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Abstract
Aims/ objectives: To demontrate effectiveness of Zernike Moments for Image Classification.
Zernike moment(ZM) is an excellent region-based moment which has attracted the attentions of
many image processing researchers since its first application to image analysis. Many papers have
been published on several works done on ZM but no single paper ever give a detailed information
of how the computation of ZM is done from the time the image is captured to the computation
of ZM. This work showed how to effectively apply ZM on RGB images. We have demonstrated
the effectiveness of Zernike moment in image classification system. A neuro-genetic intelligent
system has been built with PNN classifier. The feature extracted viz ZM and Geometric features
were further subjected to GA to bring the best combinatorial features for optimal accuracy. The
algebraic structure of our novel fitness function enabled the GA to select the best results. The 10-
fold CV used enabled the whole system to be unbiased giving a classification accuracy of 90.05%.
A demonstration of affine properties of ZM are comprehensively stated and explained. In summary,
the ZM enabled the classifier to have improved accuracy of 91% as compared with Geometric
features with 89 % accuracy.

Keywords: Zernike Moment ;Feature Extraction, Geometric Properties, Image Classification
2010 Mathematics Subject Classification: 53C25; 83C05; 57N16

1 Introduction
In object/image recognition, a region can be described using scalar or set of scalars based on
the geometric properties of the object. Such scalars or set of scalars are called descriptors since
they descripe objects being recognised by artificial vision system. This work presents a novel and
detailed framework for efficient computation of Zernike Moment (ZM) - a region-based moments.
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Using ZM and geometric features, we extracted 20 features, which were later subjected to a Genetic
Algorithm (GA) for dimensionality reduction to obtain best feature set which we then used to build our
classification system.

2 Image Moments
A moment describe the layout (arrangement of image pixels). Moments are global region-based
descriptors for shape and is bit like combination of area, compactness, irregularity, and higher order
descriptors together [1]. An image moment is defined as the integration of an image function with a
region-defined polynomial basis ([2,3]). The region here is defined as the area where that image is
valid. From [4], the general moment Mpq of any image f(x, y) of order p + q, where p > 0, q > 0, is
defined as:

Mpq =

∫ ∫
D

polpq(x, y)f(x, y)dxdy (2.1)

where polpq(x, y), i = 1(0)p, j = 1(1)q are polynomials basis functions defined on domain D.

3 Zernike Moment
The Zernike moment(ZM) can be defined as a set of complete complex orthogonal basis functions
that are square integrable and that are defined over the unit disk. ZM were first applied in image
analysis for the first time in [5]. ZM are orthogonal moment based on Zernike polynomials (see Table
1). Orthogonality here means that there is no redudancy or overlapping of information between the
moments. Thus moments are uniquely quantified based on their orders ([6,7]). The distinguishing
feature of ZM is the invariance of its magnitude with respect to rotation ([8,9,10,11]). If we are given
the ordered pair (m,n) which represents the order of the Zernike polynomial and the multiplicity of its
phase angle, then the ZM, can be defined as

Vnm(ρ, θ) = Rnm(ρ)eimθ, θ ≤ 1 (3.1)

where
ρ =

√
x2 + y2, θ = arctan(

y

x
) (3.2)

are the image pixel radial vector and angle between it and x-axis respectively

Rnm(ρ) =

(n−|m|)
2∑

a=0

(−1)a (n− a)!

a!( (n+|m|)
2

− a)!( (n−|m|)
2

− a)!
ρn−2a (3.3)

The Rnm is the Zernike/radial basis polynomial, some of which are listed in Table 1. The following
conditions must be satisfied:

(a)n ∈ Z+

(b)n− |m| is even

(c)|m| ≤ n

(d)

2π∫
0

1∫
0

V ∗
nm(ρ, θ)ρdρdθ =

π

n+ 1
δnpδmq, δzv =

{
1 z = v,

0, otherwise
(3.4)

