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A Neuro-Genetic Technique for Pruning and Optimization
of ANN Weights
Sakshi Sakshia and Ravi Kumara

aElectronics & Communication Engineering Department, Thapar University, Patiala, India

ABSTRACT
A novel technique for optimization of artificial neural network
(ANN) weights which combines pruning and Genetic Algorithm
(GA) has been proposed. The technique first defines “relevance”
of initialized weights in a statistical sense by introducing a
coefficient of dominance for each weight and subsequently
employing the concept of complexity penalty. Based upon com-
plexity penalty for each weight, candidate solutions are initia-
lized to participate in the Genetic optimization. The GA stage
employs mean square error as the fitness function which is
evaluated once for all candidate solutions by running the for-
ward pass of backpropagation. Subsequent reproduction cycles
generate fitter individuals and the GA is terminated after a small
number of cycles. It has been observed that ANNs trained with
GA optimized weights exhibit higher convergence, lower execu-
tion time, and higher success rate in the test phase.
Furthermore, the proposed technique yields substantial reduc-
tion in computational resources.

Introduction

Artificial Neural Networks (ANNs) and genetic algorithms (GA) are popular
paradigms for learning and optimization, each with their own strengths and
weaknesses. ANNs trained with backpropagation (BP) algorithm are highly
popular due to their low complexity and ease of implementation. However,
they are prone to getting stuck in local minima thereby yielding suboptimal
solutions. GA, on the other hand, is good at global search and exhibits a
robust performance. Applications of GA have been reported for defense in
biological and chemical warfare (Haupt and Haupt 2011), design of combi-
national logic (Louis 2005), and wireless ad-hoc networks (Karthikeyan,
Baskar, and Alphones 2012). Recent advancements in GA is based on a
three-dimensional cellular GAs proposed by Asmaa, Erdogan, and Arslan
(2013) that provides better performance in terms of efficiency, and efficacy,
for most of the problems. However, unguided mutation and variations in a
host of parameters leads to extremely slow convergence of GA. With an aim
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to obtain complementary advantages from both GA and ANN, many
researchers have reported a variety of neuro genetic techniques with varying
success rates (Christiansen et al. 2012; Karlra and Prakash 2003; Srivastava,
Shukla, and Srivastava 1998).

Design of ANN using GA has been under consideration for quite some time
(Hunter and Chiu 2000). Kwon andMoon (2007) have reported a neuro-genetic
stock forecasting system where a recurrent neural network is trained for pre-
dicting the performance of a particular stock using a large pool of previous data.
Similarly, Ramasubramanian and Kannan (2006) have described a database
intrusion prediction system based upon a hybrid neuro-genetic network. This
hybrid approach to weight optimization is particularly useful when the ANN is
trained with BP algorithm. In design of a hybrid neuro-genetic system, there is a
scope to rope-in both improved GA and improved ANN training methodolo-
gies. Some authors have described a model which takes into account interde-
pendence between individuals taking part in the reproduction process, thus
building a more rational strategy for selection and fitness evaluation (Bull
2001). Hu et al. (2015) have proposed a GA-optimized ANN to be used in
ultrasonic flow meters. The GA is utilized to determine ANN architecture based
on its efficient parallel advantage in global search. Using this approach, the initial
weights and biases are also optimized, whichmakes the network capable to avoid
getting stuck in local minima. A novel approach to improve the classification
performance of a polynomial neural network has been proposed by Lin, Prasad,
and Saxena (2015). Libelli, Marsili, and Alba (2000) described an adaptive
mutation technique to enhance the mutation probability of less fit individuals.
A novel “wavelet mutation operator” has been proposed by Ling and Leung
(2007a; and 2007b). Kumar, Gospodaric, and Bauer (2007) report an improved
GA based on biological evolution. The efficacy of GA as a pre-processing tool
has been demonstrated on feature subset selection in Tan et al. (2008). An ANN
has been trained for bearing fault detection using input features selected by GA
(Samanta, Al-Balushi, and Al-Araimi 2006). However, the task of optimizing
weights of an ANN is a challenging one since the GA and ANN can no longer be
treated as separate stages of a system. In this work, we report a neuro-genetic
classifier trained with BP algorithm, in which an optimum set of weights is
chosen using a novel GA-based technique.

BP works well on simple training problems but its performance falls off rapidly
as the dimension or complexity (high correlation in the input samples) of input
data increases. The problem of training a network using BP has two aspects. First
is the task of finding the optimal number of hidden layer neurons. Second, the
determination of weights and biases of the ANN. Specifying the weights of a
neural net is mostly viewed as an optimization process, where an error goal needs
to be achieved. However, optimization using BP imposes a great risk of getting
stuck to a local minimum, since the error surface is high dimensional. GAs do not
encounter such kind of performance issue as they keep the current best solution as
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the part of their population while they search for further better solutions. It is also
clear that all the weights do not contribute equally to pattern classification. Thus,
there are some set of weights which have less or no impact on the pattern
separability. These types of weights are redundant and are referred to as excess
weights (Haykin 2007). Therefore, the first issue addressed in this paper is
elimination of redundant weights. This aspect has been addressed by many
researchers in a plentitude of ways. A pruning strategy for Extreme Learning
Machine has been proposed using the Successive Projections Algorithm (SPA) as
an approach to automatically find the number of hidden nodes (Mesquita et al.
2015). Another pruning strategy has been proposed to find a compact structure of
feedforward neural networks with high generalization ability in classification
problems (Tong and Tanaka 2015). One of the novel aspects of this work is to
amalgamate weight pruning and GA. This aspect has been discussed in the
implementation section. A brief overview of the relevant prior work on GA-
based weight pruning is now being presented in the next section.

