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Abstract: Aims: Mutans streptococci include Streptococcus mutans and Streptococcus sobrinus, which
can cause tooth decay. The current study aimed to compare their virulence genes with each other and
to correlate them with the clinical data of patients. Materials and methods: Altogether 21 S. mutans
and 19 S. sobrinus strains were investigated, originating from 24 children (age 2.7 ± 0.4 years)
and 13 mothers (27.3 ± 3.7). The PCR method was applied to detect 11 virulence genes. Caries
indices (dmf, decayed/missing/filled; DMFT, decayed/missing/filled teeth) and SM score (Mutans
streptococci amount in saliva) were recorded. Results: Most of the S. mutans strains harbored all the
virulence genes studied, while S. sobrinus had significantly fewer genes. The genes gbpA, gbpB, wapA
and ftf were present in all isolates of S. sobrinus, the spaP, gtfB, vicR, SMU.1037c and SMU.105 genes
were present in 41–88% of the isolates, while gtfD and SMU.104 genes were absent in S. sobrinus
strains studied. A positive correlation appeared between the biofilm-related vicR and polysaccharide-
production-related gtfD genes. In contrast, another polysaccharide-production-related gtfB gene was
present in some cases in strains lacking the vicR or gtfD gene. Positive association was found between
the presence of adhesion-related spaP gene in pediatric-derived S. sobrinus strains and an increase in
SM score. Conclusions: Differences exist between the two common species of mutans streptococci:
strains of S. mutans have more virulence genes than that of S. sobrinus, both crucial and virulence
enhancing. Deeper research is needed to clarify the mechanisms behind the increased cariogenicity
in cohabitation.
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1. Introduction

Dental caries is a common disease in both adults and children—about 70–90% of the
world’s population is affected by caries [1,2]. The prevalence of dental caries in toddlers
varies within Europe, ranging from 8% in Finland [3] to 56% in Poland [4]. A study
conducted in Estonia revealed that caries occurred in 29% of 3-year-old children, 72% in
6-year-old children and 68% in 12-year-olds [5].

The oral cavity contains highly diverse normal microbiota, which performs various
useful functions. In total, about 1000 different species of microorganisms have been
found in the oral cavity [6], of which about 50–100 species reside in the mouth of one
person. Streptococci make up about 50% of the oral microbiota [7,8]. The development
of dental caries is associated with numerous factors, such as oral cleaning and eating
habits, salivation and dentition, but it is also significantly associated with changes in the
composition of the oral microbiota, in particular, the excessive proliferation of mutans
streptococci (MS). The most common species among MS in humans are Streptococcus mutans
and Streptococcus sobrinus [1].
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The environmental conditions in the mouth and focal dental caries are complex and
constantly changing. This highlights the remarkable adaptability of MS, which is at-
tributable to a wide range of virulence factors, including biofilm formation and adhesion,
polysaccharide production, and carbohydrate cleavage with acid production [8,9]. A
biofilm is an aggregate of bacteria attached to a surface, usually covered with a matrix of
exopolysaccharides [10]. Bacteria living in biofilms are significantly more tolerant to an-
tibiotics and biocides [11]. Biofilm formation by MS is associated with the genes wapA [12]
and vicR, and the latter helps the bacterium detect environmental changes and respond
to stress conditions [13]. Glycan-binding proteins (Gbps—gbpA and gbpB), glycosyltrans-
ferases (GTF—gtfB and gtfD) [14], as well as a surface protein called antigen I/II (coded
by spaP, also known as pac, P1 and Ag I/II) are involved in MS adhesion [15]. Gbps
and GTF-producing genes are closely related because S. mutans synthesizes glycans from
sucrose (a substrate for GTFs) using glycosyltransferases [14]. The function of spaP is to
mediate S. mutans adhesion to saliva-coated tooth surfaces [16]. In addition, streptococci
have the ability to produce extracellular polysaccharides (EPS) from sucrose [17], involving
gtfB, gtfD, and ftf genes [1,18]. EPS are important components in biofilm [19] and con-
tribute to the cariogenicity, stress tolerance and antimicrobial resistance of S. mutans [20].
EPS also serves to provide a supply of substrates for the bacterium to promote adhesion
and aggregation between microorganisms, and to increase the thickness and density of
plaque [21].

