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ABSTRACT 
 

We consider environments where sparse signals are embedded in additive white noise. We 
consider specific signal models and cross-evaluate previously derived parametrically optimal, 
robust and tree-search policies for the detection of signal presence, in terms of the a posteriori 
probabilities of correct detection they induce. We specifically present numerical results for the 
case of a constant signal embedded in additive white Gaussian noise and the signal presence 
per observation being generated independently by a Bernoulli variable, in both the presence and 
the absence of data outliers. 
 

 
Keywords: Sparse signals; detection of signal presence; parametrically optimal; robust and tree-

search detection; white noise. 
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1. INTRODUCTION 
 
Sparse signals have received considerable 
attention the last few years, where sparsity has 
been defined only in vague terms. In addition, 
pertinent existing research has focus on the 
extraction of such signals via linear 
transformations [1,2], while no attention has been 
given to their localization. 
 
In this paper, we define sparsity by an upper 
bound on the percentage of signal-containing 
observations within a given observations set. We 
then undertake the task of detecting the location 
the sparse signals, extending the results first 
presented in [3]. In particular, special attention is 
given to the case where a constant signal is 
sparsely embedded in additive white Gaussian 
noise, while data outliers may also be present. 
We then extend parametric, robust and tree-
searching detection techniques, first developed 
in [3], to incorporate Bernoulli signal-generating 
models. We evaluate the performance of the 
extended techniques via studying the 
probabilities of correct detection they induce. The 
latter studies include derivations of bounds as 
well as numerical evaluations for various levels 
of signal sparsity and various values of signal-to-
noise-ratios. 
 
The organization of the paper is as follows: In 
Section 2, we state the fundamental general 
problem and summarize the previously found 
results. In Section 3, we develop a posteriori 
probability of correct detection expressions for 
the Bernoulli signal-presence model and 
subsequently present and discuss numerical 
results. In Section 4, we present conclusions 
 

2. PROBLEM STATEMENT AND 
SUMMARY OF PREVIOUS RESULTS 

 
We consider a sequence of observations 
generated by mutually independent random 
variables, a small percentage of which represent 
signal embedded in noise, while the remaining 
percentage represent just noise. Let it be known 
that the percentage of observations representing 
signal presence is bounded from above by a 

given value α. We assume additive, zero mean 
and white Gaussian noise; thus, that the random 
variables representing the noise are zero mean 
Gaussian, independent and identically 
distributed. We assume that the signal is 
independently distributed over the set of 
observations. We denote by x1,…xn , a sequence 
of n such observations, while we denote by 
X1,…,Xn , the sequence of mutually independent 
random variables whose realization is the 
sequence x1,…xn. We also denote by f1(.) the 
probability density function (pdf ) of the variables 
which represent signal presence, while we 
denote by f0(.) the pdf of the variables which 
represent just noise. Given the observation 

sequence x1,…xn  and assuming f1(.), f0(.) and α 
known, the objective is to identify the locations of 
the signal presence; that is, which ones of the 
x1,…xn  observations originated from the  f1(.) pdf. 
 
The approach to the problem solution in [3] is 
Maximum Likelihood (ML); which is equivalent to 
that of the Bayesian minimization of error 
probability approach, when all signal locations 
and their number are equally probable [4]. That 
is, given the sequence x1,…xn, the optimal 

detector decides in favor of the i1,…,im; 0 ≤ m ≤ 

αn signal locations if: 

∑ log ����	
 +��	�
 ∑ ��������� = max   �∑ log ����	
 +�	� ∑ �����������{�	} 
��{�	}                (1) 

 
Let us define: 
 ���� ≡ log � !�"� #�"�$                                                                                                                                          (2) 

 
From [3], we then express the optimal ML detector as follows:  
 

2.1 Optimal ML Detector 
 

(a) Given the sequence x1,…xn, compute all g(x j ); 1 ≤ j ≤ n 

(b) If  g(x k) ≤ 0; for all k, 1 ≤ k ≤ n, then, decide that no observation contains signal. 