Related Work

In the early stages of development of ANN training paradigms, Reed (1993)
presented a comprehensive review of network pruning algorithms. One of the
earliest reported uses of GA for weight pruning can be traced in (Aleksander and
Taylor 1992) which employed pruning of a trained network prior to presenting
the test samples for improved generalization. This genetically pruned network
was used for face recognition and sonar signal classification. Recently, Sabo and
Yu (2008) have proposed a simple pruning algorithm based upon cross valida-
tion and sensitivity analysis in order to get an optimal neural network topology
which will result into a significantly lower computational complexity. Augasta
and Kathirvalavakumar (2015) have conducted a survey of existing pruning
techniques that optimize the architecture of neural networks. They have also
evaluated the effectiveness of various pruning techniques based on sensitivity
analysis, mutual information, and significance on four real data sets. Apart from
network and weight pruning approaches, researchers are also opting for statis-
tical methods to prune the input features for simpler network architecture since
the number of input layer neurons is equal to the input data dimension.
Kingston, Maier, and Lambert (2004) have employed statistical input pruning
for environmental modeling. Christiansen et al. (2012) have applied optimal
brain surgeon (OBS) algorithm for automatically generating a topologically
optimized ANN based upon the statistical properties of the input data set.
GA-based search has been employed by Mantzaris, Anastassopoulos, and
Adamopoulos (2011) to eliminate excess weights from an ANN used to estimate
Urinary Tract Infection from medical examination data. Workers have also
reported novel evolutionary algorithms for pruning ANNs constructed for
prediction applications (Yang and Chen 2012). However, an in-depth study of
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the prior work reveals the fact that researchers have by and large ignored the role
of mutation operator in the GA flow in selecting the fittest weights for an ANN.
Furthermore, the authors felt a need to incorporate some information about the
statistical properties of individual weights converging on a particular neuron in
the GA flow. The novel aspect of this work is the introduction of a mutation
operator which performs thresholding of individual weights based upon their
contribution to overall weight variance. Though the problem of weight optimi-
zation using GA has been attempted with varying degrees of success by previous
researchers, it is for the first time to the best of our knowledge that the concept of
weight pruning has been incorporated into the conventional GA, so that the
weights having smaller effect on the network as compared to other weights be
declared as excess weights and eventually be removed. It has also been proposed
that weight pruning strategy will govern the population initialization operation
of GA which will be described in section “Problem Formulation”.

Need of Improvement

Recently, Medeiros and Barreto (2013) have proposed a novel weight pruning
methodology for (Multilayer Perceptron) MLP classifiers. The proposed
method is based on the observation that relevant synaptic weights tend to
generate higher correlations between error signals associated with the neu-
rons of a given layer and the error signals propagated back to the previous
layer, whereas non-relevant (i.e. prunable) weights tend to generate smaller
correlations. This observation has been termed as MAXCORE principle by
the authors and has been introduced as the guiding principle behind the
Cross Correlation Analysis of Back Propagated Errors (CAPE) methodology.
CAPE has emerged as one of the most significant weight pruning strategy
reported recently. In terms of computational complexity, CAPE has out-
performed OBS and its variants.

However, this paper contests the claim of generality of the MAXCORE
principle (Medeiros and Barreto 2013). Let us analyze a hypothetical ANN
trained with BP algorithm whose backward pass is depicted in Figure 1.

Let the errors generated by M output neurons of the network presented
with N training examples be represented in the form of an N �M matrix.

Eo ¼

eo1 1ð Þ eo2 1ð Þ eo3 1ð Þ : : : eoM 1ð Þ
eo1 2ð Þ eo2 2ð Þ eo3 2ð Þ : : : eoM 2ð Þ
eo1 3ð Þ eo2 3ð Þ eo3 3ð Þ : : : eoM 3ð Þ
: : : : : : :
: : : : : : :
: : : : : : :

eo1 Nð Þ eo2 Nð Þ eo3ðNÞ : : : eoM Nð Þ

2
666666664

3
777777775

(1)
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where each row of Eo corresponds to the error generated by the output
neurons for a given training pattern.

Similarly, backpropagated errors associated with Qþ 1 hidden neurons of
the same network can be represented in the form of an N � Qþ 1ð Þ matrix.

Eh ¼

eh0 1ð Þ
eh0 2ð Þ
eh0 3ð Þ
:
:
:

eh0 Nð Þ

eh1 1ð Þ
eh1 2ð Þ
eh1 3ð Þ
:
:
:

eh1 Nð Þ

eh2 1ð Þ
eh2 2ð Þ
eh2 3ð Þ
:
:
:

eh2 Nð Þ

:
:
:
:
:
:
:

:
:
:
:
:
:
:

:
:
:
:
:
:
:

ehM 1ð Þ
ehM 2ð Þ
ehM 3ð Þ

:
:
:

ehM Nð Þ

2
666666664

3
777777775

(2)

The correlation matrix can be evaluated as:

Coh k; i½ � ¼
XN
t¼1

eok tð Þehi tð Þ (3)

where Coh k; i½ � is the entry in the correlation matrix corresponding to the
scalar product of the kth column of Eo with the ith column of Eh.

