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Abstract

In this paper, we discuss the statistical learning theasgdh on intuitionistic fuzzy rando
sample. First of all, we introduce the definition ofuitibnistic fuzzy number intuitionisti
fuzzy random variables. Secondly, we give some propertiethiefconcept. Thirdly, th
definitions of intuitionistic fuzzy empirical risk functiah intuitionistic fuzzy expected ris
functional, and intuitionistic fuzzy empirical risk minimaition principle are presented. Finally,
we prove the key theorem of intuitionistic fuzzy randemmple and obtain the rate of uniform
convergence of learning process based on the intuitiohigily random sample.

Keywords: Intuitionistic fuzzy numbers, intuitionistigzZzy random variables, intuitionistic fuzzy
empirical risk minimization principle, the key theorethe bounds of the rate of
convergence.

1 Introduction

Statistical learning theory (SLT, for short), put foradrdan 1960s and completely founded by
Vapnik et al. in 1990s. [1-3], has become an interesting goutl law that supports the
development of small samples statistical learninge BLT has become the fastest growing
discipline in machine learning in the late 1990's. Its essaras to make the learning machines
work effectively with the limited samples and then imprdkie generalization abilities of the
learning machines. By doing this, we establish a me#ulinheoretical framework for statistical
learning based on small data samples. Meanwhile, S& gae to a new category of general
learning algorithms, which we called the Support Vebtachine (SVM, for short). Currently, the
SLT and SVM constitute interesting research avenuestchme learning [4-24].

The SLT covers four main parts [4]: (1) the learning prockas rhinimizes the necessary and
sufficient conditions for the consistency of the empiridsk, which is referred to as the key
theorem of learning theory; (2) the scope of generalizafi®nthe structural risk minimization

principle; (4) the support vector machine (SVM) algoritimat implements the structure risk
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minimization principle. The key theorem of learning theorgl #re boundary of convergence of
the learning process are the two most important foundatavrfarther research on related topics,
such as the structural risk minimization and the SVM.

Although the SLT has reached a level of high maturity, thegestill some problems to be solved,
for example, the development of SLT and SVM is based obapility space and real-valued
random sample (real-valued random variables). In the redtiwthere are many non-probability
space (such as the Sugeno measure space [25], credibilisumaespace [26]) and non-real
random samples (such as fuzzy sample [27], fuzzy random sd@8§jleand fuzzy complex
random samples [29]). In order to solve these problems, the expamdidghe SLT in non-
probabilistic space and non-real random samples have becoomgent need to move forward.
Some studies have been achieved along this line [29-35]. Borpe, Ha et al. [29-31] studied
the key theorem and the generalized boundary on Sugeno measuwagiljpyobpace and quasi-
probability measure space; Tian et al. [17] investigatedctivestruction of statistical learning
theory based on fuzzy random samples and fuzzy complexomarsdamples; Lin et al. [15]
constructed fuzzy support vector machine based on randomesampl

Intuitionistic (IF, for short) set, originated by A@ssov [36-41]is an important concept used to
cope with imperfect and/or imprecise information. Itrsigtuitively straightforward extension of
Zadeh's fuzzy sets [42]: while a fuzzy set gives a degraehich an element belongs to a set, an
intuitionistic fuzzy set gives both a membership degree antbn-membership degree. The
membership and non-membership values induce an indeterminacy, wteh models the
hesitancy of deciding the degree to which an object ssisfiparticular property. As the basis for
the study of IF set theory, many operations and relatorer IF sets were introduced [36-41].
Many concepts in fuzzy set theory were also extended teet theory, such as IF relations,
intuitionistic L-fuzzy sets, IF implication, IF logicand the degree of similarity between IF sets,
etc., [43-50]. For a further study for the structure of éEssconstruction theorems of IF sets, IF
topology and the axiomatic characterization of IF deige been investigated [43,46,51,52].
Recently, IF set theory has been successfully appliecision analysis and pattern recognition
(see, e.g., [53-58]).