2218



British Journal of Mathematics and Computer Science 4(15), 2217-2236, 2014

Table 1: Zernike Polynomials

S/N Representation Formular
1 R0,0(r) 1

2 R1,1(r) r

3 R2,0(r) 2r2 − 1

4 R2,2(r) r2

5 R3,1(r) 3r3 − 2r

6 R3,3(r) r3

7 R4,0(r) 6r4 − 6r2 + 1

8 R4,2(r) 4r4 − 3r2

9 R4,4(r) r4

10 R5,1(r) 10r5 − 12r3 + 3r

11 R5,3(r) 5r5 − 4r3

12 R5,5(r) r5

13 R6,0(r) 20r6 − 30r4 + 12r2 − 1

14 R6,2(r) 15r6 − 20r4 + 6r2

15 R6,4(r) 6r6 − 5r4

16 R6,6(r) r6

17 R7,1(r) 35r7 − 60r5 + 30r3 − 4r

18 R7,3(r) 21r7 − 30r5 + 10r3

19 R7,5(r) 7r7 − 6r53

20 R7,7(r) r7

21 R8,0(r) 70r8 − 140r6 + 90r4 − 20r2 + 1

22 R8,2(r) 56r8 − 105r6 + 60r4 − 10r2

23 R9,1(r) 126r9 − 280r7 + 210r5 − 60r3 + 5r

24 R9,3(r) 84r9 − 168r7 − 105r5 − 20r3

25 R9,5(r) 36r9 − 56r7 + 21r5

26 R9,7(r) 9r9 − 8r7

27 R9,9(r) r9

4 Computation of Zernike Moments for Images of Plant
leaves

Given the definitions in Equations 3.1-3.4, the Zernike moment, Znm for an image {f(xi, yj) : 1 ≤
i ≤M, 1 ≤ j ≤ N}, can be calculated as Equations (4.1) or (4.2)

Znm =
n+ 1

π

∫ ∫
D

f(x, y)V ∗
nm(x, y)dxdy =

n+ 1

π

M∑
x

N∑
y

V ∗
nm(x, y)f(x, y) (4.1)

where x2 + y2 ≤ 1, and m = 0, 1, 2, 3, ...∞. The m defines the order of the Zernike Polynomial while
n which is either negative or positive, represents the multiplicity of the phase angles in ZM.

Znm =
n+ 1

π

2π∫
0

1∫
0

f(ρ, θ)Rnm(ρ)e−imθρdρdθ (4.2)
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4.1 Image Pre-Processing Steps

Input: The original RGB image of a plant leaf (1) is given and can also be represented as {f(xi, yj) :
1 ≤ i ≤ M, 1 ≤ j ≤ N}. The dimension of the RGB leaf image in figure (1) is 1200 × 1600 × 3

Figure 1: RGB, Grayscale, and Binary version of a plant’s leaf

containing different integers {Zi, i = 1(1)3 : 1 ≤ Zi ≤ 255}, representing RGB value for the leaf’s
image. After reading the RGB image from figure (1) into MATLAB workspace, then we have the
following numbers as output (represented as SET A)

SET A = [76 75 77 82 88 93 95 93 79 76 73 71 71 75 81 84 81 83 85 86 83 81 83 85 94 109
117 113 105 99 87 75 79 80 83 88 91 90 87 82 74 71 68 66 66 70 74 77 68 73 79 83 81 77 74 76
101 112 118 110 101 93 82 7281 82 87 92 93 87 78 69 68 66 64 62 62 64 67 69 63 72 82 90 89 101
100 98 ...255].
Therefore n(SET B) = 1200 * 1600 * 3 = 5760000. In order words, n represents the total numbers
used to represent the R,G,B values from the image.

STEP1: Conversion to grayscale
The RGB image is converted to grayscale using appropriate formula. A good example (which is used
here) is the rgb2gray() function from MATLAB and is expressible as equation (4.3)

Grayscale = 0.2989R+ 0.5870G+ 0.1140B (4.3)

where R, G, and B correspond to the red, green and blue colour of the pixel, respectively, while their
coefficients represent human perception of the colour. According to [12], the retina of human eyes
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has three types of cone which are L-cone (most sensitive to red light), M-cone (most sensitive to
green light), and S-cone (most sensitive to blue light). The formula in Equation 4.3 was designed to
match human brightness perception based on M-cone of human eyes retina. The simplest colour-to-
grayscale algorithm, which is the mean of the RGB channels, is given in Equation 4.4.