Another important virulence factor for MS is acidogenicity [1]. MSs ferment carbohy-
drates and produce organic acids, especially lactic acid, by changing the pH of the external
environment [22]. The environment of the dental plaque becomes acidic, resulting in the
demineralization of tooth enamel and later dentin. Caries bacteria themselves are acid
tolerant [2,23].

Although caries and its causes have been studied for decades, there are few studies
comparing the virulence genes of both major caries pathogens and associating them with
oral health indicators. Therefore, this investigation aimed to compare the cariogenicity-
related virulence genes and clinical impact of S. mutans and S. sobrinus isolated from 2- to
4-year-old children and their mothers.

2. Materials and Methods
2.1. Bacterial Strains

Forty MS strains were included in the study, including 21 S. mutans and 19 S. sobrinus.
The strains originated from a former study where the oral health of mothers and children
was assessed [24], with permission of the Ethics Committee for Human Research of the
University of Tartu (protocol no. 166/T-7). The strain donors included 24 children (aged
24 to 41 months) and 13 mothers (aged 22 to 31 years) (Table 1). All donors had dental
caries. Background data included the DMF index [25] and SM score measured using the
commercial kit Dentocult SM Strip mutans (Orion Diagnostica Oy, Espoo, Finland). The
strains are stored in the HUMB collection (Human Microbial Biobank) at the University of
Tartu (http://eemb.ut.ee/humb, accessed on 3 November 2022).

Table 1. Clinical parameters (mean ± SD) of strain donors.

Donors
Sex (%) Age (Years) dmf

(0–20)
DMFS
(0–128)

DMFT
(0–32)

SM Score
(0–3)

DAS
(4–20)F M

mother
(n = 13) 100 0 27.3 ± 3.7 - 20.8 ± 14.62 11.20 ± 5.18 2.23 ± 0.93 11.8 ± 3.61

child
(n = 24) 62.5 37.5 2.7 ± 0.4 0.46 ± 0.83 - - 1.46 ± 1.22 -

dmf—decayed/missing/filled; DMFS—decayed/missing/filled surface; DMFT—decayed/missing/filled teeth;
SM—Strip mutans (Orion Diagnostica); DAS—dental anxiety scale.

http://eemb.ut.ee/humb
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2.2. Molecular Methods

A QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) was used to isolate DNA.
To determine if all mutans streptococci strains were different, genotyping was per-

formed by pulsed field gel electrophoresis (Supplementary Figure S1). Based on the
genotyping data, 38 bacterial strains were included in the analysis.

The PCR method was used to reveal virulence genes. The known virulence genes of MS
are presented in Table 2; of them, 11 virulence genes were selected for the study: gbpA, gbpB
and spaP genes, responsible for adhesion; wapA and vicR, involved in biofilm formation;
ftf, gtfB and gtfD, involved in the production of the polysaccharides needed for biofilm;
SMU.104 and SMU.105, responsible for acid production, and SMU.1037c contributing to
acid tolerance.

Table 2. Virulence mechanisms and their genes in mutans streptococci (adapted from [26]).

Virulence Mechanism Genes *

Adhesion to tooth enamel
sucrose-dependent adhesion: gbpA, gbpB, ftf,

vicR, wapA
sucrose-independent adhesion: spaP

Biofilm formation atlA, ftf, SMU.609, vicR, wapA
Production of polysaccharides gtfA, gtfB, gtfC, gtfD, ftf, vicR

Decomposition of carbohydrates with acid
production mipB, SMU.104, SMU.105, sorA

Acid tolerance comD, SMU.1037c
* The genes that were selected for the current study are indicated as bold.

More details of molecular methods are presented in Supplementary Table S1. The primers
and the most suitable primer annealing temperatures are presented in Supplementary Table S2.