Let us examine Coh 3; 2½ � and Coh 2; 2½ � for the network shown in Figure 1.
Let us assume Coh 3; 2½ �>Coh 2; 1½ �. According to the MAXCORE principle,

w32 is more relevant than w21 if
PN
t¼1

eo3 tð Þeh2 tð Þ> PN
t¼1

eo2 tð Þeh1 tð Þ,
where

δ1(t)

δ2(t)

δ3(t)

w21(t)

w22(t)

w23(t)

w24(t)

e1(t)

e4(t)

e3(t)

e2(t)

φ'1(v1(t))

φ'2(v2(t))

φ'3(v3(t))

φ'4(v4(t))

Figure 1. Backward pass of backpropagation.
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eh2 tð Þ ¼
X4
k¼1

δk tð Þwk2 tð Þ (4)

and

eh1 tð Þ ¼
X4
k¼1

δk tð Þwk1 tð Þ (5)

As evident from above equations, higher or lower values of ehi tð Þ depend not
only upon wk1 but also upon local gradients δk of the output neurons
connected to the hidden layer neuron i. Since, local gradient of the output
neuron k is given by:

δk tð Þ ¼ eok tð Þφ0 vk tð Þð Þ (6)

where vk tð Þ is the induced local field and φ0 is the differential of the activa-
tion function. Most of the time, a sigmoidal activation function is chosen
which maps the synaptic weights wki tð Þ nonlinearly in the form of induced
local field passed through φ0 :ð Þ. Since, the contribution of ehi tð Þ in the
magnitude of correlation coefficient Coh k; i½ � depends upon δk tð Þ, which in
turn are nonlinear functions of synaptic weights, wki tð Þ, a high value of
Coh k; i½ � neither guarantees a high magnitude nor a high degree of relevance
for wki tð Þ: Furthermore, it is always better to define “relevance” of a synaptic
weight either in a statistical sense or with respect to a performance metric.
The standard practice of complexity regularization defines a risk function as:

R wð Þ ¼ �s wð Þ þ λ�c wð Þ (7)

where �s wð Þ is the standard performance measure (e.g. MSE), and �c wð Þ is the
complexity penalty term which depends upon the network model alone. As
regularization parameter, λ represents the relative importance of the complexity
penalty term with respect to the MSE. Assuming λ to have a moderate value
somewhere between zero and infinity, the relative importance of complexity
penalty term with respect to MSE is also moderate. Therefore, we can define
“relevance” of individual synaptic weights both in terms of MSE and in terms of
complexity penalty. However, to compute the relevance of weights in terms of
�s wð Þ, we need to run BP algorithm first (at least forward pass). For the networks
which have not yet undergone training, it would be better to first compute �c wð Þ
in terms of complexity penalty. In the light of the above discussion, novel
contributions of this work can be enlisted as follows:

● This work seeks to define relevance of the weights in a statistical sense.
● A coefficient of dominance has been proposed to identify nodes carrying
higher information content and to determine complexity penalty for
each weight.
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● Use of GA to optimize fittest weights in terms of MSE.
● New schemes for initialization of population and mutation have been
proposed.

Problem Formulation

The Proposed Methodology

The proposed methodology has been implemented in a sequence of several
steps as illustrated in Figure 2. As an illustration of the first stage of the
methodology, let us consider an ANN with single hidden layer and three
target classes subjected to IRIS data as input. The number of hidden layer
neurons has been chosen to be three. As shown in Figure 3, there are a total
of 27 connections including 20 weights and 7 biases. All the connections have
been initialized randomly. The connections would be evaluated as a part of
weight pruning/modification scheme which is described in detail with analy-
tical justifications in the next section. All the 27 connections have been
encoded in the form of a chromosome string shown in Figure 4. Many
such chromosomes have been generated to initialize the mating pool. Each
weight has been encoded using 10 bits. With this step, GA optimization of
ANN weights commences. Subsequent steps follow the standard GA flow
with crossover, mutation, and ranking of individuals which ultimately yields

Choose an optimum Neural 
network architecture

Random initialization of 
weights

Encoding of weights
Ranking of hidden layer 
weights according to 
fitness criterion

Crossover between highest 
fittest individual

If the fitness of 
mutated 

chromosomes is 
more than the other 

chromosomes

No

Yes

Replace the least 
fit chromosomes

Discard 
Chromosomes

Evaluate complexity penalty
for each hidden layer weight

Mutation of 3rd and 4th 
fittest chromosomes 
according to threshold

Figure 2. The proposed methodology.
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the “fittest” set of weights. The details of all individual stages of the metho-
dology are described in the implementation section.

Data Description

The simulations have been carried out on several benchmark data sets
obtained from UCI machine learning repository. All the data sets chosen
for this study represent pattern classification problems with varying number
of samples, input dimensions, and target classes details of which is shown in
Table 1. During the course of simulation, the number of training and test
samples was kept equal in most of the cases except in the case of letter
recognition where the results varied significantly when the number of test
samples was changed.

i4

i3

i2

i1

h1

h2

h3

O1

O2

BIAS BIAS

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

I

N

P

U

T

S

I

R

I

S

D

A

T

A

N

E

T

W

O

R

K

O

U

T

P

U

T

S

h3

IRIS OPTIMUM ARCHITECTURE (4-3-3)

Figure 3. ANN architecture for IRIS data.

w
i 1

 h
1

w
i 2

 h
1

w
i 3

 h
1

w
i 4

 h
1

B
1 
h 1

w
i 1

 h
2

w
i 2

 h
2

w
i 3

 h
2

w
i 4

 h
2

B
2 
h 2

w
i 1

 h
3

w
i 2

 h
3

w
i 3

 h
3

w
i 4

 h
3

B
3 
h 3

w
h 1

 o
1

w
h 2

 o
1

w
h 3

 o
1

B
1

o 1

w
h 1

 o
2

w
h 2

 o
2

w
h 3

 o
2

B
2 
o 2

w
h 1

 o
3

w
h 2

o 3

w
h 3

o 3

B
3
o 3

Figure 4. Weights and biases of Figure 2 represented as a chromosome.