(c) If ∃ a set of integers {i1,…,im}; 1 ≤ m ≤ αn:    g(x k) > 0; for all k ∈ {i1,…,im} and g(x k) ≤ 0; for all k 

∉ {i1,…,im}, then decide that the observations containing the signal are all those with indices 
in the set {i1,…,im}. 
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(d) If ∃ a set of integers {i1,…,im}; m > αn:    g(x 

k) > 0; for all k ∈ {i1,…,im} and g(x k) ≤ 0; for 

all k ∉ {i1,…,im}, then decide that the 
observations containing the signal are 
those whose indices k are contained  in the 
set {i1,…,im}and whose g(x k) values are the 

αn highest in the set. 
 
We consider now the special case where the 

signal is a known constant θ > 0 and the noise is 
zero mean white Gaussian with standard 

deviation σ per observation, G(0, σ). From [3] we 
then have that the optimal ML detector described 
above takes here the following form: 
 

2.2 Optimal ML Detector for Constant 
Signal θ and G(0,σ) White Noise 

 

(a) Given the sequence x1,…xn, compute all (xj 

- θ/2) ; 1 ≤ j ≤ n 

(b) If (xk - θ/2) ≤ 0; for all k, 1 ≤ k ≤ n, then, 
decide that no observation contains signal. 

(c) If ∃ a set of integers {i1,…,im}; 1 ≤ m ≤ αn:    
(xk - θ/2) > 0; for all k ∈ {i1,…,im} and (xk - 

θ/2) ≤ 0; for all k ∉ {i1,…,im}, then decide 
that the observations containing the signal 
are all those with indices in the set 
{i1,…,im}. 

(d) If  ∃ a set of integers {i1,…,im}; m > αn:  (xk - 

θ/2) > 0; for all k ∈ {i1,…,im} and (xk - θ/2) ≤ 

0 ; for all k ∉ {i1,…,im}, then decide that the 
observations containing the signal are 
those whose indices k are contained  in the 

set {i1,…,im}and whose (xk - θ/2) values are 

the αn highest in the set. 
 
The complexity of the above detector is of order 

nlogn [3]. Denoting by ϕ(x) and Φ(x), 
respectively, the pdf and the cumulative 
distribution function (cdf) of the zero mean and 
unit variance Gaussian random variable and 

assuming αn as an integer, we have from [3] that 
the conditional probabilities of correct detection, 
conditioned on the number of observations 
containing signal, are given in this case by the 
expressions below where. 

 

%&�{'�, … , '
}� = *Ф + ,2./01 ; 0 ≤ 5 ≤ 67 

%&�{'�, … , '
}� = 67 8 9:;�:�[Ф�−:�]?1@�∞

@ABC
*Ф +: + ,./0��@?�1

 

 = 67 D 9:;�:�[Ф�:�]?1@�EFGH
∞

IФ �−: + AC$J��@?�1 ; 5 = 67                                                   (3) 

 
We can also find the following Lemma in [3], pertinent to small percentage of signal presence and 
small signal-to-noise ratios. 
 
Lemma 1  
 

Let α → 0 and θ/σ → 0. Then, the probability of correct detection in (4) is of order αn Φ
n 
(θ/σ). 

 

2.3 The Outlier Resistant Detector for Constant Signal θ and G(0,σ) White Outlier 
Contaminated Noise 

 

This case represents the occasional presence of extreme data outliers which may be contaminating 
the Gaussian environment. Then, instead of white and Gaussian, the noise environment is modeled 
as white with pdf belonging to a class F of density functions, defined as follows, for some given value 

ε in (0, 0.5), where ε represents the outlier contamination level: 
 

F = {f; f = (1-ε) f0 + ε h, f0  is the Gaussian zero mean and standard deviation σ pdf, h is any pdf} 
 

The outlier resistant robust detector is then found based on the least favorable density f
* 
in

 
class F 

above, where the Kullback-Leibler number between f
* 
and its shifted by location parameter θ version 

attains the infimum among the Kullback-Leibler numbers realized by all pdfs in F, [4-6]. Then, the log 

likelihood ratio in (2) is a truncated version of that used in 2.2. As a result, for θ>0, the ML robust 
detector is operating as follows: 
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Robustl ML Detector 
 

