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Abstract 
 
The analysis presented here is to study the effect of non-homogeneity on thermally induced vibration of 
orthotropic visco-elastic rectangular plate of linearly varying thickness. Thermal vibrational behavior of non 
-homogeneous rectangular plates of variable thickness having clamped boundary conditions on all the four 
edges is studied. For non-homogeneity of the plate material, density is assumed to vary linearly in one direc-
tion. Using the method of separation of variables, the governing differential equation is solved. An approxi-
mate but quite convenient frequency equation is derived by using Rayleigh-Ritz technique with a two-term 
deflection function. Time period and deflection at different points for the first two modes of vibration are 
calculated for various values of temperature gradients, non-homogeneity constant, taper constant and aspect 
ratio. Comparison studies have been carried out with non-homogeneous visco-elastic rectangular plate to 
establish the accuracy and versatility. 
 
Keywords: Non-Homogeneous, Orthotropic, Visco-Elastic, Variable Thickness, Rectangular Plate, Vibration, 

Thermal Gradient 

1. Introduction 
 
Thermal effect on vibration of non-homogenous viscoe-
lastic plates are of great interest in the field of engineer-
ing such as for better designing of gas turbines, jet en-
gine, space craft and nuclear power projects, where met-
als and their alloys exhibits visco-elastic behavior. There- 
fore, for these reason such structures are exposed to high 
intensity heat fluxes and thus material properties undergo 
significant changes, in particular the thermal effect on 
the modules of elasticity of the material can not be taken 
as negligible. 

Plates of variable thickness have been extensively used 
in Civil, Electronic, Mechanical, Aerospace and Marine 
Engineering applications. The practical importance of 
such plates has made vibration analysis essential espe-
cially since the vibratory response needs to be accurately 
determined in design process in order to avoid resonance 
excited by internal or external forces. 

Visco-elastic, as its name implies, is a generalization 
of elasticity and viscosity. The ideal linear elastic ele-
ment is the spring. When a tensile force is applied to it, 

the increase in the distance between its two ends is pro-
portional to the force. The ideal linear viscous element is 
the dashpot. 

The plate type structural components in aircraft and 
rockets have to operate under elevated temperatures that 
cause non-homogeneity in the plate material i.e. elastic 
constants of the materials becomes functions of space 
variables. In an up-to-date survey of literature, authors 
have come across various models to account for non-ho- 
mogeneity of plate materials proposed by researchers 
dealing with vibration but none of them consider non-ho- 
mogeneity with thermal effect on orthotropic visco-elastic 
plates. 

Free vibration of visco-elastic orthotropic rectangular 
plates was discussed by Sobotka [1].Gupta and Khanna 
[2] discussed vibration of viscoelastic rectangular plate 
with linearly thickness variations in both directions. 
Leissa’s monograph [3] contains an excellent discussion 
of the subject of vibrating plates with elastic edge sup-
port. Several authors [4,5] have studied the thermal ef-
fect on vibration of homogeneous plates of variable 
thickness but no one considered thermal effect on vibra-
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tion on non-homogeneous rectangular plates of varying 
thickness. Tomar and Gupta [6-8] solved the vibration 
problem of orthotropic rectangular plate of varying 
thickness subjected to a thermal gradient. Gupta, Lal and 
Sharma [9] discussed the vibration of non-homogeneous 
circular plate of nonlinear thickness variation by a quad-
rature method. Gupta, Johri and Vats [10] solved the 
problem of thermal effect on vibration of non-homoge- 
neous orthotropic rectangular plate having bi-directional 
parabolically varying thickness. Gupta, Kumar and Gupta 
[11] studied the vibration of visco-elastic orthotropic 
parallelogram plate with a linear variation of thickness. 
Recently, Gupta and Kumar [12] solved the vibration pro- 
blem of non-homogeneous visco-elastic rectangular plate 
of linearly varying thickness subjected to linearly ther-
mal effect. Free vibration of a clamped visco-elastic rec-
tangular plate having bi-direction exponentially varying 
thickness were studied by Gupta, Khanna and Gupta 
[13] .Gupta, Aggarwal, Gupta, Kumar and Sharma [14] 
discussed the non-homogeneity on free vibration of 
orthotropic visco-elastic rectangular plate of parabolic 
varying thickness. Subsequent review article of Bhasker 
and Kaushik [15] are best source for problems involving 
rectangular plates fall into three distinct categories: 1) 
plates with all edges simply supported; 2) plates with a 
pair of opposite edges simply supported; 3) plates which 
do not fall into any of the above categories. 

Rectangular plates have wide applications in civil 
structures, electrical engineering, marine industry and 
mechanical engineering. The dynamic characteristics of 
rectangular plates are important to engineering designs. 
An analysis is presented in this paper is to study the ef-
fect of non-homogeneity on thermally induced vibration 
of orthotropic visco-elastic rectangular plate of linearly 
varying thickness. It is clamped supported on all the four 
edges. The assumption of small deflection and linear 
orthotropic visco-elastic properties are made. It is further 
assumed that the visco-elastic properties of the plates are 
of the Kelvin type. For this the material constants of al-
loy ‘Duralium’ is used for the calculation of numerical 
values. Time period and deflection for the first two 
modes of vibration are calculated for the various values 
of thermal gradients, non-homogeneity constant, aspect 
ratio and taper constant.  
 