2.3. Statistical Analysis

Data were stored and analyzed in MS Excel software. Spearman’s rs correlation test
(p < 0.05) was used to find the assocation of virulence genes with caries markers (p < 0.05).
Pearson’s Chi square test (p < 0.05) was used to find differences between the groups.

3. Results

Most of the investigated S. mutans strains had all the virulence genes studied, both
essential and virulence-enhancing (Figure 1). Only the SMU.104 gene, which is involved in
acid production, was absent in a quarter of the strains of this species. In contrast, several
virulence genes were significantly less represented in the S. sobrinus strains: gbpA, gbpB,
wapA and ftf genes were present in all strains, and spaP, gtfB, vicR, SMU.1037c and SMU.105
genes in 41–88% strains, while gtfD and SMU.104 genes were not found in the S. sobrinus
strains. There was a statistically significant difference between the two species for the genes
spaP, vicR, gtfD and SMU.104 (p < 0.01). A correlation appeared between the vicR and gtfD
genes (r2 = 0.574; p < 0.01), the latter of which was absent from strains lacking the vicR gene.
In contrast, the gtfB gene was present in some cases in strains lacking the vicR or gtfD gene
(vicR and gtfB r2 = 0.328; p < 0.05 and gtfD and gtfB r2 = 0.325; p < 0.05).

Tables 3 and 4 show correlations between clinical parameters and virulence genes. We
found a positive association between the spaP gene and the SM score in children (r2 = 0.643,
p = 0.033).
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Figure 1. Distribution of virulence genes between two mutans streptococci species. Pearson chi-
square test was applied, the asterisk indicates difference p < 0.01.

Table 3. Correlation between SM score and virulence genes between mutans streptococci and moth-
ers/children. The level of each person’s SM score (0–3) is compared to the specific gene present/absent
in their bacterial strain. Results indicating positive correlation and statistical significance (p < 0.05)
are marked in bold.

Gene

Correlation of SM Scores

S. mutans and
S. sobrinus S. mutans S. sobrinus

(n = 38) (n = 21) (n = 17) Children (n = 11) Mothers (n = 6)

r2 p-Value r2 p-Value r2 p-Value r2 p-Value r2 p-Value

gbpA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

gbpB 0 NS
(1) −0.057 NS

(0.805) n/a n/a n/a n/a n/a n/a

spaP 0.117 NS
(0.796) n/a n/a 0.404 NS

(0.108) 0.643 p = 0.033 0 NS (1)

wapA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
ftf n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

gtfB 0.019 NS
(0.912) n/a n/a 0.101 NS

(0.699) 0 NS (1) 0.447 NS
(0.374)

gtfD −0.149 NS
(0.372) n/a n/a n/a n/a n/a n/a n/a n/a

vicR −0.295 NS
(0.072) n/a n/a −0.398 NS

(0.113) −0.428 NS
(0.189) −0.333 NS

(0.512)

smu.1037c 0.023 NS
(0.894) n/a n/a 0.059 NS

(0.819) 0 NS (1) n/a n/a

smu.104 −0.163 NS
(0.329) −0.095 NS

(0.681) n/a n/a n/a n/a n/a n/a

smu.105 −0.281 NS
(0.088) n/a n/a −0.398 NS

(0.114) −0.371 NS
(0.262) −0.447 NS

(0.374)

Spearman’s r2 correlation; SM score—Strip mutans score (Orion Diagnostica); n/a—not available; NS—not significant.
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Table 4. Relationship between DMFT index and virulence genes between mutans streptococci in
mothers and dmf index and virulence genes between mutans streptococci in children. Each mother’s
DMFT level (0–32)/children’s dmf level (0–20) is compared to the specific gene present/absent in the
bacterial strain.