8 S. SAKSHI AND R. KUMAR



Implementation

The Weight Pruning Scheme

The objective of pruning is to downsize the model to the level of least
complexity that still provides the best generalization. In general, the
capability of feedforward neural networks for data fitting increases as
the number of connection weights increase, because an increase in the
number of free parameters enables the network to finely capture subtle
features. However, a model with too many parameters can pick up non-
essential information in the sample data and cause the problem of over-
fitting. This leads to poor generalization. Therefore, application of
appropriate pruning techniques can contribute to improvement in the
generalization ability. Furthermore, a reduction in the network compo-
nents is advantageous for hardware implementation of large-sized ANNs.
The proposed idea seeks to incorporate weight pruning scheme into the
conventional GA flow. The weights which are insensitive to the error
changes can be discarded after each step of training. The pruned network
is of smaller size and is likely to give higher accuracy than before its
trimming. ANN use network pruning strategies which can be classified
into two categories viz. weight decay and weight elimination. In both the
strategies, a complexity penalty term is defined which appropriately quan-
tifies the degree of redundancy in a weight. In weight decay procedure, if
the initial weight vector is w, the complexity penalty term is defined as the
squared norm of the weight vector w (i.e. all the free parameters) in the
network and is expressed as:

�c wð Þ ¼ w2 ¼
X

i2ζ total
wi

2 (8)

where the set ζ total refers to all the synaptic weights in the network.
However, in this scheme, some weights in the network have relatively
larger values than others. This results in making smaller weights redun-
dant since they have little influence on the training outcome. To over-
come this limitation, the complexity penalty term is now redefined as
follows:

Table 1. Data description.
Data set No. of input dimension No. of training samples No. of test samples No. of classes

IRIS 04 75 75 03
Breast cancer 09 350 349 02
Solar flare 09 500 500 03
Letter rec.1 16 10000 10000 20
Letter rec.2 16 14000 6000 20
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�c wð Þ ¼
X

i2ζ total

wi
wo

� �2
1þ wi

wo

� �2
0
B@

1
CA (9)

where wo is the preassigned weight change parameter defined according to
the problem and wi refers to the ith weight in the network. It is proposed
here that the optimality of a weight vector would be defined in the statistical
sense. Higher the complexity penalty for a particular weight, more important
is the weight for the learning process. If the weights converging on a
particular hidden neuron have variance more than the variance of total
weights in the network, then that hidden node will contribute more to the
network. The real challenge in this case lies in selection of an appropriate wo.
As can be inferred from Figure 5, the choice of parameter wo is crucial aspect
of network pruning.

In this study, a new pruning method has been proposed based on the
weight variation information during the backpropagation training. Every
node in the hidden layer is evaluated to determine the effective variance of
weights. In order to compute the complexity penalty term as defined in
Equation (9) for each weight, a coefficient of dominance called Dsi is calcu-
lated for each neuron and is expressed as:

Dsi ¼ Vtotal

Vsi
(10)

where Dsi corresponds to wo of Equations. (9) and (10), VSi is the variance of
the weights of ith hidden node, and Vtotal is the effective variance of all the
weights in the hidden layer.

Figure 5. Variation of complexity penalty term with respect to wi=wo (Haykin 2007).
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In the similar way, all the remaining hidden layer neurons are evaluated to
find the coefficient of dominance and a set D is defined as:

D ¼ DS1 ; DS2 ;DS3 . . . . . . . . . DSif g (11)

The complexity penalty for each weight in the network is defined as:

�wi ¼ wi=DSið Þ2
1þ wi=DSið Þ2 (12)

The variance dependent weight pruning technique described above helps to
increase the information content of the weight set convergent on a less
dominant neuron. This can be explained in terms of a metric called Fisher
information which is defined as a way of measuring the amount of informa-
tion that an observable random variable X carries about an unknown para-
meter θ of a distribution that models X and can be stated as:

Γ θð Þ ¼ E½ @ ln f X; θð Þð Þ
@θ

� �2

jθ� (13)

where log is the natural logarithm of the probability function.
The input to the hidden node is given by:

yj ¼ wj1x1 þ wj2x2 þ . . .wjix þ bi (14)

where xi is the ith input and wji is the weight from ith input to jth hidden
node. Also, the weights leading to a hidden node are regarded as zero mean
random variables. Therefore, the mean of the input to the hidden node is
given by:

E yj
� � ¼ E

Xn
i¼0

wjixi

( )
¼ 0 (15)

Since, the weights are randomly chosen, they can be considered independent
of the input feature. Thus, Equation (9) can be written as:

E yj
� � ¼

Xn
i¼0

E wji
� �

E xif g ¼ 0 (16)

The variance of y is given by:

σ2y ¼ E yj
� 	2n o

� E2 yj
� 	� �

(17)

Using Equation (15) in (17), we get,

σ2y ¼ E
Xn
i¼0

wjixi

 !2( )
(18)