2. Analysis 
 
The equation of motion of a visco-elastic orthotropic 
rectangular plate of variable thickness may be written in 
the form, as by Sobotka [1] 
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Here xM , yM and xyM  are moments per unit length 
of plate, r  is mass per unit volume, h  is thickness of 
plate and w is displacement at time t. 

The expression for , ,x y xyM M M  are given by 
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is called the flexural rigidity of the plate in x-direction, 
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Here D is Rheological operator and &x yE E  are the 
modules of elasticity in x- and y-direction respectively, 

xν  and yν  are the Poisson ratios & xyG  is the shear 
modulus. 

Taking deflection w as a product of two functions as: 

( ) ( ) ( )= , , = ,w w x y t W x y T t          (3) 

where W(x, y) is the function of coordinates in x, y and T 
(t) is a time function. 

Using Equation (3) in Equations (1) & (2) and then 
equating both sides of equation comes to a constant, say 
p2, one gets two separate differential equations as fol-
lows: 
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and 

..
2 = 0T p DT+               (5) 

where  

'
1= 2 xyH D D+  

Equation (4) is a differential equation of motion for 
orthotropic rectangular plate of variable thickness and (5) 
is a differential equation of time functions of free vibra-
tion of viscoelastic rectangular orthotropic plate. 

The temperature dependence of the modulus of elas-
ticity for orthotropic materials is given by  
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and temperature distribution along the length i.e. in the 
x-direction,  

( )= 1 /oτ τ x a-                (7) 

where τ  denotes the temperature excess above the ref-
erence temperature at any point at distance /x a  and 

0τ  denotes the temperature excess above reference 
temperature at the end, i.e. for x = 0. Here E1 and E2 are 
values of the Young’s moduli respectively along the x 
and y axis at the reference temperature i.e. at τ = 0 

The modulus variation (6) in view of expressions (7) 
becomes 
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where α = γ τo (0 ≤ α < 1), known as thermal gradient.  
The expression for the strain energy V and Kinetic en-

ergy P in the plate are [3] 
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The thickness and density varies linearly in the 
x-direction only, so let us assume  

( )= 1  /oh h x ab+               (11) 

and ( )1= 1 /o x ar r a+                         (12) 

where β is the taper constant and α1 is non-homogeneity 
constant. 

3. Solution and Frequency Equation 
 
To find the solution, we use Rayleigh-Ritz technique. In 
this method, one requires maximum strain energy be 
equal to the maximum Kinetic energy. So, it is necessary 
for the problem under consideration that 

( ) = 0δ V P-               (13) 

for arbitrary variations of W satisfying relevant geomet-
rical boundary conditions are 
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and the corresponding two term deflection function is 
taken as [6] 
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The non-dimensional variables are 
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By using Equations (8), (11) and (12) in (9) and 
(10), one gets 
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where 
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On substituting the values of P and V from Equations 
(18) and (19) in Equation (13), we get 
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Equation (21) involves the unknown A1 and A2 arising 
due to the substitution of W(x,y) from Equation (15). 
These two constants are to be determined from Equation 
(21) as follows: 
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where n = 1,2 
On simplifying (25) we get 
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where n = 1,2, bn1, bn2 involves parametric constants and 
the frequency parameter p. For a non-trivial solution, the 
determinant of the coefficient of Equation (26) must be 
zero. So, we get the frequency equation as 
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On solving Equation (27) one gets a quadratic equa-
tion in p2, which gives two values of p2. On substituting 
the value of A1 = 1, by choice, in Equation (15) one get 
A2 = –b11/b12 and hence W becomes:  
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4. Time Functions of Vibration of  

Viscoelastic Plates 
 
The expression for Time function of free vibrations of 
visco-elastic plates of variable thickness can be derived 
from Equation (5) that depends upon visco-elastic op-
erator D  and which for Kelvin’s Model can be taken 
as:  

1
d

D
G dt

hì üæ öæ öï ïï ï÷ ÷ç çº + ÷ ÷í ýç ç÷ ÷ç çï ïè øè øï ïî þ
             (29) 

where  is visco-elastic constant and G is shear modulus. 
Taking temperature dependence of viscoelastic constant 
η and shear modulus G is the same form as that of 
Young’s moduli, we have 
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where G0 is shear modulus and 0 is visco-elastic con-
stant at some reference temperature i.e. at  = 0, 1 and 2 
are slope variation of  with G and  respectively. Sub-
stituting the value of  from Equation (7) and using 
Equation (16) in Equation (30), one gets:  
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where 5 = 10, 0 < 5 < 1   
and  = 0 [1 – 4 (1 – X)] 
where 4 = 20, 0 < 4 < 1 

Here 4 and 5 are thermal constants. 
Substituting Equations (29) and (31) in Equation (5), 

one gets: 

2 2 = 0T p k T p T
·· ·

+ +               (32) 

Where 0 4

0 5

[1 (1 )]

[1 (1 )]

α X
k

G G α X

hh - -
= =

- -
           (33) 

Equation (32) is a second order differential equation in 
time function T. The solution of which comes out to be  
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where C1 and C2 are constants of integration, which can 
be determined easily from initial conditions of the plate. 