Gene

Correlation of DMFT/dmf Scores

S. mutans and S. sobrinus S. mutans S. sobrinus

Mothers
(DMFT)
(n = 14)

Children (dmf)
(n = 24)

Mothers
(DMFT)
(n = 8)

Children (dmf)
(n = 13)

Mothers
(DMFT)
(n = 6)

Children (dmf)
(n = 11)

r2 p-
Value r2 p-

Value r2 p-
Value r2 p-

Value r2 p-
Value r2 p-

Value

gbpA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

gbpB −0.313 NS
(0.276) n/a n/a −0.417 NS

(0.304) n/a n/a n/a n/a n/a n/a

spaP −0.198 NS
(0.497) 0.157 NS

(0.465) n/a n/a n/a n/a −0.533 NS
(0.276) 0.086 NS

(0.802)
wapA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

ftf n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

gtfB 0.035 NS
(0.906) 0.173 NS

(0.419) n/a n/a n/a n/a 0.135 NS
(0.799) 0.221 NS

(0.514)

gtfD 0 NS (1) 0.176 NS
(0.411) n/a n/a n/a n/a n/a n/a n/a n/a

vicR 0.197 NS
(0.501) 0.108 NS

(0.616) n/a n/a n/a n/a 0.402 NS
(0.429) 0 NS (1)

smu.1037c n/a n/a −0.101 NS
(0.639) n/a n/a n/a n/a n/a n/a −0.332 NS

(0.319)

smu.104 0 NS (1) 0.121 NS
(0.572) 0 NS (1) −0.03 NS

(0.921) n/a n/a n/a n/a

smu.105 −0.035 NS
(0.906) 0.118 NS

(0.578) n/a n/a n/a n/a −0.135 NS
(0.799) 0.148 NS

(0.664)

Spearman’s r2 correlation; DMFT—decayed/missing/filled (permanent) teeth; dmf—decayed/missing/filled
(primary teeth); n/a—not available; NS—not significant.

4. Discussion

This study confirmed that both SM species have multiple virulence genes but differ-
ences detected between the species and strains. Only the adhesion genes gbpA, gbpB, ftf
and wapA were present in all investigated strains. Significantly more virulence genes were
found in S. mutans than in S. sobrinus. Analysis also showed a positive association between
the presence of spaP in S. sobrinus and an increase in the SM score in children.

All of the investigated genes play important roles in the physiology of MS. If the genes
are turned off, the strain may be less resistant to environmental conditions, as changes
may occur in the formation and structure of the biofilm [12,27,28], in adhesion to the tooth
surface [29–31] or a decrease in EPS production [21,32]. Current research revealed that
most of the S. mutans strains carried all the virulence genes studied, both essential and
virulence-enhancing, related to biofilm formation, adhesion, acid production and tolerance,
and interactions with the environment. In contrast, several virulence genes occurred
less frequently in S. sobrinus strains. Previous studies have also shown some differences
between these species. For example, de Soet et al. [33] and Igarashi et al. [34] found that
S. sobrinus has a higher acid production capacity than S. mutans. In addition, previous
research [34,35] has shown that S. sobrinus is rich in GTF-producing genes, and the most
important is gtfB. In our study, this gene was found in 82% of the S. sobrinus strains studied,
but the gtfD gene was completely absent in our strains. Other genes not studied in this
work may compensate for the production of different glycotransferases.

Vic genes regulate the expression of several other virulence-related genes (gtfB, gtfC,
gtfD, ftf, and gbpB) by acting on their promoter regions. The null-mutation of vicR is
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probably lethal to S. mutans [13] and is therefore present in all strains studied. In a study
of Zhuang et al. [36], 121 vicR genes were isolated and purified from S. mutans isolated
from the children with and without caries and were found to be conserved in all isolates.
Although vicR has been found to be essential for S. mutans, this may be different for
S. sobrinus, which corresponds to the current study, where nearly half of the S. sobrinus
strains lacked this gene. The prevalence of vicR varies among streptococci while the cause
is not yet clear [13,37]. The VicRK signaling system is known to affect GTF expression in
S. mutans. In the absence of the vicRK system in mutant strains of S. mutans, a decrease
in gtfD gene expression and an increase in gtfB gene expression were observed [13,38].
The current study did not examine the expression level but revealed a positive correlation
between the presence of the vicR and gtfD genes.