(a) Given the sequence x1,…xn, compute all  

[z (xj  )- θ/2] ; 1 ≤ j ≤ n ,  
; where, 

 

K��� = L 9; � ≥ 9�; −9 + , < � < 9−9 + ,; � ≤ −9 + ,  O     (4)  

 9: �1 − R� SФ �@&TAC $ + U�V SA&CG − AG
BCGWФ �&C$W =1                                                                                  (5) 

 

(b) If [ z (xk ) - θ/2 ] ≤ 0; for all k, 1 ≤ k ≤ n, then, 
decide that no observation contains signal. 

(c) If ∃ a set of integers {i1,…,im}; 1 ≤ m ≤ αn: 
[z (xk ) - θ/2 ]  > 0; for all k ∈ {i1,…,im} and [z 

(xk ) - θ/2 ] ≤ 0 ; for all k ∉ {i1,…,im}, then 
decide that the observations containing the 
signal are all those with indices in the set 
{i1,…,im}. 

(d) If ∃ a set of integers {i1,…,im}; m > αn: [ z 

(xk ) - θ/2 ] > 0; for all k ∈ {i1,…,im} and [ z 

(xk ) - θ/2 ] ≤ 0 ; for all k ∉ {i1,…,im}, then 
decide that the observations containing the 
signal are those whose indices k are 
contained in the set {i1,…,im}and whose [ z 

(xk ) - θ/2 ] values are the αn highest in the 
set. 

 
Denoting by P

r
do ({i1,…,im}) the probability of 

correct detection induced by the robust ML 
detector, given that the noise is Gaussian 
containing no outliers and given that the signal 
occurs at the observation indices {i1,…,im}, the 
following expressions have been derived in [3], 

assuming again that αn is an integer: 
 

%&XY �{'�, … , '
}� = [Ф]1 + ,2./ ; 0 ≤ 5 ≤ 67 

 %&XY �{'�, … , '
}� 

= 67 8 9:;�:�[Ф�−:�]?1@�
&@AC
@ABC

 
×  *Ф +: + ,./0��@?�1 + 

Ф
?1 +−9 + ,. /Ф��@?�1 +9./ : 5= 67                                    �6� 

  
Comparing expressions (3) and (6), we notice 
that the robust detector induces lower probability 
of correct detection at the nominal Gaussian 

model; for the case of m=αn, where the 
difference of the two probabilities decreases 
monotonically with decreasing contamination 
level ε. As found in [3], this loss of performance 
of the robust detector at the nominal Gaussian 
model is at the gain of, frequently dramatic, 
performance improvement in the presence of 
outliers.  
 
Let there exist a small positive value ς, such that 
the noise per observation is zero mean 
Gaussian; with probability 1-ς and is an infinite 
positive value y; with probability ς. We express 
below the probabilities Pdς ({i1,…,im}) and P

r
dς 

({i1,…,im}) induced by this outlier model and the 
optimal ML detector in 2.2 versus the robust 
detector, respectively, as expressed in [3]. 
 
 

%&\�{'�, … . '
}� = %&\Y �{'�, … . '
}� = �1 − ^�1@
 × I�1 − ^�Ф � ABC$ + ^J

Ф

1@
 � ABC$ ; 0 ≤ 5 <67                                                                                                                                                                                                               (7) 
 %&\�{'�, … . '
}� = �1 − ^��T��@?�167 × D 9:;�:�[�1 − ^�Ф�−:� + ^]?1@�∞EFGH IФ �: + AC$J��@?�1 +
^?1�1 − ^���@?�1;  5 = 67                                                                                                               (8) %&\Y �{'�, … , '
}� = �1 − ^��T��@?�167 

 

× D 9:;�:�[�1 − ^�Ф�−:� + ^]?1@�_EFHEFGH IФ �: + AC$J��@?�1 + �1 − ^���@?�1 I�1 − ^�Ф �@&TAC $ +^67 Ф1−679.;5=67                                                                                                     (9) 