Grayscale =
R+G+B

3
= 0.3333R+ 0.3333G+ 0.3333B (4.4)

The size of the grayscale image in figure 1 is 1200 × 1600. Thus, the total number of pixels here
is 1200 x 1600 = 1920000. This implies the pixel values (intensity information) are spread across a
rectangular or square region. This is a monochrome image. The numerical output for this image is
{Zi}1920000i=1 : 1 ≤ Zi ≤ 255˙
Some of the pixel values are listed (as SET B) below:

SET B = [255 255 255 255 255 255 255 255 255 255 ...19 116 126 125 122 120 119 120 120
121 130 133 140 148 154 159 254 253 251 247 245 242 239 234 226 217 210 188 173 152 138 134
134 135 135 145 147 148 148.255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255...].
Similarly, n(SET B) = 1200 * 1600 = 1920000. In order words, n represents the total numbers used
to represent total number of intensities in the grayscale image of the leaf.

STEP 2: Conversion to Binary Image
This steps further simplifies the greyscale image from STEP 2 to binary image to facilitate further
computation. A good function to realize this conversion is im2bw() from MATLAB Toolbox. A thresholding
such as otsu method is commonly used in MATLAB to achieve this (after grayscale conversion).Figure
1c represents a typical output from this step. The size of the binary image is still 1200 × 1600. This
implies the total number of pixels information here is still 1200 x 1600 = 1920000. The numerical
output for this image is{Zi, i = 1 : Zi ∈ {0, 1}}. Some of the pixel values are listed (as SET C) below:

SET C = [...1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...].

The dimension of SET B = dimension of SET C but the contents of SET C are bits which are easier
for feature extractors and even computers to process.

5 Computational Algorithms and Image Normalization
PROBLEM STATEMENT: The problem here is to slide pixels information for the binary image from
rectangular or square grid over a unit disk as shown in figure 2.

5.1 Options for Computation of ZM
The ZM can be computed using
(a)Cartesian Coordinate system and
(b)Polar Coordinate System

•Cartesian Coordinate System
Given a digital image f(xi, yj), , i = 1(1)N, , j = 1(1)N . The xy-space is discretised as xi =
(2i−N − 1)/N and yj = 2j −N − 1)/N, where the double summation is performed over the (i, j)
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Figure 2: Conversion from rectangular to polar coordinates

pairs that satisfy Equation 4.1. The function represents the image being described (in this case ROI
(Fig. 1(c)) from a plant leaf image). Integer m is either positive or negative, depicting the angular
dependence or rotation, subject to the conditions (b) and (c) of Eq 3. The asterisk over the function
V means complex conjugate.

•Polar Coordinate System
The ROI (1(c) is mapped to the unit disc (using Eq 3.2) through polar coordinates, where the center
of the ROI is the origin of the unit disk. The conversion from rectangular to polar coordinates is done
through Eq (3.2). The coordinates are then described by the length of the vector from the origin of the
disk to the coordinate point ρ , and the angle from the x-axis, to the vector ρ, (the polar radius). The
polar angle is represented as θ. The pixels falling outside the unit disc are not used in the calculation.
The translation invariance is achieved by moving the centroid of the ROI to the origin of the disk and
this eventually causes m01 = m10 = 0. The centroid of the ROI is given by the coordinates (x̄, ȳ)
where

x̄ =
m10

m00
, ȳ =

m01

m00
(5.1)

The scale invariance for ZM is achieved through normalization of the image so that the total area of
the forground pixels is of predetermined value, say, β.
Translation and scaling invariance is then achieved through the formula in Eq (5.2).

g(x, y) = f
(x
a
+ x̄,

y

a
+ ȳ

)
(5.2)

where

a =

√
β

m00
(5.3)