However, the study for the combination of IF set theory stadistical learning theory is still
blank. This paper discusses the statistical learning thieasgd on intuitionistic fuzzy random
samples by combining intuitionistic fuzzy analysis and SteVisits the major parts of the SLT
and establishes some ground material for further develdpohetassifiers such as support vector
machines. This paper is organized as follows: Sectiantr®duces some basic definitions,
elaborates on a number of properties of intuitionistic yuandom variables. In Section 3, we
prove the key theorem of learning theory based on intuitiorfigizy random samples. In the
sequel, in Section 4, the bounds of the rate of uniform conveegef learning process based on
intuitionistic fuzzy random samples are discussed. The §iedlion offers the conclusions and
brings prospects of potential future developments.

2 Preliminaries

Throughout this paper, we IéQ,A, P) be a probability measure space &nde the real numbers
field.
Definition 2.1 [28]. A fuzzy number is a fuzzy s&t: R - [0]] with the following properties:
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(1) Xis normal, i.e., there exists1R such tha¥X ( x) =1;
(2) X'is upper semi-continuous;
(3) suppX =cl{ xOR :X( %> § is compact;

(4) Xis a convex fuzzy set, i.ex,(/lx+(1—/l) y)z min( X(%, X ))) for Ox, yOR and
A0[01.

LetF (R) be the family of all fuzzy numbers @. For a fuzzy seX , if we define

{{x: X( %)= r},0< r<i1
X) =
" |suppX, r=0

then it follows thatX is a fuzzy number if and only {X), # 0 and(X)  is a closed bounded
interval for eachr 0[0,1] . Therefore, a fuzzy numbeX is completely determined by the

intervals( X )

.

LetX,Y O F(R), Or 00,4, (X), =[(X);.(X) Jand(Y), =[(¥); ()} ] Define

xxy= U AT £ () ()7 =() ]

Let us introduce a partially ordered relationFofiR) as follow: for anyX,YO F(R), we say
X <Y, iff Or0fo,q4,(X), <(Y), ie., (X) <(Y) and(X) <(Y), .

Definition 2.2 [28]. A fuzzy number valued functiod:Q — F(R)is called fuzzy random
variable if for every closed sub€bf R, the fuzzy set{’l(B) is measurable when considered
as a function fromQ to [0,1], where E'l(B) denotes the fuzzy subset & defined by
E’l(B)(w):syEf)E(w)(x) for everywQ.

Definition 2.3 [28]. A fuzzy random variablef(w):{[{;(w),gﬁ*(w)]|0<rs]} is called
integrable if for each0[0,], & (w) and &' (w) are integrable, or equivalentfé|dP<eo,

&

where]¢| = max{|¢; |,

}. In this case, the expected value ffis defined in the following

manner
E{=I{dP={U{[dP,j{f dFllo< rs]} .

Definition 2.4 [36]. LetU be a nonempty set. An intuitionistic fuzzy s&tin U is an object
having the formAz{(x,,uA(x),vA( X)| xd U} ,
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wherey, :U - [0,] andv,:U - [0,1] satisfy 0<u, +v,<1 for all xOU , and ,(x) and
V(x) are, respectively, called the degree of memberahipthe degree of non-membership of the
element xOU to A . The complement of an IF setA is denoted by

A :{<x,v(x),,uA(x)>| X0 U} )

Obviously, every fuzzy seA:{(x, A( )| xD U} :{< xu,( §)] X L} can be identified with the
IF set of the forrr{(x,,uA(x) A= 1, (X)) X0 U} and is thus an IF set.