 

Comparison between expressions (8) and (9) reveals that, in the presence of outliers, the robust 
detector attains probability of correct detection higher than that attained by the detector in 2.2, where 
this performance improvement increases monotonically with increasing ς value. 
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2.4 Tree-Search Detector 
 

This detector is proposed for the special case 
where the components of the sparse signal are 
spread relatively evenly across the n members of 
the observation set. Then, the objective of the 
detector is to identify observation clusters 
containing at most a single signal-presence 
observation. In this case, for f1(.) and f0(.) 
respectively being the pdfs of signal-presence 
versus signal -absence observations and for g (x) 

≡ log ( f1 (x)/f0 (x) ), a tree-search detector 
developed in [3] operates as follows, where the 
size N of the observation set is assumed to be a 
power of 2: 
 
Tree–Search Detector 
 
(a) Given the sequence x1,…xN, compute all             

g(x j ); 1 ≤ j ≤ N = 2
n
. 

(b) Utilize a sequence {β k} of given algorithmic 
constants as: 

 

(i) If 
∑

=

≤

N

1k

nk β  )(x g
, then, decide that at 

most a single signal component is 
contained in the sequence x1,…x N.and 
stop. 

(ii) If ∑
=

>

N

1k

nk β  )(x g , then, create the two 

partial sums 
∑

=

2

N

1k

k   )(x g
and 

∑
+=

N

1
2

N
k

k   )(x g
 

(iii) Test each of the two sums in (ii) against 
the constant βn-1 and go back to steps (i) 
and (ii). 

 
(c) In general, the observation set x1,…xN is 

sequentially subdivided in powers of 2 
number of portions, until the subdivision 
stops. If, during the algorithmic process, the 

observations with indices {i1,…,im}; m= 2
l 
 are 

tested, then,
 

 

(i)  If 
∑

=

≤

m

1k

i β  )(x g
k l

, then, decide that at 

most a single signal component is 
contained in the sequence x1,…x N.and 
stop. 

(ii)  If 
∑

=

>

m

1k

i β  )(x g
k l

, then, create the 

two partial sums 
∑

=

2

m

1k

i   )(x g
k

and 

∑
+=

m

1
2

m
k

i   )(x g
k

. 

 
(iii) Test each of the two sums in (ii) against 

the constant βl-1 and go back to steps (i) 
and (ii). 

 
For m signal-containing observations within a 
total of N observations, the complexity of the 
tree-search detector is of order [logm]N. 
Focusing on the constant signal and additive, 
zero mean, white Gaussian noise model in (ii), 
where the function g(x) in the description of the 
tree–search detector equals x–θ/2, the Lemma 
below was proven in [3].  
 
Lemma 2 
 
Let a constant signal θ be additively embedded 
in white, zero mean Gaussian noise with 
standard deviation σ per observation. Let m =2

l 

be the number of signal components, given that 
they are spread uniformly across a total of N = 2

n 

observations, where n - l > 1. Let the constants 
{β k} used by the tree–search detector be such 
that: β k < 2 β k-1; for all 2 ≤ k ≤ n. Then, the 
conditional probability of correct detection, Pd 

(l,n), conditioned on l and n, as induced by the 
tree-search detector, is given by the following 
expression, where this probability is also 
conditioned on the above uniform signal 
spreading assumption. 
 

%&��, 7� = `Ф�ab1��Ф�ab1� −Ф�9b1�
 − 8 9�;���Фcde
&de

�9b1 + ab1 − ��fBdE!
 

; n-1 ≥ n – l ≥ 2 
 %&�0, 7� = Ф�a�1�                                                                                                                                                         (10) 
 
Where, 
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ab1 ≡ Ig1@b + �21@b@� − 1� AG
CGJ CA 2@ eEdG                                                                                                                      (11) 

 9b1 ≡ Ig1@bT� − g1@b + �21@b@� − 1� AG
CGJ CA 2@ eEdG                                                                                                   (12) 

 
For n – l ≥ 2 and (θ/σ)

2
 values above βn-l [2

n-l-1
-1]

-1
, the probability of correct decision in (10) is 

increasing with increasing signal-to-nose ratio θ/σ, as well as with increasing difference n – l. Also, the 
βn-l and βn-l+ 1 values should be of 2

 -(n-l) 
 order; for asymptotically large values of the difference n – l. 