The results of our computation showed that the numerical values of the ZM with respect to
tranlation, rotation, and scalings are invariant or of negligble differences. The numerical values for
the ZM computation are shown in Table (2). The rotations, scalings, and translation were taken over
{15, 35, 45, 60}, {0.25, 0.5, 0.75}, and {(1,2)}, repectively. The results in Table (2) represent the
ZM values computed on the first twenty set of leaves taken from the Flavia dataset [13]. Figure (3)
showed the results of ZM computation over original ROI, rotated ROI at angle 30, scaled ROI (by 0.75)
and translated ROI (at (1,2)). Similarly, Figures (6(a) and (b) showed the graph of ZM aplitude plotted
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against angles of rotattion and scaling values respectively. This two plots being parrallel to x-axis also
mean that the computation of ZM of the same order and repetition across different angles, scalings
and tranlated of the original ROI is remain constant. A re-constructed version of the original binary
image of a leaf are shown (see Figure 7) across different orders (orders 5 to 60) of ZM showing the
correctness of ZM computation in this work. The figure shows that order 60 is sufficient to reconstruct
original image.

Figure 3: Leaves of three species of plant taken from the Flavia dataset
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Figure 4: Invariance property of ZM under Translation, Rotation, and Scalings

Figure 5: Zernike Polynomials for orders 4 to 30
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Figure 6: Zernike moment amplitude plot against angles and scalings

Table 2: Invariant ZM under Translation, Rotation, and Scaling

No ZMI ZMI15D ZMI35D ZMI45D ZMI60D ZMI0.25 ZMI0.35 ZMI0.5 ZMI0.75 ZMIT12
1 0.057920 0.057914 0.057922 0.058099 0.057912 0.057702 0.056961 0.057805 0.057901 0.057397
2 0.056176 0.056170 0.056169 0.056326 0.056170 0.055964 0.055240 0.056064 0.056145 0.055734
3 0.058929 0.058922 0.058923 0.058641 0.058923 0.058707 0.057920 0.058811 0.058896 0.058430

4 0.059335 0.059329 0.059329 0.059102 0.059329 0.059111 0.058309 0.059216 0.059267 0.058829

5 0.053977 0.053973 0.053969 0.053935 0.053983 0.053773 0.052937 0.053869 0.053942 0.053797

6 0.060549 0.060541 0.060539 0.060529 0.060544 0.060320 0.059404 0.060428 0.060517 0.060487

7 0.061169 0.061161 0.061164 0.061230 0.061157 0.060938 0.060051 0.061046 0.061115 0.061008

8 0.060348 0.060340 0.060343 0.060171 0.060342 0.060120 0.059264 0.060227 0.060294 0.060128
9 0.054818 0.054812 0.054800 0.054805 0.054812 0.054611 0.053941 0.054709 0.054776 0.054433
10 0.056890 0.056880 0.056871 0.056928 0.056889 0.056675 0.055984 0.056776 0.056862 0.056493

11 0.062296 0.062289 0.062299 0.061947 0.062296 0.062061 0.061335 0.062171 0.062243 0.061848

12 0.061393 0.061386 0.061380 0.061467 0.061387 0.061162 0.060266 0.061271 0.061347 0.061276

13 0.055376 0.055370 0.055357 0.055615 0.055377 0.055168 0.054555 0.055266 0.055341 0.054934

14 0.060846 0.060840 0.060838 0.060906 0.060837 0.060617 0.059757 0.060725 0.060792 0.060655

15 0.063584 0.063578 0.063583 0.063392 0.063578 0.063344 0.062522 0.063457 0.063552 0.063196

16 0.063465 0.063456 0.063454 0.063408 0.063454 0.063226 0.062355 0.063339 0.063417 0.063186
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17 0.059430 0.059422 0.059422 0.059403 0.059422 0.059206 0.058365 0.059311 0.059399 0.059222

18 0.062665 0.062659 0.062653 0.062866 0.062650 0.062429 0.061587 0.062540 0.062626 0.062381

19 0.058247 0.058240 0.058237 0.058220 0.058237 0.058028 0.057243 0.058131 0.058240 0.057891

20 0.057960 0.057953 0.057947 0.057930 0.057963 0.057742 0.056939 0.057844 0.057953 0.057617

Figure 7: Original and Reconstructed Image

6 Geometric Features
We extracted the following geometric features from the Flavia dataset:
• Diameter: This is the longest distance between any two coordinates on the margin of a leaf.
• Physiological Length: This is the distance between the two terminals (apex and stalk point)

[14].
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• Physiological Width: This is the perpendicular distance across the physilogical length of a
leaf [13].