We introduce some basic operations about IF sdtsdlass [36-41,55,56]:

Let AandB be two IF sets, then
AT B iff g, (X) < 5 (%) andv, (x) <vg(X) forall xOU ,

AOBiffBO A,
A=Biff AOBandB O A, i.e., t,(X) =y (X) andv,(x)=vg(x) for anyxOU ,

AmB:{<X~uA(X)D'uB( }va(30ve( )] X q
AUB={{ s (R (A HOvo( ] 0 §
Oa,p0[0,] a+B<1, (a,,G)A:{<x,aDyA(x),,8DVA(x)>| xO q

Definition 2.5 [41]. Let Abe an IF set andr, 0[0,] with a + B<1, the (a, B) - level cut set of
A, denoted by, is defined as follows:

A ={x0U[, (D2 av, (<4

A, :{ xO U|,uA(x) 2 a} andA,, :{ xO U|,uA(x) > a} are, respectively, called the- level cut
set and the strong - level cut set of membership generateddayAnd A? :{ xO U||/A(x) < ,8}

and A% ={x0Uv, () < B} are, respectively, referred to as tfle-level cut set and the strong

[ —level cut set of non-membership generatedfoy

Proposition 2.1 LetAOIF (U),a,30[0,4 anda + S<1. Then

A=U(a.8) & =Ul@.8) K. =Ul.8) & =U(a.5) 4

Proof. We have only to prove that the equatir | J(a,8) A holds for aniOU . The other
equations can be proved in a similar way. On om& hae have
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Ha.ne (%) = Ol 5y (X) = O(a 0 A& (%)
:(Osang(x>(aDA5(X)))D( Holan Af(x)))

= 0O a=u,(x).

Osaspp(x)

On the other hand, we have

o (0= Dy (9=0(5T(1- 4 (4))

- (OS/?stA(x)('BD(l_ A (X)))) D(VA(E/;Q('B 0(1- A ( X))))
= 0O B=v,(x).

va(x)<B<1
ThusA= U(a, B A .

Definition 2.6 [41]. The IF setAz{(x,,uA (%).va ()] xDR} is called an IF number if and only if

U, andv; are two fuzzy numbers, wharg=1-v,.
The family of all intuitionistic fuzzy numbers igdoted byF (R).

Proposition 2.2. Let ADIF(R) . Then the membership functiom, (x) and non-membership

functionv, (x) have the following properties:

(1) 4,:R - [0,]is an upper semi-continuous function aag:R - [0,1is a lower semi-
continuous function;

(2) U, (x)=0, OxO (=0, JU[ d,+e), v, (x) =1, OxO (o0, gU[ f,+o);

() 4 (x)=Lv,(x)=0, OxO[a,b;

4 ,uA(x) is strictly monotonously increasing (in, a] and strictly monotonously decreasing
on [b,d] ; v,(x)is strictly monotonously decreasing g a| and strictly monotonously

increasing or{b, f] .
Definition 2.7. Some Operations ol (]R) are defined as follows:

OA BO IF(R),

X+y=z

v 8= {2 sun(un (300 (3) 0 (0 J 0w )] % 9 4
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el g onn) e

If =0, then

0, 220 1, 220

toa(2) = {Sup{ﬂA (x)|xau}, Z=OVOA(Z):{inf{VA(xNXDU}, 2=0

Proposition 2.3.Let A, BO IF(R) . And (a, B) - level cut set oA andB are denoted by

A =[ i vivila.B)]. B = us. u5.vs.vi(a.8)]. Then we have
A+ B:{[#k*'ﬂ'é,#i*'#sv'/ +vsvi+vi(a,B J|a’ BO[0] a+p< },
({Lowts. o5 ovipvi(a@B)]laBO[0F a+B< Y if p= ¢
) ([ put.ovi vt (a.p) ]l fOl0d @+ < ) if p< C

Definition 2.8 [41]. Let A={(x, 1, (X) V()| x0 G, B={( %t ( Jws( Y| ¥ Y0 IKR).

Define A< B if u, < yzandv; <vg; A=Bif A<B andB< A; A<B if A<BandA# B.
Obviously, (IF (R )_) is a partially ordered set.

Definition 2.9. LetSO IF(R)andM OIF (R). We say thatM is the supremum of the s&ff
the following two conditions are satisfied:

(1) foranyAOl'S, A<M, i.e., M is the upper bound of the <&t
(2) for any the upper bound of S, M <N.