We may select the specific values of the constants βn-l and βn-l+ 1 based on a maximization of correct 
detection criterion, as stated in Lemma 3 below found in [3]. 
 

Lemma 3 
 

Let a constant signal θ be additively embedded in white zero mean Gaussian noise with standard 

deviation per observation, σ. Let the signal θ occur with probability q per observation, independently 
across all N = 2

n 
observations. Let Pd (n-l,q) denote then the probability of correctly distinguishing 

between at most one and at least two signal components in 2
n-l

 observations, via the use of the tree-
search constant βn-l . The constant βn-l may be selected as that which maximizes the probability Pd (n-
l,q), where the latter is given by the following expression. 
 %&�7 − �, h� =�1 − h�BeEd

Ф�a1b�� + 21@bh�1 − h�BeEd@�Ф�a1b�� +∑ +21@bi / h��1 − h�BeEd@�Ф�−a1b��BeEd�jB                                                                                                                    (13) 

 
Where, 
 a1b� ≜ l1@b + �21@b@� − i�m1@b                                                                                                      (14) 

 l1@b ≜ CneEd
ABeEdG                                                                                                                        (15) 

  m1@b ≜ A
CBeEdG                                                                                                                                                        (16) 

 

For signal-to-noise ratio θ /σ asymptotically small and q less than 0.5, the constant βn-l which 
maximizes the probability Pd (n-l,q) in (13) is given by equation (17) below, where it can be then 

shown that βn-l+ 1 < 2 βn-l.  
 

g1@b = *1 + Bo[�@B��@o�GeEdE!]@�TB��@o�GeEdTBeEdp!o��@o�GeEdE!0@�                                                                                                    (17) 

 

We note that we may “robustify” the tree-search detector at the Gaussian nominal model, by using, 
instead, g(x) = z(x) – θ/2; for z(x) as in (4). The error performance of the robust tree–search detector 
may be then studied asymptotically. We will not include such asymptotic study in this paper. 
 

3. THE BERNOULLI SIGNAL–PRESENCE MODEL AND NUMERICAL EVALUATIONS 
 

In this section, we consider the model of constant signal θ>0 embedded in additive zero mean white 
Gaussian noise, with standard deviation per sample σ. We select values of the various parameters 
involved and cross-evaluate probabilities of correct detection, as induced by the detectors 
summarized in Section 2. For the parametric optimal detector in Section 2(ii) and the robust detector 
in Section 2.3, we select in addition a Bernoulli model for signal generation as follows: Given n and α, 
the signal θ>0 occurs per observation with probability p, given by the expression below, where q is a 
constant in (0, 0.5) which is closer to 0 for sparse signals: 
 V = o∑ � 1

oq��@o�eEq∝eqs#                                                                                                                                  (18) 
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We then Denote by Pd, P
r
d 0, Pd ζ and P

r
d ζ the a posteriori probabilities of correct detection relating to 

the conditional probabilities of correct detection in (3), (6), (8) and (9), respectively, where the signal 
occurrence model in (17) is adopted. We can express these a posteriori probabilities as follows, 
assuming αn integer: 

 

%& = Ф � ABC$1 *∑ � 1

oq��@o�eEq∝eE!qs#∑ � 1

oq��@o�eEq∝eqs# 0 + * � t
αt
o∝e��@o�eE∝e

∑ � 1

oq��@o�eEq∝eqs# 0 %&�{'�, … , '
}���u�5 �3��                      (19) 

 

  %Y &�  = Ф + ,2./1 w∑ � 75$ h
�1 − h�1@
∝1@�
j�∑ � 75$ h
�1 − h�1@
∝1
j� x 
+ * � 1?1
o∝e��@o�eE∝e

