section, we consider following problem: find functions x1 and x2 for wich the functional

J(x1(·), x2(·)) =
∫ tf

t0

L
(
t, x1(t), x2(t), ẋ1(t), ẋ2(t)

)
dt (3.9)

has an extermum, when the admissible functions restricted to the boundary conditions

(x1(t0), x2(t0)) = (x0
1, x

0
2) and (x1(tf ), x2(tf )) = (xf

1 , x
f
2 ) (3.10)

xj
i ∈ R for i = 1, 2, j = t0, tf , and the following holonomic condition satisfy

g(t, x1(t), x2(t)) = 0. (3.11)

where L is as before.

Theorem 3.7. Let the pair (x1, x2) be an extermizer of J as in (3.9), subject to the constraints (3.10)-

(3.11). If
∂g

∂x2
̸= 0, then there exists a continuous function λ : [t0, tf ] → R such that (x1, x2) is a

solution of the GEL equations

∂xkF − d

dt
∂ẋkF = 0 (3.12)

for all t ∈ [t0, tf ] and k = 1, 2, where F = L− λg.

Proof. Consider a variation of the optimal solution of type

(x̂1(t), x̂2(t)) = x(t) + ϵh(t) = (x1 + ϵh1, x2 + ϵh2)

where (h1(t), h2(t) are continuous curves such that hi(t0) = hi(tf ) = 0, i = 1, 2 and ϵ is as before.

By hypothesis,
∂g

∂x2
(t, x̂1, x̂2) ̸= 0 therefor it is possible to solve the equation g(t, x̂1(t), x̂2(t)) = 0

with respect to h2, h2 = h2(ϵ, h1). Let j(ϵ) = J(x̂1(t), x̂2(t)). Differentiating j(ϵ) at ϵ = 0, we have

0 =

∫ tf

t0

(
∂x1Lh1(t) + ∂ẋ1Lḣ1(t) + ∂x2Lh2(t) + ∂ẋ2Lḣ2(t)

)
dt

=

∫ tf

t0

((
∂x1L− d

dt
∂ẋ1L

)
︸ ︷︷ ︸

GEL1

h1(t) +
(
∂x2L− d

dt
∂ẋ2L

)
︸ ︷︷ ︸

GEL2

h2(t)
)

(3.13)

7
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Where GEL1 is the GEL equation respect to x1 and GEL2 is the GEL equation respect to x2. Since
(x̂1(t), x̂2(t)) satisfy the condition (3.11), we have

0 =
[ d

dϵ
g(t, x̂1(t), x̂2(t))

]∣∣∣
ϵ=0

=
(
∂x1g

)
h1(t) +

(
∂x2g

)
h2(t)

Getting:

h2(t) = −∂x1g

∂x2g
h1(t) (3.14)

And λ as follows:

λ(t) =
∂x2L− d

dt
∂ẋ2L

∂x2g
. (3.15)

Combining (3.14) and (3.15), equation (3.13) can be written as∫ tf

t0

(
∂x1L− d

dt
∂ẋ1L− λ(t)∂x1g

)
h1(t)dt = 0.

by Lemma (3.1), and since h1 is an arbitrary curve, we deduce that

∂x1L− d

dt
∂ẋ1L− λ(t)∂x1g = 0. (3.16)

Define F = L− λg, thus equation (3.12) is obtained.

We now state (without proof) our previous result in its general form.

Theorem 3.8. Let J be given by (1.1) where x = (x1, . . . , xn) and ẋ = (ẋ1, . . . , ẋn), such that
xk, k = 1, . . . , n, are continuous functions defined on the set of curves that satisfy the boundary
conditions x(t0) = x0 and x(tf ) = x1 and satisfy the constraint g(t, x) = 0. If x is an extermizer for

J , and if
∂g

∂xn
̸= 0 for all t ∈ [t0, tf ], then there exists a continuous function λ(t) such that x satisfy

the Euler-Lagrange equations

∂xkF − d

dt
∂ẋkF = 0

for all t ∈ [t0, tf ], where F = L− λg.

4 VARIATIONAL APPROACH TO NSOC PROBLEM

In this section, we formulate the NSOCP for a single input system. Now consider the optimal control
of

J(x, u) = h(x(tf ), tf ) +
1

2

∫ tf

t0

(xTQx+ uTRu)dt (4.1)

subject to the dynamic constraint
ẋ(t) = f(x) + g(x)u, (4.2)

and the given boundary conditions as x(t0) = x0, x(tf ) is free and tf is fixed. Here x(t) and u(t)
are n-dimensional state vector and m-dimensional control input, respectively. We make the following
assuption:

(A1) The function f(·) is a continuous nonsmooth function,

A2) The functions h(·) and g(·), all of them are differentiable functions,

(A3) Rm×m > 0 and Qn×n ≥ 0 are constant, symmetric, and respectively positive definite and
nonnegative definite matrices.