• Leaf Area: This is the total number of pixels that constitute an image a =
∫
x

∫
y

I(x, y)dydx.

• Aspect Ratio: This is also called eccentricity and is defined as ratio between length of the leaf
minor axis and the length of the leaf major axis [15]. w

l

• Circularity: This is a measure of similarity between a 2D shape is and a circle. It is the ratio
between area a of the leaf and the square of its perimeter p . It is given as a

p2
. [14].

• Irregularity: This is the ratio between the radius of the maximum circle encompassing the
region and the minimum circle that can be contained in the region ([16,17]) . It is given as
max(
√

(xi−x̄)2+(yi−ȳ)2)

min(
√

(xi−x̄)2+(yi−ȳ)2)

• Solidity: This is defined as the ratio between the area of the leaf and the area of its convex
hull [14]. It is given as a

AreaOfConvexHull
.

• Form Factor: This feature describes the difference between a leaf and a circle. It is represented
as 4πa

p
, where a is the leaf area and p is the perimeter of the leaf.

• Rectangularity: This describes the similarity between a leaf and a rectangle. It is represented
by lw

a
where l is the physiological length, w is the physiological width and a is the leafs area.

7 Feature Space and Feature Selection
We extracted 20 features from the Flavia dataset. The Flavia dataset comprises of 1907 colored
images of 32 species of plants [13]. These features are (a) 10 Zernike moments and (b) 10 geometric
moments. Thus the dimensionality of the dataset is 1907 × 20. High dimensional feature set could
pose a great threat to pattern or image recognition systems. In otherwords, too many features
sometimes reduce the classification accuracy of the recognition system since some of the features
may be redundant and non-informative [18]. Different combinatorial set of features should be obtained
in order to keep the best combination to achieve optimal accuracy. As such, a GA-based feature
selection (a subspace or manifold projection technique) will be used to reduce the number of features
needed by the PNN Classifier in this work. A Feature Subset Selection (FSS) is an operator Fs or a
map from an m-dimensional feature space (input space) to n-dimensional feature space (output)
given in mapping,

Fs : Rr×m 7→ Rr×n (7.1)

where m ≥ n and m,n ∈ Z+, Rr×m is any database or matrix containing the original feature set
having r instances or observation, Rr×n is the reduced feature set containing r observations in the
subset selection.

7.1 Feature Selection Using Genetic Algorithm
Genetic Algorithms (GA) can be defined as population-based and algorithmic search heuristic methods
that mimic natural evolution process of man ([19,20]). GA iteratively employ the use of one population
of chromosomes (solution candidates) to get a new population using a method of natural selection
combined with genetic functionals such as crossover and mutation (in the similitude of Charles
Darwin evolution principle of reproduction, genetic recombination, and the survival of the fittest).
In comparative terminology to human genetics, chromosomes are the bit strings, gene is the feature,
allele is the feature value, locus is the bit position, genotype is the encoded string, and phenotype
is the decoded genotype [21]. The fitnesses of the chromosomes are evaluated using a function
commonly refered to as Objective function or fitness function. In other words, the fitness function
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Figure 8: Convergence of GA Algorithm

(objective function) reports numerical values which are used in ranking the chromosomes in the
population. Thus, the five important issues in the GA are chromosome encoding, population initialization,
fitness evaluation, selection (followed by genetic operators), and criteria to stop the GA (see Figure 9).
The GA operates on binary search space as the chromosomes are bit strings. The GA manipulates
the finite binary population in similitude of human natural evolution. First, an initial population is
created randomly and evaluated using a fitness function. As regards binary chromosome used in this
work, a gene value ’1’ indicates the particular feature indexed by the position of the ’1’ is selected. If it
is ’0’, the feature is not selected for evaluation of the chromosome concerned. The chromosomes are
then ranked and based on the rankings, the top n fittest kids (Elitism of size n) are selected to survive
to the next generation. The fitness evaluation is done through Algorithm 7.1. The fitness function
used in 7.1 is shown in Equation 7.2. After the elite individuals are moved to the next generation, the
remainning individuals in the current population are used to produce the rest of the next generation
through crossover and mutation. Crossover is basically, combination of two individuals to form a
crossover kid. Mutation operator on the other hand, is a genetic pertubation of the genes in each
chromosomes through flipping of bits depending on the mutation probability. The configuration for
our GA is shown in Table 3. The surviving chromosome for GA is the string BestChromosome = {0
0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0}. The positional indices of ”1s” in this string are {3 6 8 11
12 14 17}. The corresponding features from this string are those features positions {3 6 8 11 12 14
17}. These features are Zernike moments with the following orders and repetitions {(2,0), (4,2),(5,3)
}, eccentricity, form factor, EulerNumber, and Leaf minor axis. These features are used to train the
PNN classifier used in Figure 11.