Similarly, we can define the infimum of the &t

Let C(R) be a family of all the nonempty compact convexsstb ofR . If A, BOK(R), then
the Hausdorff metric is defined by

d,(AB)= max{suplnfd( ) supmfc( y}

Whered(x, y) denotes the distance between two real numbansly .
Let us define a consistent Hausdorff metritFfR) to be in the following form

2202



British Journal of Mathematics & Computer Scien€&5}, 2197-2216, 2014

d(AB)= sup mafd, (A .8) d(A B)
a+p<1

=max{d (s, L) A(Va Ve)}
= max{d (44, i) (V5 v )}

WhereA:{<x,yA(x),vA(x)>| X0 U} B:{< s (3 ve( Y| K L}JD IKR).
Proposition 2.4.If AB,CO IF(R), thend(AB)+d(BQJ= d AG.
Proposition 2.5.1f A B,CO IF(R) andA= B> C, thend (A C) = d( A Bandd(AC)=d( B Q.

Definition 2.10. Let(Q,A,P) be a probability measure space. An intuitionistizzfy number
valued mappingé:Q - IF(R) , w- E(a)):{<x,y{(w)(x),v{(w)(x)>| xD]R} is called an

intuitionistic fuzzy random variable if;, and v; are two fuzzy random variables defined on

(Q,A,P), where g i w - Moy Ve i@ = Vg andvy =1-v,.

Definition 2.11 Let {(w):{<x,y‘,(w)(x),v{(w)(x)>|XDR} be the intuitionistic fuzzy random
variable defined 0(‘Q,A) . We called

F(Z):PEwSZ:F{,u‘, < Hy Vi V}
as the distribution function of , where Z :{(x s ( (%) XDR} 0 IF(R).

Definition 2.12. We call E(w)={<x,/15(w)(x),v‘,(w)(x)>|XDR} integrable if . and v§ are

integrable. In this case, we define the mathemaiqaectation of as the following manner
= [eap={(x Eu) (3. Hu) () 07

={Uy§dp,jp§dp,ju;deju;* dr(a, )J|a,,6’D[O,1] a+pB< }

WhereE(V{) =1- E(v?) .

Proposition 2.6.Let & be an intuitionistic fuzzy random variable, thbe following equalities

{ (¢ )} _E(gﬁ):E(f)ﬂ E(g”’)for0<rs1;
.E(cf) = cE, whenevec OR ;

E(&+&)= B4 EL,
hold.
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Definition 2.13. Assume thatfn:{<x,y‘,ﬂ(x),v{"(x)>|xlj U},n:1,2,--- is a collection of

intuitionistic fuzzy random variables.

(1) If the fuzzy random variables sequepgen=1,2;--andv; ,n=1,2,--are respectively

mutually independent, the§,,n=1,2,--is called a collection of mutually independent
intuitionistic fuzzy random variables.
(2 1y, ,n=12;-- andvg ,n=12,.- are two sequences of identically distributed fuzzy

random vectors, thed,,n=1,2,--is referred to as a sequence of identically distst
intuitionistic fuzzy random variables.

Definition 2.14. Let £, n=1,2;--be a sequence of intuitionistic fuzzy random vdeakand let
& be an intuitionistic fuzzy random variable (oriatuitionistic fuzzy number). Ifle >0,

lim P{edd(£, (), £(w) > &} =0,
then &, converge in probability? to ¢, denoted by

EnDD-»g‘,n—»oo,or!]i[rl{n:E.

Theorem 2.1. Suppose that, :{<x,,u<," (X) v, (x)>| x0 U} ,n=12;-- is a sequence of
intuitionistic fuzzy random variables arxﬂ:{(x,y‘,(x),v‘,(x)ﬂ xO U} is an intuitionistic fuzzy
random variable. Theré, 0% & if and only if z, O g, andv, 0L v,.