We say that a state-control pair (x(·), u(·)) is admissible if the following conditions hold:

8
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1) The state x(·) is differentiable on [t0, tf ].

2) The control u(·) is piecewise continuous on [t0, tf ].

3) The condition x(t0) = x0 is satisfied.

4) The pair (x(·), u(·)) satisfies the differential equation (4.2).

An optimal solution is a pair of functions (x(.), u(.)) that minimizes J in (4.1), subject to the nonsmooth
dynamic equation (4.2). Using the Lagrange multiplier vector p(t) we introduce the augmented
performance index as

Ja(u) = h(x(tf ), tf ) +

∫ tf

t0

{1

2
(xTQx+ uTRu) + pT (f(x) + g(x)u− ẋ)

}
dt. (4.3)

Taking the first variation of equation (4.3) we obtain

δJa(u) =
d

dx
h(x(tf ), tf )δx(tf ) +

∫ tf

t0

{(
Qx+ pT (∂xf + ġ(x)u)

)T

δx (4.4)

−pT δẋ+
(
Ru+ pT g(x)

)
δu+

(
f(x) + g(x)u− ẋ

)T

δp
}
dt.

Using integration by parts, equation (4.4) can be written as

δJa(u) =
d

dx
h(x(tf ), tf )δx(tf )− [pδx]

∣∣∣tf
t0

+

∫ tf

t0

{(
Qx+ pT

[
∂xf + (4.5)

ġ(x)u
]
+ ṗ

)T

δx+
(
Ru+ pT g(x)

)
δu+

(
f(x) + g(x)u− ẋ

)T

δp
}
dt.

Because x(t0) is specified, we have δx(t0) =
0, and since x(tf ) is not specified, we require

p(tf ) =
d

dx
h(x(tf ), tf ). Minimization of Ja(u)

requires the coefficients of δp, δx and δu in
equation (4.5) be zero. This leads to

ẋ = f(x) + g(x)u, (4.6)

ṗ = −
(
Qx+ pT (∂xf + ˙g(x)u)

)
, (4.7)

Ru+ pT g(x) = 0 (4.8)

x(t0) = x0, p(tf ) =
d

dx
h(x(tf ), tf ). (4.9)

Equations (4.6)-(4.8) constituate a set of
necessary conditions for the optimality of the
NSOCP considered here; these conditions are
not, in general, sufficient. these equations with
the boundary condition (4.9) make a TPBVP.
They can be solved using a direct numerical
technique.

As a special case, assume that the performance
index is an integral of quadratic forms in the state
and control,

J(x(.)) =
1

2

∫ 1

0

(
q(t)x2(t) + r(t)u2

)
dt

where q(t) ≥ 0 and r(t) > 0 for t ∈ [0, 1], and
the dynamics of the system is described by the

following nonsmooth linear differential equation,

ẋ(t) = a(t)|x|+ b(t)u. (4.10)

The EL equations (4.6)-(4.8) and (4.10) lead to
equation (4.10) and

− ṗ(t) = q(t)x+ a(t)pT ∂x(|x|) (4.11)

and
r(t)u+ b(t)p = 0 (4.12)

From equations (4.10) and (4.12), we have

ẋ(t) = a(t)|x| − r−1(t)b2(t)p (4.13)

The state x(t) and the costate p(t) are obtained
by solving the nonsmooth differential equations
(4.10) and (4.13) subject to the terminal
conditions x(0) = x0, p(1) = 0. Once p(t) is
known, the control variable u(t) can be obtained
using equation (4.12).

4.1 Generalized Hamilton-Jacobi
Bellman (GHJB) Equation

We once more consider the optimal control
problem (4.1)-(4.2), but here, we use an
approach via dynamics programming. Let
J∗(x(t), t) denote the optimal cost on the interval
(t, tf ). Then the basic optimal equation of
dynamics programming reads

9
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J∗(x, t) = min
u

{∫ t+δt

t

(
xTQx+ uTRu

)
dτ + J∗(x+ δx, t+ δt)

}
(4.14)

= min
u

{(
xTQx+ uTRu

)
δt+ J∗(x, t) +

d

dt
J∗(x, t)δt

}
, (4.15)

therefor, (as J∗(x, t) dose not depend upon u),

0 = min
u

{(
xTQx+ uTRu

)
δt+

d

dt
J∗(x(t), t)δt

}
(4.16)

and on making δt ↓ 0

0 = min
u

{(
xTQx+ uTRu

)
+

d

dt
J∗(x(t), t)

}
(4.17)

Since
d

dt
J∗(x(t), t) = ∂xJ

∗ẋ(t) + ∂tJ
∗,

Then by substituting this result into (4.17), and since ∂tJ
∗ is not depended to u, we obtain the GHJB

equation
− ∂tJ

∗ = min
u

{(
xTQx+ uTRu

)
+

(
f(x) + g(x)u

)
∂xJ

∗
}
= 0. (4.18)

which yeilds the optimal control law as follows

u∗ = −1

2
R−1gT (x)∂xJ

∗. (4.19)

Substituting (4.19) into (4.18) yields the GHJB equation:

∂tJ
∗ +

(
∂xJ

∗
)
f(x) +Q(x)− 1

4

(
∂xJ

∗
)T

g(x)R−1g(x)T
(
∂xJ

∗
)
= 0. (4.20)

The GHJB equation in (4.20) and (4.19) provide
the solution to fixed-final time NSOCP. However,
a closed-form solution for GHJB equation is
impossible to fined.

