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ABSTRACT

In reservoir modeling, making the steady-state policy of the flood control is a challenging
task. In this paper, the normal operating heights of a reservoir network is discussed.
Initially, the coupled tank system is employed to model the reservoir network. At the
equilibrium state, the normal operating heights are then derived analytically. As the
linearization is taken, the associated Jacobian matrix, which is a diagonally dominant
tridiagonal matrix with negative diagonal entries, is obtained. Because of the negative
eigenvalues of this matrix, the stability condition of the reservoir network can be made.
For illustration, the different rain rates are used to calculate the surface area of the
reservoir and the corresponding normal operating heights of the reservoir are then
determined. The result obtained shows the stability of the reservoir. In conclusion, the
approach discussed is efficient to the decision making on the stability of a reservoir
network.

Keywords: Reservoir network; coupled tank system; tridiagonal matrix; flood control;
steady state.
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1. INTRODUCTION

Flood phenomena are the major environmental issue that is confronted by both rural and
urban settlements on a global scale. In this point of view, a sustainable approach for
flood management needs to be developed. However, because of the factors, such as
hydrology, hydraulics, topology, vegetation, perviousness and environmental standards
[1], the modeling of the storage of water in a reservoir and the water transfer between
two or more reservoirs become complex.

To overcome these complexities, the routing method, which is an analytical procedure, is
used to evaluate the water flow in hydrological systems by taking the rainfall runoff as
the input to the reservoir. The hydrological routing method utilizes the continuity equation
to derive the Muskingum equation [2], which is known as the channel routing approach
since the reservoir activities are taking place along the conveyance. Muskingum-Cunge
method was proposed to evaluate parameters for Muskingum method based on
hydraulic characteristics of the channel [2]. This approach is applied as a base model for
hydrologic drainage network channel flow routing model to evaluate drainage network
topology, hydraulic properties of cross section, routing the flow in individual channel and
in the network [2].

Table 1. Variables and parameters

Parameters Description

jA Surface area of jth reservoir )( 2m

scjA Area of sub-catchment )( 2m

ja Size of orifice )( 2m

,d jc Discharge coefficient of jR
f Average infiltration rate 3( / )m s
g Acceleration due to gravity )/( 2sm

jH Head loss in reservoir )(mR j

jr Radius of orifice of )(mR j
perm
jh Permanent height of the retention pond )(m
temp
jh Temporary  height of the retention pond )(m
flood
jh Flood height of the retention pond )(m

0
jH Normal operating height )(mR j
I Rainfall intensity or inflow 3( / )m s

,o jQ outflow or discharges from reservoir Rj )/( 3 sm

ct Time of concentration ( )s

L Length  of the weir )(m
jV Volume of reservoir j (m3)

jR jth Reservoir

Nonlinear reservoir routing method is used for flood control in different catchments [2,3].
The solution of nonlinear reservoir approach can be obtained by using the finite
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difference method [3]. In this approach, the water level in the reservoir is monitored
between two fixed points using the variation in inflow and outflow of water within a time
interval. Then, a single differential equation with two unknowns can be solved. Here, the
inflow consists of runoff and discharges from upland reservoir, while the outflow is
divided as evapotranspiration, infiltration and discharges to reservoir on the lower side.
Since a single pond cannot control the flooding effectively in a catchment [4-6], it is
important to consider the application of the nonlinear reservoir method for a network of
reservoirs.

It is noticed that detention and retention ponds are used for flood control, where
detention pond stores water temporarily, and retention pond stores water permanently.
Usually, detention pond is designed to have a maximum capacity corresponding to the
time of concentration for a return period of 25 years [7-9]. Nevertheless, the retention
basin is a successful flood control reservoir, especially for pervious soil with the frequent
storm event [5]. In this case, retention pond must have an enough capacity to store the
complete runoff which is at least to its permanent mark. Retention pond has three to four
basic heights, where the permanent height always has a fixed pool of water level at any
time. The temporary height is water level which is expected at short duration of time in
case of any prolonged rain event and the flood height is the point of extreme rain event
and high rain rate [10]. The fourth height is the dead height which is designed for
sediment volume. From [11], it is reported that the return period of the post-development
of peak discharge rate is ranged from 2 to100 years and the corresponding pre-
development level is often used as the flood control criterion. In addition, hydrological
analysis of the detention pond with the associated probabilistic approach for pond sizing
was extensively discussed as in [12-14]. Comparison of kinematic wave and nonlinear
reservoir method was extensively explored in the work of [15]. A full description of the
routing methods and the selection criteria for the specific uses are fully discussed and
reported in [6].