APPLIED ARTIFICIAL INTELLIGENCE 11



Since the different weights and input feature to a hidden node are indepen-
dent, Equation (18) becomes

σ2y ¼
Xn
i¼0

E wji
� 	2n o

E ðxiÞ2
� �

"j (19)

If the training samples are normalized to be in the interval [0:1], then

E xið Þ2� � ¼ E2 xið Þf g þ σ2xðxiÞ (20)

where σ2xðxiÞ is variance of random variable xi. For a uniform random
variable lying within [0:1],

E xið Þ2� � ¼ 1
3

(21)

Also, input to hidden layer weight is also regarded as a random variable with
zero mean, uniformly distributed in the interval [–a, a]. Hence, the standard
deviation of the input to a hidden layer weight is:

E ji
� 	2n o

¼ a2

3
(22)

So, using Equations (13), (15), and (16))

σ2y ¼
Na2

9
(23)

where N denotes the number of weights converging on a particular node.
Equations (19) and (23) justify that input to a hidden layer neuron is also a

random variable with zero mean and Na2
9 variance. The probability distribu-

tion function of the input to hidden layer node is given as:

f μ; σð Þ ¼ 1ffiffiffiffiffiffiffiffi
2πσ

p e
� y�μð Þ2

2σ2 (24)

where y corresponds to induced local field of jth hidden layer neuron and
can also be defined as:

yj ¼
Xn
i¼0

wjixi (25)

where xi is the data input and wji is the weight connecting from ith input
node to jth hidden node .

According to Equations (23) and (24), the information content about the
weight set in the hidden layer neuron which is the above-defined random
variable can also be calculated as follows:
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lnf ¼ ln
1ffiffiffiffiffiffiffiffi
2πσ

p e
� yjð Þ2

2σ2

 !
¼ ln

1ffiffiffiffiffiffiffiffi
2πσ

p � y2j
2σ2

(26)

@ lnf
@w

� �2

¼ y2j x
2
i

σ4
(27)

Using Equation (13), the fisher information is given as:

Γ θð Þ ¼ E
y2j x

2
i

σ4

" #
¼ 1

σ4
E y2j
h i

E x2i
� �

(28)

Using Equations (12), (15), and (17), we get:

Γ θð Þ ¼ Na2

27σ4
(29)

Let the variance term be replaced by the coefficient of dominance (which is a
simple ratio of the variances) and consider two different hidden nodes with
Vs1 and Vs2 as respective variances of weights convergent on them. Then, the
fisher information for the two nodes is given by:

Γ1 θð Þ ¼ Na2

27
Vs1

Vtotal

� �4

and Γ2 θð Þ ¼ Na2

27
Vs2

Vtotal

� �4

(30)

If Vs1 >Vs2; Fisher information of node 1 will be more compared to that of
node 2. This implies that a lower coefficient of dominance which makes the
complexity penalty higher (and the weight more relevant) also enhances the
information content of the convergent connections at a node.

The inclusion of variance in the complexity penalty term and the particular
choice of coefficient of dominance are justified by the above explanation.

Genetic Optimization of Weights

Working of Genetic Algorithm
GAs are paradigms for optimization based loosely on several features of
biological evolution. Initially, a pool of solutions (population) represented
by chromosomes is created. Then, an encoding scheme is used to represent
each individual. An evaluation/fitness function is required that provides
ranking to each chromosome. The population undergoes reproduction until
stopping criteria are met (Sivanandam and Deepa 2007).

The basic GA shown in the form of Figure 6 is explained as follows:

(1) Generate random population of chromosomes, that is, suitable solu-
tions for the problem.

(2) Fitness of each chromosome in the population is evaluated.
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(3) The population undergoes reproduction followed by a number of
iterations of the following three steps:
● Parents are selected to reproduce according to their fitness.
● Different operators are applied to the parents to form new offspring.
● Place new offspring in the new population.

(4) Use new generated population for a further run of the algorithm.
(5) If the end criterion is satisfied, return the best solution to the current

population.
(6) Go to step 2.

Why Genetic Algorithm?
The proposed scheme not only prunes the weights according to the fitness
function, it modifies them in accordance with the complexity penalty. The
complexity penalty-based modification function yields an initial population
of candidates which constitutes the solution space. GA is now used to
evaluate the candidate’s fitness through crossover and mutation in successive
generations. Actual pruning is accomplished only after the algorithms zeros
in on the least fit weights. Weight pruning completely alters the architecture
of an ANN. The altered architecture may be better than the original one in
terms of convergence and error performance. However, we have no means of
judging its optimality before the network is actually trained. From the point
of view of custom hardware implementation, repeated alterations in the
architecture of a network are highly undesirable and it leads to gross wastage
of resources. The use of GA in the subsequent stage ensures efficient search
of the solution space to identify one or more “good solutions” though not
necessarily the best one. However, through successive generation cycles, it is
not hard to identify the least fit (prunable) weight.

The Strategy
The strategy is depicted in the form of a flow chart in Figure 7. As the first
step initialization of population is done. Unlike the conventional method of

Start
Generate initial 
population

evaluate fitness of 
all individual

Are optimization 
criterion met.?

Out

best 
Individual

Selection

Crossover

Mutation

Yes

No

Generate a new 
population

Figure 6. The Genetic Algorithm.
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Fitness = (Forward Pass)
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Training Data
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chromosome

Is offspring fitness 
more than pop.
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No

No

Yes
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Figure 7. Genetic optimization of ANN weights.
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random initialization we adopt a methodology which modifies the initial
weights according to the complexity penalty to generate the mating pool in a
controlled manner as described below.