Proof. By the definition of Hausdorff metric i (R), we have

d(ﬂénwuf)Sd(fn’f)' d(Vén ’VJ)S d(£,.€), d(&, &)< ({luf uué) ((Vén V{)'

Hence,

P{d({n,{)>£}sP{ ('us /Is)"'d('/f 'Vs >£ F{‘(/’a wué } '{ C(Vs 'Vf }

The theorem is easily proven.

Theorem 2.2 (The strong law of large numbers of fuzzy randonriades) [28]. Let
{.{n,nzl, 2} be a sequence of independent and identically bligtd fuzzy random variables

with E[|&| <. Then we have

nj:l
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Theorem 2.3 (The strong law of large numbers of intuitionistizzy random variables). Let
{En,n:1,2,~~-} be a sequence of independent and identically bigad intuitionistic fuzzy

random variables witl:"t",u{1 || <o andE|||/<(1 || <. Then

=R

Zn:ijDaEfl,naoo.
=1

Proof. It follows from Theorem 2.2 and Proposition 2.3.

3 The Key Theorem of Learning Theory Based on Intiionistic
Fuzzy Random Samples

Letf,,j=1,2,-- ) be a sequence of independent and identically biged intuitionistic fuzzy

random samples whose distribution is giveiF §§) .

Definition 3.1. We callR, (a) = E[ Q(E,a)} :j Q¢.a)dF,a0A, whereAis an index set and
Q(¢,a) denotes the loss functional, the expected risktfonal on the basis of intuitionistic
fuzzy random samples. It could be considered asthdionistic fuzzy expected risk functional.

|
Definition 3.2. Rfemp(a):%z Q({j,a),aD/\ is called the intuitionistic fuzzy empirical risk
=1

functional.

Let the risk functional obtain its minimum@{¢,a,)and the empirical risk functional obtain its
minimum atQ(é&,a, ).

Definition 3.3. We minimize R, (a) to replaceR, (@) and refer to the functio®(¢,a;) as
an approximation to the functio@({,ao). We call this principle the intuitionistic fuzzy
empirical risk minimization principle.

Definition 3.4.1f the following two sequences converge in probihbio the same limit;

R (a)0 B inf R (a),

I%femp (al) I:l ||joo|:!"’ Iarét\ Rf (O’) '

then the intuitionistic fuzzy empirical risk minimgtion principle is consistent for the set of
functionsQ(&,a),a A and for the distribution functiond¥ ()

Definition 3.5. If for any nonempty subset(C),COIF(R)of this set of functions such that
A(C):{a:IQ(f,a)sz C} the convergence
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0l Rero () 0 1.5 01 R ().

atA(C)

then the intuitionistic fuzzy empirical risk miningtion principle is strictly consistent for the set
of functionQ(¢&,a) ,a OA and the distribution functiorr (£) .

Remark 3.1. We only consider the sequence of intuitionisticzigzandom variables that are
partially ordered'<" . We denote byd((RT (a), F.iemp(a))>) the Hausdorff metric when
I%femp (0') = Rf (0’) )

Theorem 3.1(The key theorem of learning theory based on iimistic fuzzy random samples).
Suppose that there exist two intuitionistic fuzzymbersW, andw,, such that for all functions in

the setQ(&,a), aOA , and for a given distributed functiofF (¢) , the inequalities

WlsJ'Q(E,a)dPs W hold true. Then the sufficient and necessary dwmrdi for the strict
consistency of IFERM principle is that the converge

P[supd(( R (@) R (@)),)> g] 0gQ C

alA

holds for anye > 0.