FitFunc1 =
α

Nf
+ exp

(
− 1

Nf

)
(7.2)

where
α = kNN-Based classification error and Nf = Cardinality of the selected features. The algebraic
structure of Equation 7.2 ensures the learning of the GA, error minimization and reduced number of
features selected.
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Figure 9: GA-Based Feature Selection

Algorithm 7.1. Fitness Function Evaluation
1: procedure FITFUNCTION1()
2: FeatIndex← Indices of ones from BinaryChromosome
3: NewDataSet← DataSet indexed by FeatIndex
4: NumFeat← Number of elements in FeatIndex
5: 3← NumNeighborskNN
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Table 3: Parameters Used in GA

GA Parameter Value
Population size 100
Genomelength 20
Population type bitstrings
Fitness Function kNN
Number of generations 100
Crossover Arithmetic Crossover
Crossover Probability 0.8
Mutation Uniform Mutation
Mutation Probability 0.1
Selection scheme Tournament of size 2
EliteCount 2

6: kNNError ← ClassifierKNN (DataSet,ClassInformation,NumNeighborskNN)
7: Return kNNError

8: end procedure
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8 Image Classification System
Our classification system shown in Figure 11 is based on Probabilistic Neural Network (PNN) which
is a feed forward Neural Network that uses kernel methods for density estimation in a multi-category
problem and which was introduced by D.F Specht [22]. PNN can be seen as a mathematical interpolation
[23] or a parallel implementation of Parzen type classifier model. The algorithmic description of our
classifier is shown in Algorithm 8.1. The whole system was built completely from MATLAB version
2013. The PNN spread was chosen to be in the neighborhood of 1

n
, where n = number of classes (in

this case 32). This was a proof by GA-Optimization technique which is not part of the scope of the
current paper. So the over fitting of the PNN classifier was properly checked.

Algorithm 8.1. Pseudocode for PNN Classifier
1: procedure PNNCLASSIFY(TRAININGSET, TESTSET, SPREAD)
2: Input TrainingSet and the class information.
3: Compute Ni, p(ci), where Ni = Number of training patterns in each class ci = class information,

i = 1(1)32.
4: Initialize PNN Spread as σ 7→ 0.025 and set counter = 1
5: Pick an Observation Xtest from TestSet
6: DO counter 7→ counter + 1
7: In the pattern unit, compute unconditional probability p(Xtest) and conditional probability

p(Xtest|ci) respectively as

p(Xtest) =
1

(2π)M/2σMM

M∑
i=1

exp

[
− (Xi,k −Xtest)

T (Xi,k −Xtest)

2σ2

]
(8.1)

p(Xtest|ci) =
1

(2π)M/2σMNi

Ni∑
i=1

exp

[
− (Xi,k −Xtest)

T (Xi,k −Xtest)

2σ2

]
(8.2)

where M = total number of observations in the training set, Xtest = test dataset, Xi,k= kth training
vector from plant species of class ci with i = 1(1)32, σ = PNN spread or smoothing parameter.