The initialized population of size K is given by a set

P ¼ p�ji
n o

j ¼ 1; 2; 3; ::K (31)

Also,

p�ji ¼ A � wi (32)

where A is a 1� K vector of multipliers
if �wi > 0:5, then A lies in the range [0.9, 1.3].
If 0:2< �wi � 0:5, then A is a 1� K vector of random multipliers.
If 0< �wi � 0:2, then A lies in the range [0.2, 0.5].
If �wi < 0:2, then wi is pruned.
Multiplication of an initial weight wiby A generates K (in our case, K = 20)

different weights which constitute the population after bit string encoding. It
should be noted that weights with a higher complexity penalty (more rele-
vance) generate a population with “high” complexity penalties (due to range
of A). Similarly, non-relevant weights generate a population with “low”
complexity penalties. By initializing the population in this manner, we are
restricting the extremities of the search space to a specified range, thereby
reducing the chances of the algorithm running a futile search and getting
stuck in local minima. However, the necessity of randomness in initialization
cannot be completely overlooked since it is essential to include largest
possible number of potential solutions in the search space. To ensure this,
we have generated random population from the weights having “moderate”
complexity penalty.

The fitness function is defined as 1
MSE

where; MSE ¼ 1
2

XN
p¼1

tp � ypð Þ2 (33)

Here, t and y represent the target and calculated outputs, respectively, and p
signifies the number of training patterns. Fitness of each chromosome is
evaluated by running the forward pass of BP algorithm. The chromosomes
are ordered according to their fitness value using rank selection.
Reproduction of new offspring is done by selecting fittest parents from the
mating pool and subjecting them to two point restricted crossover.

Each generation cycle witnesses addition of the offspring to the mating
pool if its fitness is more than that of one of its parents. In this case, the
least fit chromosome is discarded and the offspring is ranked according to
its fitness value. However, the offspring is discarded if it is not fitter than
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any of its parents. In both cases, third and fourth fittest chromosomes are
mutated with a small mutation probability (0.06–0.09). If the mutated
chromosomes are fitter than the original one, they are added to the
mating pool and ranked accordingly and two least fit chromosomes are
discarded. This heuristic step of mutating third and fourth rank chromo-
somes is like giving a “second chance” to some athlete taking part in
Olympics and missing the bronze medal by a whisker. If mutation with a
small probability increases the fitness then both original and mutated
weights should be part of the mating pool in the next generation cycle.
After 25 generation cycles, the average increase in fitness of weights was
no longer significant employing the proposed scheme. The fitness values
of the weights obtained using the proposed technique were compared with
that obtained using conventional GA (random initialization) and it was
verified that partially random initialization and mutation of third and
fourth fitted chromosomes yielded fitter individuals in significantly less
number of generation cycles.

Training the Pruned ANN

After 25 generation cycles of the GA, the pruned ANN is reinitialized with
the stored weights. A single hidden layer neural network was trained
using two different versions of BP algorithm for classifying five bench-
mark data sets. The number of hidden layer neurons was optimized
experimentally and different architectures were found optimum for dif-
ferent data set. The network was first trained using traingdm function of
Matlab. traingdm was chosen as the training function because it gives the
highest degree of freedom for the investigator to fine tune the training
parameters since both learning rate and momentum constant can be
varied experimentally using this function. The network was also trained
with Levenberg–Marquardt algorithm using trainlm function of
MATLAB. Since, Levenberg–Marquardt algorithm is known to outper-
form simple gradient descent and other conjugate gradient methods in a
plentitude of problems, it was necessary to examine whether the proposed
technique is able to improve the performance of Levenberg–Marquardt
algorithm. A 10-fold cross validation scheme was used to prevent over
fitting. The training phase performance of the network in was evaluated
with respect to four parameters viz. convergence success rate (% of time
the simulation reaches error goal), mean epochs, execution time, and
computational complexity. However, the generalization performance is
the ultimate performance metric which gives the classification success
rate. All the parameters have been evaluated both for unpruned and
pruned networks.
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Results and Discussions

Convergence and Generalization

The training phase performances of the conventional ANN and GA-
optimized ANN trained with traingdm are given in Tables 2 & 3, respec-
tively. In Table 2, results are shown for the networks not subjected to GA-
based weight optimization. It can be observed that the pruned architec-
tures perform marginally better than their unpruned counterparts for all
the three training parameters. A comparison of Tables 2 and 3 reveals
significant improvements in the performance of the ANN when the
weights are optimized using GA. Furthermore, better performance of the
pruned architectures can’t be ignored in this case also. The networks were
then trained till convergence and subsequently presented with the test
samples. Figures 8 and 9 depict the error surface obtained using conven-
tional BP and proposed algorithm, respectively. As evident from the plots,
the error surface obtained using the proposed technique spans a larger
area of the plot with multiple error minima. This indicates more consis-
tent performance of the network initialized with GA-determined weights
at almost all values of learning rate and momentum constant. The effect
of the proposed techniques on Levenberg–Marquardt algorithm has been
investigated. The pruned networks have again performed marginally but
consistently better with trainlm as shown in Table 4. Although trainlm by
default exhibits higher converge success and a lower epoch mean, GA-
optimized weights have improved these parameters as can be observed in
Table 5.