Let us take initial conditions as 

T  = 1 and T  = 0 at t = 0          (36) 

Using Equation (36) in Equation (34), we have C1 = 1 
and  

C2 = p2k/2b1 = –a1/b1           (37) 

Using Equation (37) in Equation (34), one has 

( )1
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Thus deflection w may be expressed by using Equa-
tion (38) and Equation (28) in Equation (3) 
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Time period of the vibration of the plate is given by 

= 2 /K π P                  (40) 

where p  is the frequency given by Equation (27). 
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Figure 1. Variation of time period with taper constant of visco-elastic non homogeneous rectangular plate of line-
arly varying thickness. 

 

 

Figure 2. Variation of time period with non homogeneity constant of visco-elastic non homogeneous rectangular 
plate of linearly varying thickness. 

 

 

Figure 3. Variation of time period with aspect ratio of visco-elastic non homogeneous rectangular plate of linearly 
varying thickness. 
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Figure 4. Transverse deflection w Vs X of visco-elastic non homogeneous rectangular plate of linearly varying 
thickness at initial time 0.K having constants combination as α = 0.0, β = 0.0, α1 = 0.0, α4 = 0.3, α5 = 0.2. 

 

 

Figure 5. Transverse deflection w Vs X of visco-elastic non homogeneous rectangular plate of linearly varying 
thickness at initial time 0.K having constants combination as α = 0.0, β = 0.6, α1 = 0.0, α4 = 0.3, α5 = 0.2. 

 
5. Results and Discussions 
 
The orthotropic material parameters have been taken as 
[3] 

* *
2 1/ = 0.32E E  

* *
1/ = 0.04E E  

*
1/ = 0.09oG E  

/ = 0.000069o oGh  

h = 0.01 (plate thickness) 

or = 3   105 (mass density per unit volume of the 
plate material) 

for calculating the values of this period K and deflect- 
tion w for a orthotropic visco-elastic rectangular plate for 
different values of taper constant β , thermal constant (α, 
α4, α5), non homogeneity constant α1 and aspect ratio a/b 
at different points for first two modes of vibrations. 

Figure 1 shows the result of time period K for differ- 
ent values of taper constant β and fixed thermal constant 
α = 0 and aspect ratio a/b = 1.5 for two values of non – 
homogeneity constant α1 are 0.0 and 0.4 for first two 
modes of vibration. It can be seen that time period (K) 
decreases when taper constant (β) increases for first two 
modes of vibration. 

Figure 2 shows the result of time period K for first 
two modes of vibration for different values of non-ho- 
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mogeneity constant α1 and fixed aspect ratio a/b = 1.5 
and four combinations of taper constant β and thermal 
constant α are 

β = 0.0 , α = 0.0 

β = 0.0 , α = 0.8 

β = 0.6 , α = 0.0 

β = 0.6 , α = 0.8 

It can be seen that time period K increases when non- 
homogeneity constant increases for first two modes of 
vibration. 

Figure 3 shows the result of time period K for differ- 
ent aspect ratio and four combinations of thermal con- 

stant α, taper constant β and non-homogeneity constant 
α1 i.e. 

α = 0.8 , β = 0.6, α1 = 0.0 

α = 0.8 , β = 0.6, α1 = 0.4 

α = 0.0 , β = 0.0, α1 = 0.0 

α = 0.8 , β = 0.0, α1 = 0.4 

It can be seen that time period K decreases when as-
pect ratio increases for first two modes of vibration. 

Figures 4-7 show the result of deflection for first two 
modes of vibration for different X, Y and fixed aspect 
ratio a/b = 1.5 for initial time 0.K and 5.K for the fol- 
lowing combination of thermal constants (α, α4, α5), 

 

 

Figure 6. Transverse deflection w Vs X of visco-elastic non homogeneous rectangular plate of linearly varying 
thickness at time 5.K having constants combination as α = 0.8, β = 0.0, α1 = 0.4, α4 = 0.3, α5 = 0.2. 

 

 

Figure 7. Transverse deflection w Vs X of visco-elastic non homogeneous rectangular plate of linearly varying 
thickness at time 5.K having constants combination asα = 0.8, β = 0.6, α1 = 0.0, α4 = 0.3, α5 = 0.2. 
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taper constant β and non-homogeneity constant α1. 

Results are compared with isotropic plate [12] and 
found to be in very close agreement. 
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