5 TEST PROBLEMS

In this section we employ the new results
obtained in the previous sections to solve three
examples.

Example 5.1. Consider the following NSVP:

J(x) =

∫ 1

0

(
sin(π|ẋ− 0.5|)e|ẋ−0.8| − ẋ2

(ẋ− 0.2)
)
dt (5.1)

subject to the boundary conditions:

x(0) = 0 and x(1) = 0.5 (5.2)

for L(t, x, ẋ) = sin(π|ẋ−0.5|)e|ẋ−0.8|−ẋ2(ẋ−0.2)
and by applying theorem 3.3 for this problem, we
obtain the GEL equation as follows:

d

dt
∂ẋL(t, x, ẋ) = 0. (5.3)

Hence, by applying Remark 2.1 and using the
Fourier series, the corresponding GEL equation
(5.3) will be as follows [25]:

d

dt

∞∑
j=1

a∗
j cos(πjẋ) = 0, t ∈ [0, 1]. (5.4)

Example 5.2. Let J be given by the eapression

J(x) =

∫ 1

0

(
|x− 0.5| − |x− 0.4|+ |ẋ− 0.3|

−|ẋ− 0.1|
)
dt, (5.5)

subject to the boundary conditions:

x(0) = 0.65 and x(1) = 1. (5.6)

By asumption L(t, x, ẋ) = |x − 0.5| − |x − 0.4| +
|ẋ−0.3|− |ẋ−0.1| and by applying theorem (3.3)
for this NSVP, we have:

∂xL(t, x, ẋ)−
d

dt
∂ẋL(t, x, ẋ) = 0. (5.7)

Hence, by applying theorem 2.3, we will have:
∞∑
j=1

a∗
j cos(πjx)−

d

dt

∞∑
j=1

b∗j cos(πjẋ) = 0,

t ∈ [0, 1]. (5.8)

10
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In these examples, it is hard to solve GEL
equations (5.4) and (5.8), analytically. Using
numerical method for solving these problems can
be usefull and may be considered in future works.
For this purpose, the problems (5.4) and (5.8) are
approximated as the finite dimensional problems
for j = 1, 2, · · · , N , where N ∈ N is a given big
number.

Example 5.3. Consider the following NSOC
problem

Minimize J = x2(1) +

∫ 1

0

u2(t)dt (5.9)

subject to ẋ = |x|+ u

x(0) = 1

For this example, we have:

Q(x) = 0, r = b(t) = 1, f(x) = |x|, h(x(1), 1) =

x2(1), t0 = 0, tf = 1.

From (4.20), and using x ≥ 0, the corresponding
GHJB equation are given by:

−∂tJ = x∂xJ − 1

4

(
∂xJ

)2

, (5.10)

and the optimal control law is easily obtained by:

u∗(t) = −1

2
∂xJ. (5.11)

The exact solution of the GHJB equation is:

J(x, t) =
2x2

1 + e2(t−tf )
, (5.12)

which implies the optimal feedback control law to

be u∗(t) =
−2x

1 + e2(t−tf )
. Now, by applying x < 0

the exact solution of the GHJB equation:

−∂tJ = −x∂xJ − 1

4

(
∂xJ

)2

, (5.13)

will be as follows:

J(x, t) =
−2x2

1− 3e2(tf−t)
, (5.14)

where in u∗(t) =
2x

1− 3e2(tf−t)
.

We refer the interested reader to [24] which
deals with nonsmooth optimal control problems,
providing a direct method for solving such
problems without using the GEL equation type.

6 CONCLUSIONS

Nonsmooth calculus become a very good
candidate to describe the models with non-
smooth dynamics. In this paper, we first
introduced a novel GD for nonsmooth functions.
Then by using the generalized first order
taylor expanision for nonsmooth functions that
proposed by [13], we introduced the GEL
equation for nonsmooth problem (1.1). We
have given it in a practical equation to obtain
an approximate optimal solution for nonsmooth
problem (1.1). Then study nonsmooth variational
problems via derivative [24] under the presence
of certain constraints. Transversality conditions
are optimaly conditions that are used along with
EL equations in order to find the optimal paths
of dynamical models. Here, we extend our
result over four nonsmooth variational problems.
Then we obtain explicity the Hamilton equation
for a NSOC problem (4.1)-(4.2), and then
present necessary conditions for optimality these
systems.
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