8: Compute posteriori probability of Xtest as

p(ci|Xtest) =
p(Xtest|ci)p(ci)

p(Xtest)

9: Compute the average of inputs from pattern units as

fi =
1

N

N∑
i=1

p(ci|Xtest) (8.3)

where Ni = Number of training patterns belonging to class ci.
10: UNTIL counter = M
11: The classification of each pattern vector is made according to the Baye’s Rule:

i = argmax {fi} (8.4)

12: end procedure
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9 Experimental Validation
We validated our experiment using 10-fold cross validation. The steps taken in the 10-fold CV are
shown in Figure 10. The feature space (dataset) X is partitioned into k subsets that are roughly of
the same size. This partitioning may be written as X =

∪k
i=1 Xi where each of the subset is called

a fold. Thus, there are k folds derived from partitioning the original set (feature space) X. The PNN
is trained on k − 1 folds while the kth fold is used for testing. The procedure is repeated such that
each subset (fold) is used only once for testing (See Figure 10). The generally recommended value
for k is 5 or 10. The k choice for this study is 10. The fascinating merit of the k-Fold CV is that
all the observations in the original dataset (feature space) are eventually used for both training and
testing. The CV method is much more accurate determinant of the classifier The accuracy of the
PNN classifier was computed as

PNNaccuracy =
trace(ConfuseMatrix)

sum(ConfuseMatrix)
(9.1)

where trace(.) is the sum of all the elements in the backward diagonal, and sum(.) is the sum of all
the entries in ConfuseMatrix. The confusion matrix is a tabular tool or matrix display of the instances
from the training set that were correctly and incorrectly predicted by the (PNN) classifier. It can
be represented as ConfuseMatrix ∈ Rc×c, a square matrix whose (backward) diagonal elements
depicts the actual classification accuracy and c is the number of classes in the dataset.

10 Results
The results of this experiment proved that Zernike moments are more effective than geometric moments.
Figures 5,1,6,7 and Table 2 show that ZM remained constant despite rotation, scaling, and translation.
Using ZM alone gave accuracy of 91%, while the geometric features gave 89%. The GA-selected
features improved the accuracy of the classifier from 91% to 92.1 % since it combined both features
together in an efficient manner. The 10-fold CV has also been useful in eradicating biasness in our
classification system. The 10-fold CV result for our system was 90.05%.

11 Conclusion
We have demonstrated the effectiveness of Zernike moment in image classification system. A neuro-
genetic intelligent system has been built with PNN classifier. The feature extracted viz ZM and
Geometric features were further subjected to GA to bring the best features for optimal accuracy. The
10-fold CV used enabled the whole system to be unbiased. A demonstration of affine properties of
ZM are comprehensivel stated and explained. Several Figures showing the TRS invariant properties
of the ZM are shown. The ZM proved more efficient than the geometric features. The numbers of
training sample available for each 32 species of plants used are shown in Table 4 with number of
incorrect classifications.
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Figure 10: Visual Representation of 10-Fold Cross Validation Experiments. The
10-Fold CV runs for 10 iteration, computing the classification accuracy for each fold
, storing the accuracies and finally computing the average of these accuracies.
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Table 4: Names of Plant Species in the Flavia Dataset
SN = Scientific Name, TS = Training Samples, WCN =
Wrong Classification Number

SN TS WCN

Phyllostachys Edulis 59 0
Aesculus Chinensis 63 1
Berberis Anhweiensis 65 2
Cercis Chinensis 72 2
Indigofera Tinctoria 73 0
Acer Palmatum 56 4
Phoebe Nanmu 62 3
Kalopanax
Septemlobus

52 0

Cinnamomum
Japonicum

59 0

Koelreuteria Paniculata 55 0
Ilex Macrocarpa Oliv 50 1
Pittosporum Tobira 63 0
Chimonanthus Praecox 52 0
Cinnamomum
Camphora

65 0

Viburnum Awabuki 60 2
Osmanthus Fragrans 56 0
Cedrus Deodara 77 0
Ginkgo Biloba 62 1
Lagerstroemia Indica 61 1
Nerium Oleander 66 1
Podocarpus
Macrophyllus

60 1

Prunus Serrulata 55 0
Ligustrum Lucidum 55 1
Tonna Sinensis 65 0
Prunus Persicapeach 54 0
Manglietia Fordiana
Oliv

52 0

Acer Buergerianum Miq 53 0
Mahonia Bealei 55 2
Magnolia Grandiflora 57 1
Populus Canadensis 64 0
Liriodendron Chinense 53 1
Citrus Reticulata 56 0 2234
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Figure 11: Image Classification Using ZM and Geometric Features
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