The reflection of better convergence in the training phase on the general-
ization performance was as expected and the results are shown in Tables 6
and 7 for traingdm and in Tables 8 and 9 for trainlm, respectively. It is
encouraging to note that magnitude of improvement in the performance
matrices is more significant in complicated architectures e.g. “letter recogni-
tion-1 and 2”. Intuitively, more complex architectures have larger number of
weights and hence more candidates in the mating pool leading to the fittest
possible selection.

Table 2. Training phase performance of conventional ANN (traingdm).

Data set

Convergence success (%) Epoch mean Execution time (sec)

Unpruned
network

Pruned
network

Unpruned
network

Pruned
network

Unpruned
network

Pruned
network

IRIS 100 100 402.5 400 208 200
Breast cancer 90.5 94.5 1180 1000 410 420
Solar flare 90.2 92.5 1260 1130 542 500
Letter rec.1 75.5 78.5 5805.5 4972.5 360 1200
Letter rec.2 76.6 78 7280 6940 500 2300
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Table 3. Training phase performance of GA-optimized ANN (traingdm).
Convergence success (%) Epoch mean Execution time (sec)

Data set
Unpruned
network

Pruned/
modified
network

Unpruned
network

Pruned/
modified
network

Unpruned
network

Pruned/
modified
network

IRIS 100 100 325 300 178 164
Breast cancer 96 100 978 745 240 220
Solar flare 95.6 98 1034.5 940.4 342 300
Letter rec.1 76 96 4220.6 3150 760 600
Letter rec.2 74 95.2 6670 5500 1500 1224

Figure 8. Surface plot for error obtained for the network trained using conventional backpropagation.

Figure 9. Surface plot for error obtained for the network trained using GA-optimized backpropagation.
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Table 4. Training phase performance of conventional ANN (trainlm).

Data set

Convergence
Success (%) Epoch mean Execution time (sec)

Unpruned
network

Pruned/
modified
Network

Unpruned
network

Pruned/
modified
network

Unpruned
network

Pruned/
modified
network

IRIS 100 100 56 50 14 13
Breast cancer 100 100 255 200 22 20
Solar flare 98.2 98 388 325.5 28 26
Letter rec.1 80 82 1059.5 1002 66 64
Letter rec.2 78 80.5 1987 1526 110 100

Table 7. Generalization performance of GA Optimized ANN (traingdm).

Data set
Total no. of
test samples

No. of correctly classified
samples/success rate (%)

Unpruned
network

Pruned
network

IRIS 75 69/92 70/93.33
Breast cancer 349 208/59.59 240/68.76
Solar flare 500 242/48.40 307/61.40
Letter rec.1 10,000 5200/52 5772/57.72
Letter rec.2 6000 2986/49.76 3655/60.91

Table 5. Training phase performance of GA-optimized ANN (trainlm).

Data Set

Convergence
Success (%) Epoch Mean Execution Time (Sec)

Unpruned
Network

Pruned/
Modified
Network

Unpruned
Network

Pruned/
Modified
Network

Unpruned
Network

Pruned/
Modified
Network

IRIS 100 100 44 30 08 08
Breast Cancer 100 100 126 120 12 11
Solar Flare 98.2 100 200 176 18 15
Letter Rec.1 85 92 598 500 24 22
Letter Rec.2 82 86 1020 918 40 34

Table 6. Generalization performance of conventional ANN (traingdm).
No. of correctly classified
samples/success rate (%)

Data set
Total no. of
test samples

Unpruned
network

Pruned
network

IRIS 75 66/88 66/88
Breast cancer 349 158/45.27 188/53.87
Solar flare 500 195/39 227/45.40
Letter rec.1 10,000 4254/42.54 5502/55.02
Letter rec.2 6000 2642/44.03 2972/49.53
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Computational Cost

The computational cost (complexity) is an important issue to be addressed
during evaluation of algorithms. Sometimes, the algorithm’s effectiveness in
providing a solution to a given problem requires the execution of complex
computations and the use of excessive memory resources, which can create
severe difficulties in real-time or low-cost applications. Let us analyze first
the computational complexity of the weight pruning stage described in
section “The weight pruning scheme.” Since we have developed the weight
pruning scheme as an alternative to CAPE, we would now compare the
computational cost for these two methodologies. Tables 10 and 11 enlist
the number of operations required by the proposed scheme and CAPE,
respectively, as a function of number of input samples (N), input attributes
(P), hidden neurons (Q), and output neurons (M). The number of operations
required by the proposed methodology and CAPE was computed considering
an MLP with N = 140 input samples, P = 2 input attributes, M = 1 output
neuron, and the number of hidden neurons Q varying from 1 to 10. The
same MLP was taken as reference by the inventors of CAPE (Medeiros and
Barreto 2013).

It can be easily observed from the tables that the proposed scheme requires
lesser number of multiplication operations than CAPE. This is due to the fact
that CAPE requires calculation of correlation coefficients to determine the
relevance of weights, whereas we define relevance in terms of complexity
penalty which involves fewer operations. Furthermore, unlike the proposed

Table 8. Generalization performance of conventional ANN (trainlm).

Data set
Total no. of
test samples

No. of correctly classified
samples/success rate (%)

Unpruned
network

Pruned
network

IRIS 75 70/93.33 70/93.33
Breast cancer 349 258/73.92 278/79.65
Solar flare 500 295/59 320/64
Letter rec.1 10,000 5270/52.70 6208/62.08
Letter rec.2 6000 3642/60.70 4006/66.76

Table 9. Generalization performance of GA-optimized ANN (trainlm).