Proof. Necessary: By Definition 3.5 for the 9e{C) ={a: R (a)> G , we have

inf Ren,(@)000: inf R (a) (3.1)

aOA(C) ~%®  aOA(C)
We denote byA the event of the 1‘orrssupd((Rf (a) ,Remp(a))>) >e.
alA =

Suppose that holds. Then there exists OA(C)such thatzl((Rf (a*), Remp(a*)) )>£. We

can findw, < a < W, such thata” OA(a,) andd((Rf (a*), q)2)<g . Then for these\(a, )

the inequalities

d((R, (a*), inf ) R (a)lj <§andeemp(a*)z nf | Reemp(@)

alA(ay

hold true.
Therefore

o (1, 5 (@), g, Ben@))

() s, o], -2
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According to (3.1), we have

ooy B @) g Bl [ 500

Denote byT, the evend (( inf )Rf (@), inf Remp(a)j j>§ ,thenAO T, ,
k

alN(ay ati(a) >

P(A)< P[U 1;] 006 o0.
Hence

P[supd(( R (@) \Runp(@)).)> £] 0oa C (3.2)

alA

Sufficiency: We denote byA the evenl{a): d (alur)\{c) R (a) mc) aemp(a)) > g]

1
al

A= {ord(jnf Rusle). 5, R (@) 2]

A = {w: d((aiDrA]{C) R (a),aiDrA{C) Remp(a))zj > g}.
ThenA= AU A, andP(A)< P(A)+ P A).
Suppose that the evey occurs, we can finQ(E, a ) ,aDD/\(C) , such that

d(( R (a). inf R (a)) j%andafemp(a) 2 inf Rieny(@)

2

Byd(( inf Ren(a), inf R,(a)) j>£,we have

aA(C) albA(C) 2
d (( R{emp (0’* ) 'aiuq(fC) Rf (a))>) mE
Therefore

d((Rems(@). R (e )))%

In virtue of the monotonicity of probability and theang law of large numbers of intuitionistic
fuzzy random variables, we obtain

P(A)s F’{ d(( Renp(@). R(')).) >§} 0Dp3.0.

On the other hand, if the eve} takes place, we can fir@({, a” ) a D/\(C), such that

(ot ) Benle)] ] o )2 11,8 ()
Then
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d((Rf (@), Remp (@ ))2) g

Therefore
p(A)2Pld(B (). Rale)) ) >}
< P{(syg/\pd(( R (a) ,Figemp(a))z) >2}D 04 o.
Hence

P(A)< P(4)+ A 4)00.-0.

The theorem has been proved.
The samples become fuzzy random samples wher - x4, . Then we have

Corollary 3.1 [29]. Let the set of function®(&,a),aOA, satisfiesX < R(a)< Y. Then the
sufficient and necessary condition for the strict consisten&€ERM principle is the convergence

lim P[ngJApD(( R (a) Renp(@)).) > ‘9} =0
is valid.

The samples become random samples in the usual sense whamphessare not represented as
fuzzy sets, and led be the subtraction of real numbers. Then we have

Corollary 3.2 [3]. Assume that there exist the constaatand A such that for all functions in
the seQ(&,a),a 0A, and for a given distribution functidh(¢), the inequalities

asR(a)s AaOA

hold true. Then the following two statements are equivalent:

1. For the given distribution functidﬁ(f), the empirical risk minimization method is
strictly consistent on the set of functid@€é,a),a OA.

2. For the given distribution functidﬁ({), the uniform one-sided convergence of the
means to their mathematical expectation takes placer dhe set of functions

Q(é.a),aOA.

4 Bounds of the Rate of Uniform Convergence of Initionistic
Fuzzy Random Samples

In statistical learning theory, the important conclusioosu the relationship between empirical
risk and actual risk form the promotion of some boundargyTre essential to learning machine
capacity analysis and the development of new learning #igmsi An important part of the rate of
convergence of learning processes is the generalization fodmdthis section, consensus
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convergence of learning process based on intuitionistzyfeandom samples is discussed. We
consider the model where a set of intuitionistic fuzzyasueable functionsQ(.{,a),aD/\

contains a finite numbeM of eIementsQ({,ak), k=1,2;-- ,N. At first, we introduce a basic

theorem:

Theorem 4.128,29] Let & :{[(Ej )r_(éJ ):}|rD[OJ]} Jj=12--n be a sequence of fuzzy

random variables, an¥, ) (£, )+ have the limited variance and the same upper baund$hen