∑ � 1

oq��@o�eEq∝eqs# 0 %Y &��{'�, … , '
}���u�5 �6�
                                                                                        (20)  
 %&Ϛ =%&	�{'�, … , '
}���u�5 �7�� *∑ � 1

oq��@o�eEq∝eE!qs#∑ � 1

oq��@o�eEq∝eqs# 0 +
%&Ϛ�{'�, … , '
}���u�5 �8�
 * � 1?1
o∝e��@o�eE∝e

∑ � 1

oq��@o�eEq∝eE!qs# 0                                                                                                (21) 

 

%&ϚY = %&Ϛ�{'�, … , '
}���u�5 �7�� w∑ � 75$ h
�1 − h�1@
∝1@�
j�∑ � 75$ h
�1 − h�1@
∝1
j� x 

+%&ϚY �{'�, … , '
}���u�5 �9�� * � 1?1
o∝e��@o�eE∝e
∑ � 1

oq��@o�eEq∝eE!qs# 0                                                                         (22)  

 

For the parametric and robust detectors, we numerically evaluated the a posteriori probabilities in 
(19), (20), (21) and (22). For the tree-search detector, we first evaluated the a posteriori probability of 
correct detection Pd (n-l,q) in expression (10). We subsequently evaluated the probability of correct 
detection Pd(n, q), when a signal per observation is present with probability q, the signal is a constant 
θ > 0 embedded in white Gaussian noise, the signal-spreading of Lemma 2 holds and the tree–search 
is performed. For Pd (l,n) as in (10), the probability Pd(n, q) is given by the following expression, whose 
value decreases with decreasing Bernoulli parameter q: 

 

%&�7, h� = I∑ 2�1@b�BdhBd�1 − h�Be@Bd1@Bbj� J@� ∑ %&��, 7�1@Bbj� 2�1@b�BdhBd�1 − h�Be@Bd                                    (23) 

 

In our numerical evaluations, we adopted the parameter values given below. For the tree-search 
detector, we used the βn-l expressions in (17). 

 

σ= 4.5E-4 

q = 0.05 for the parametric and robust detectors; 0.05, 0.1, 0.2 and 0.3 for tree –search detector 

ε = 0.05 

ς = 0.05, 0.1 

α = 0.05, 0.1, 02, 0.3  

θ/σ=0.5, 1.0, 4.5, 7.0 for the parametric and robust detectors; 7.0, 0.07 and 0.007 for tree- search 
detector 

 

Results from our numerical comparisons 
between the parametric and the robust detectors 
are exhibited in Figs. 1 to 6. Numerical 

evaluations for the tree-search detector are 
shown in Figs 7 and 8. 
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From Figs. 1 to 6, we observe the quantitative 
performance superiority of the robust detector in 
the presence of outliers, as compared to that of 
the parametric detector. The later performance 
superiority occurs at the expense of reduced 
performance, when outliers are absent. A 
satisfactory performance tradeoff, in the absence 
versus the presence of outliers, may be attained 
by the robust detector whose design parameter ε 
takes a small value. As viewed from Figs 5 and 
6, for example, the robust detector designed for 
outlier probability ε=0.05 outperforms 
significantly the parametric detector when the 
actual outlier probability is ζ = 0.1. From Figs. 1 
to 6, we also observe the quantitative 
performance increase, for both the parametric 
and the robust detectors, as the signal-to-noise 
ratio and the assumed in the detector design 
percentage α of signal-containing observations 
increase (in contrast to the actual percentage 
represented by the Bernoulli parameter q). In all 
cases, performance decreases exponentially with 
the number of observations, for sufficiently large 
sample sizes. 

Figs. 7 and 8 exhibit the behavior of the 
probability Pd(n, q) of correct detection in (23), as 
induced by the tree-search detector at various 
signal-to-noise ratios, for q=0.01 and q=0.05, 
respectively. In the figures, the horizontal axis 
depicts the changing n values; the signal-to-
noise ratios (SNRs) selected are within the range 
(in Lemma 2) guaranteeing monotone increase 
of the probability in (10) with increasing SNR. 
From these figures, we observe the profound 
performance reduction, when the Bernoulli 
parameter q decreases from 0.05 to 0.01; we 
also observe the significant impact of the signal-
to-noise ratio on the Pd(n, q) performance.  