Data set
Total no. of
test samples

No. of Correctly Classified
Samples/Success Rate (%)

Unpruned
network

Pruned
network

IRIS 75 72/96 72/96
Breast cancer 349 290/83.1 302/86.53
Solar flare 500 308/61.60 351/70.20
Letter rec.1 10,000 5690/56.90 6502/65.02
Letter rec.2 6000 4006/66.76 4105/68.41
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technique, CAPE involves running backward pass of BP which in turn
involves computations through a nonlinear activation function incurring
additional cost as shown in the last row of the tables. Figure 10 shows how
the number of operations varies as a function of number of weights (con-
nections). For the sake of simplicity, all the operations are considered to have
same computational cost. From the graph, it is apparent that the proposed
scheme demands lesser resources than the CAPE algorithm. It is also clear
from Table 12 that using proposed weight pruning stage, there is substantial
reduction in the computational complexity and this reduction tends to
become consistent with increasing number of connections.

Table 13 presents the stage-wise breakup of computations up to the
commencement of GA. As we know, the computational complexity of GA
is of the order O G � n � bð Þ, Where G, n, and b are number of generations,
population size, and bit string length, respectively. In our case, this stage
gives a complexity of O 25 � 20 � 10ð Þ. In addition to it, evaluation of fitness
for each weight requires running of forward pass of BP once per generation
cycle which requires O P�M�N�G

2

� 	
operations. BP without GA requires

O P �M � N � Eð Þ operations, where E is the number of epochs. This means
savings in terms of mean epochs is going to decide which technique con-
sumes lesser number of operations. It is evident from Tables 2–5, E > G

2 for
most of the architectures and even for Levenberg–Marquardt algorithm
which takes much fewer epochs to converge.

Example: Pruned Network A: Trained with conventional trainlm (IRIS
data). Epoch mean = 50.

Pruned Network B: Trained with GA optimized trainlm (IRIS data).
Epoch mean = 30.

Table 10. Computational operations required by the proposed method.
Operation Number of operations as a function of N, P, M, Q

Addition N(3PQ+ 3Q+ M)
Subtraction N(3PQ+ 3Q+ M)
Multiplication N(2PQ+ 2Q+ M)
Division N(PQ+ 2Q)
Tanh -

Table 11. Computational operations required by CAPE method (Medeiros and Barreto 2013).
Operation Number of operations as a function of N, P, M, Q

Addition N(3PQ+ 3QM-P + 2Q+ 3M-2)-PQ-QM-M-1
Subtraction N(Q + 2M)
Multiplication N(4PQ+ 4QM+ 5Q+ 5M)
Division -
Tanh N(Q + M)
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Computational complexity of network A
= O P �M � N � Eð Þ = O 4 � 3 � 150 � 50ð Þ = O 90; 000ð Þ

Computational complexity of network B
= O 4�3�150�25

2

� 	þ O 4�3�150�30ð Þ þ O 25�20�10ð Þ ¼ O 81; 500ð Þ.

Thus, the savings in computations even for marginal improvement in epoch
mean due to GA optimization is evident and this has been observed more
prominently in complex architectures which take large number of epochs to
converge.

Conclusion

The results presented in the previous section confirm the efficacy of the
proposed technique in terms of convergence, execution time, and general-
ization performance. It is evident that both weight pruning and GA
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Figure 10. Estimated costs for CAPE and proposed scheme when pruning an MLP.

Table 12. Percentage reduction in complexity by the proposed algorithm.

No. of connections
% Age reduction in complexity

(w.r.t. CAPE)

5 42.41545894
9 37.25992318
13 31.9036038
17 30.65405831
21 29.8820744
25 29.35779817
29 28.97848931
33 28.69132373
37 28.46636216
41 28.28536835
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optimization stages play their respective parts and contribute significantly
to improvement in performance of the BP-trained ANN. This improve-
ment is reflected not only in ANN trained with traditional gradient
descent with momentum term (traingdm) but also with a more advanced
algorithm like Levenberg–Marquardt (trainlm). Reduction in the epochs
required for convergence indicates that GA search about the weight space
has yielded near optimal solutions. Initialization of population based upon
complexity penalty as described in section “Implementation” seems to
have paid dividend. Subsequently, the mutation of third- and fourth-
ranked individuals (described as MAD algorithm) in the mating pool
makes the whole process more competitive since the mutation operator
seeks to increase the appropriateness of the weights in a statistical sense.
Evaluation with the MSE-based fitness function also points toward a
correlation between statistical “relevance” of weights and their fitness in
terms of lower MSE. The computational complexity of the proposed
weight pruning stage has been proven to be better than the existing weight
pruning strategy CAPE. Also, the classification results obtained reveal the
efficacy of the proposed technique. It can also be concluded that this
approach can serve as an efficient and viable alternative to conventional
neuro-genetic design of neural classifiers. Future work may be in the
direction of further reducing the execution time of the proposed
algorithm.
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Table 13. Stage wise break-up of computations.
S.No. Stage Operations Computations

1. Mean of hidden layer weights Addition N(P + 1)Q
2. Variance of hidden layer weights Subtraction

multiplication
N(P + 1)Q
N(P + 1)Q

3. Coefficient of dominance Addition
division

N(P + 1)Q
NQ

4. Complexity penalty Division
multiplication
addition

N(P + 1)Q
N(P + 1)Q
N(P + 1)Q

5. Threshold multiplication Multiplication N(P + 1)Q
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