1
r

13 M
P{d{;;gﬂ, Efj]zg}sn—gz :

Theorem 4.2. Let ¢, :{<x,,u51 (X).ve (x)>| xO U}, j=1,2;-- ,;nbe a sequence of intuitionistic

fuzzy random variables(,yfj ); ’('uﬂ ): and (V‘,J ); ,(V‘,J ): have the limited variance and the same

upper bounddM, andM,, respectively. Then

o152 ] 00

ne

Proof. According to Theorem 4.1, we have
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Theorem 4.3.Suppose thaQ(¢&,a, ),k=1,2;-- N is a set of the function&[ Q(&,a)] exists
and satisfies the conditions of Theorem 4.2. Then theviollg inequality

a((R (@), Ru(a),) < (M)

holds with probability of at lea%t-77.

Proof.
P{l?kliﬁ d(( R (ak) ’Fﬁemp(ak))z) 7 g} = ; F{ C(( R(ak) ! %m”(a k))z) g g}
8(M,+M,)
<N IZ-I—2
LetN E—IF =7, we conclude that = M i M
Therefore

P{d((a(al),aemp(m))z) M - }

Theorem 4.4.The inequality
2N (M, +M
A((R (@) B (a)),) s 2 2N M:)
1
is satisfied with probability of at leagt- 27 .
Proof. Considering the properties dfand Theorem 4.3, we have

d((R (@) R (@)),)= d( R(@), Bw(@)).)* ¢ Bu(@). Ra))
<d((R (@), R (@), )+ d( Rump(a0). R(a0)).)
< 8N(M,+M,)

Let the following relationships hold

( ) R (@) f (M, +M,)

B:d((Renp (@), R (a0)),) a/%,

c:d((R /%{;MZ),
(

a,)),)<2
andP ) () 1-n.

Ad
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We can conclude tha must hold true in virtue oA and B true, therP(C) 2 P( AB).
Therefore

P(C)2 P(AB=1- H( AB')>1- § A)- § B>1-2.
The theorem is proved.
When the samples are the fuzzy random samplesR Iét, ) = (J’ Q(¢,a)dr(¢), M)and

Rfemp(al) = d[ﬁz Q(fk,a’), ko} ] . Then we have

Corollary 4.1[28,29]. Suppose thatQ(E,ak), k=12--,Nis a set of functions and
Q(&.a,), :[(Q(E,ak)); ,(Q(E,ak)):] If (Q(¢.4,)) » (Q(&.a,)), have the limited variance

and the same upper bourds, then

1) R (@)= Rom(a)) < /zl—',\; holds true with probability of at leagt-7 .
2M . e . .
)R (a)-R(a,)<2 /l— is satisfied with probability of at leadt 27 .
1

Let d denote the subtraction of real numbers. We usdfting’s inequalities when the samples
are the random samples in the usual sense. We have

Corollary 4.2[3]. If {Q(;‘,a'k),a'k OAk=1,2;-- ,N} is bounded, i.eA< Q(¢&,a, )< B, then

1) R(a)-R,,(a)<(B- A)J——" InN =In7 N is valid with probability of at leagt-77 .

2) R(a)- R(a,) < In N2| In7 +( B A |—— 7 holds true with probability of at leakt 277 .

5 Conclusion

This paper discusses the intuitionistic fuzzy nuratend intuitionistic fuzzy random variables.
We have proved the strong law of large numbersntfitionistic fuzzy random variables and
showed some related theorems and useful propeRigthermore, based on intuitionistic fuzzy
random samples, we propose the principle of irmistic fuzzy empirical risk minimization of
learning theory, prove the key theorem of learrimgory based on intuitionistic fuzzy random
samples, and discuss thmunds of the rate of uniform convergence of leaynprocess.
Altogether these findings have laid the foundafamfurther research in statistical learning theory
involving intuitionistic fuzzy random samples. Fet investigations might focus on such
fundamental issues as intuitionistic fuzzy strugtuisk minimization and address the applied
aspects such as support vector machines basetudiomistic fuzzy random samples, etc.
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