 

Comparing Figs. 2 and 6, we note that, in the 
absence of outliers and the presence of the 
Bernoulli signal-generating model with parameter 
q=0.05, the performance of the tree-search 
detector is comparable to that of the optimal 
parametric detector. 

  

 

 
 

Fig. 1. Shows the comparison between the parametric and the robust in the absence of 
outliers, probabilities in (19) and (20), for q=0.05 and SNR=7, when ε=0.05 

------ Parametric detector; x-axis: number of observations 
 Robust detector; y-axis: Pd value 
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Fig. 2. Shows the comparison between the parametric and robust detector model in the 
absence of outliers, probabilities in  (19) and (20), for q=0.05 and SNR=0.5, when ε=0.05 

-------- Parametric detector; x-axis: number of observations 
Robust detector; y-axis: Pd value 

 

 
 

Fig. 3. Shows the comparison between parametric and robust detector in the presence of 
outliers, probabilities in (21) and (22), for q=0.05 and SNR=7, when ζ=0.05 and ε=0.05 

-------- Parametric detector; x-axis: number of observations 
Robust detector; y-axis: Pd value 
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Fig. 4. Shows the comparison between parametric and robust detector in the presence of 
outliers, probabilities in (21) and (22), for q=0.05 and SNR= 0.5,when ζ=0.05 and ε=0.05 

-------- Parametric detector; x-axis: number of observations 
Robust detector; y-axis: Pd value 

 

 
 

Fig. 5. Shows the comparison between parametric and robust detector in the presence of 
outliers, probabilities in (21) and (22), for q=0.05 and SNR=7, when ζ=0.1 and ε=0.05 

-------- Parametric detector; x-axis: number of observations 
Robust detector; y-axis: Pd value 
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Fig. 6. Shows the comparison between parametric and robust detector in the presence of 
outliers, probabilities in (21) and (22), for q=0.05 and SNR=0.5, when ζ=0.1 and ε=0.05 

-------- Parametric detector; x-axis: number of observations 
Robust detector; y-axis: Pd value 

 

 
 

Fig. 7. The probability of correct detection Pd(n, q) in (23) for the tree-search detector, as 
function of n, for q=0.01 
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Fig. 8. The probability of correct detection Pd(n, q) in (23) for the tree- search detector, as 
function of n, for q = 0.05 

 

4. CONCLUSION 
 
We considered the case where a constant signal 
is sparsely generated by a Bernoulli variable and 
is subsequently embedded in additive Gaussian 
white noise. We then evaluated the performance 
of three sparse signal detectors-parametrically 
optimal, robust and tree-search-in terms of the 
probability of correct detection they induce. The 
parametrically optimal and robust detectors were 
designed based on an assumed known 
maximum percentage of signal containing 
observations, while the tree-search detector has 
been addressing an assumed uniform signal 
spreading across all observations without any a 
priori knowledge of percentages regarding signal 
containing observations. The parametrically 
optimal detector has been designed around the 
assumption that no data outliers may ever occur, 
while the robust detector’s design incorporates 
an assumed maximum percentage of data 
outliers. All three detectors have been evaluated 
for the same value 0.05 of the signal-generating 
Bernoulli parameter, while the tree-search 
detector has also been evaluated for the 
Bernoulli parameter value 0.01. The performed  
evaluations have led to the following general 
qualitative conclusions: (a) As the spreading of 
the sparse signals increases, so does the 
difficulty of their localization, where such difficulty 

decreases with increasing signal-to-noise ratio; 
(b) The highest the assumed percentage of 
signal containing observations in the design of 
the parametrically optimal and the robust 
detectors, the better their performance, in both 
the presence and the absence of outliers; (c) In 
the presence of outlier data, the robust detector 
may significantly outperform the parametrically 
optimal detector, at the expense of relative 
insignificant performance reduction in the 
absence of outlier data. 
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