The SMU.1037c gene was found in 88% of S. sobrinus strains, and it helps to adapt the
bacterium to changing environmental conditions. Conrads et al. [35] found that S. sobrinus
lacked the SMU.1037c and TCS-7 systems, but they compared only two strains of this
species. The SMU.104 encodes the protein α-glucosidase glycosyl hydrolase, whose biolog-
ical role is involved in carbohydrate metabolism and whose molecular function is involved
in the hydrolysis of glycosyl bonds [39]. According to Banas [40], acid production varies
between MS strains. SMU.104 and SMU.105 genes are not necessarily essential for the
bacterium but may increase the competitive advantage over other strains by contributing
to faster acid production. In our study, a quarter of the S. mutans strains and all S. sobrinus
strains lacked the SMU.104 gene.

S. mutans and S. sobrinus strains may have different mechanisms of perception and
response, and because they often symbiotically coexist in the biofilm, S. sobrinus may
not need to have all the genes. The main virulence traits of S. mutans are controlled or
modulated by quorum sensing and thus depend on its own cell number but maybe also on
cell numbers of cohabitants [35]. Although the genes selected for the study are important
in the development of virulence, not all genes required for virulence were identified in the
study. On the other hand, MS may have more virulence genes that were overlooked in
this study.

Caries markers of children in our study were similar to a previous Estonian study
where caries was diagnosed in 42% of the children at the age of 41 months, and the average
dmft index was 1.6 ± 2.5 [41] as well as to studies conducted in other countries—1.64 ± 3.84
in Greece, 1.25 ± 2.47 in China [42,43]. DMFT index in mothers was also nearly similar
to studies conducted worldwide (11.02 ± 6.3 in Brasil, 14.45 in the Philippines) [44,45].
Here, the clinical markers of the strain donors with the genetic information of the strains
were compared. Although the spaP gene was detected to a much lesser extent in S. sobrinus
than in S. mutans, a positive relationship between this gene and SM score in children was
observed. This may be a prerequisite for further increased cariogenicity in these children.
Because spaP is responsible for adhesion, bacteria with this gene may have a better ability
to attach to the tooth and, ultimately, colonize the tooth surface better [30,46]. Our result
corresponds to some previous studies showing that children with caries tend to carry
spaP-positive mutans streptococci [45,47].

The other correlations between the virulence genes and clinical markers were not
statistically significant. It should be taken into consideration that one person may have both
S. mutans and S. sobrinus in the mouth, and they have been found to increase cariogenicity
when living together [48–51]. At the same time, the set of strains was not large in our study,
and the donor group was heterogeneous, which can be considered a limitation of the study.
On the other hand, scarce studies have been performed on S. sobrinus so far, and only a
few strains have been investigated in these studies; therefore, our study can be used as
reference work for further studies.

5. Conclusions

Differences exist between the virulence gene patterns of the mutans streptococci:
strains of S. mutans have more virulence genes than that of S. sobrinus, both crucial and
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virulence enhancing. The clinical significance of different virulence genes needs further
investigation. Deeper research is needed to clarify the mechanisms behind the increased
cariogenicity in cohabitation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microbiolres13040065/s1, Table S1: Details of molecular methods;
Table S2: Primers of virulence genes studied; Figure S1: A—Genotyped S. sobrinus strains. M1—SmaI
enzyme; all strains are identified by their last three digits from their HUMB code; strains with similar
gene patterns of mother and child are marked in blue (child 011-HUMB_13011, 012-HUMB_13012
and mother 105-HUMB_13105). Strain 018 is similar to latter strains, but the strain has been isolated
from another individual. Strains 038 and 039 are isolated from the same caries site and also have
the same gene pattern. The gene pattern of the previous strains are also similar to strain 104, but
it is also isolated from another individual. Among the strains were three pairs of bacterial strains
from the same individuals. Since the two pairs of strains also had a similar gene pattern, the two
replicates were removed from further analysis. Two strains of S. sobrinus with different gene patterns
were isolated from a third person, so both strains were included in the analysis. Thus, 37 human
information but 38 bacterial strains were included into the study. B—Genotyped S. mutans strains.
M2—ApaI enzyme; all strains are identified by their last three digits from their HUMB code.
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