Experimentally, the coupled tank system approach is usually applied to control the water
level between tanks, where the inflow and outflow through the orifice are employed
[16,17]. Based on the design consideration of the detention and retention ponds in sizing
and location [5], the coupled tank system approach is then extended to the reservoir
network for flood control using the nonlinear reservoir model. It is found that nonlinear
reservoir model together with the couple tank systems can be used to study reservoir
network for flood control. In our work, a series connection of reservoir network is
considered to study the stability of the network by analytical determination of normal
operating heights that can guarantee free flow of water in the reservoir network.

The solution procedure of a system of nonlinear ordinary differential equations (ODEs) is
problem dependent, which is determined by the degree of its nonlinearity. To a system
engineer, the linearization approach could be the best option to design the controller. In
doing so, the linearized system must satisfy certain conditions, which revolve around the
stability of the system. The stability analysis will give a clue if linearized system can be
used to approximate the nonlinear system around the steady state [18,19,20]. Therefore,
making a decision on the stability of a reservoir network is useful in the reservoir
modeling. In the following sections, the nonlinearity of the proposed model formulation is
critically described. The criterion of the stability and the normal operating heights are
determined analytically for each reservoir in the network.

2. MODEL FORMULATION

This work relies on the coupled tank system approach to model a network of ponds for
flood control. It is mentioned that a single pond would not be used here because the
single pond in a catchment cannot control flood effectively. The aim of the proposed
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model formulation is to determine the normal operating heights of reservoirs in a
network. Based on the designed parameters of the catchment under study, a free flow of
water is maintained according to the criterion that will be determined later.

To establish the foundation for this work, the respective variables, constants and
parameters used in this formulation are listed in Table 1. The following are assumptions
which this work relied on:

1. All ponds in the network are detention ponds except the last down-most pond is
the retention pond.

2. The return period for detention ponds is less than that of retention pond
designed.

3. The capacity design of all detention ponds must not exceed the permanent
storage of the retention pond. That is,

1

1
( ) ( )

m
perm

j j m m
j

v V h V h




 

where v is the initial volume of water in the retention pond mR and 'jV s is the volume

of water in the detention ponds jR , j = 1,2,…,m -1, for a given rain event.

The volume of water in a reservoir at any instant is given by

stored flowin precipitation flowout evaporation seepageV V V V V V V      (1)

Equation (1) gives a full description of water balance in a reservoir, but the different form
of the water balance equation can be used in the reservoir modeling. Consideration of
precipitation, evaporation and seepage varies considerably between catchments, but it is
less significant in most cases where activity happens over a short period of time [21].
Several routing models have been developed for a single reservoir in a network to
capture this loss. One of the methods used for water routing is the nonlinear reservoir
routing method, which utilizes the changes in the height of water in the reservoir with
runoff as input and discharges as output. This input-output method is particularly
considered as an acceptable routing technique for storm duration, which is longer than
the watershed time of concentration [3,15]. From(1), the change volume of water in the
reservoir can be expressed as change in the height of a reservoir. According to the
conservation law, it is expressed as

o
dHA AI Q
dt
  (2)

where the discharges are either through an orifice or a weir as given below:

1/2 3/2
, , , ,(2 ) oro j d j j j o j d j jQ c a gH Q c LH 

Here, ,d jc is the discharge coefficient of jth reservoir, ja is the cross-sectional area of

orifice of jth reservoir, L is the length of weir, jH is the head loss and g is the
gravitational constant.

Equation (2) can be extended to a two-connected reservoir in a network as given below:
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1
1 1 0,1

2
2 2 ,1 ,2 2o o

dHA A I Q
dt

dHA A I Q Q A f
dt

  

   


(3)

where the infiltration term f in the right-hand side of the second equation in (3) is due to
the function of reservoir as a retention pond. Using either orifice or weir does not affect
the model formulation.

For m reservoirs, the flood control network is

3/2
1 1

; 1, 2, ... , 1
j

m

j
j sc i i j j j k

m
m sc m m m m m m

dH
A A I B H H B H H j m
dt
dH

A A I B H H B H A f
dt  


       


     

(4)

Where i is the index of inflow to the reference reservoir jR , and j is index of reference

reservoir and k is the index of outflow from reference reservoir jR , gacB jjdj 2,

for 1,2,..., 1j m  , ,m d mB c L and
jj R jH H r  where

jR
H is the height of water

from the base of the reservoir to the surface of water.

Equation (4) is a system of nonlinear ODEs which represents the relationship for
storage, inflow and outflow of a reservoir in the network. The solution procedure to this
nonlinear system is generally problem dependent upon the degree of nonlinearity. To
overcome this complexity, we normalize (4) about the normal operating heights of each
reservoir, and followed by studying the stability of(4). In this way, the solution to the
linearized system can be used as an approximate solution of the nonlinear system. Here,
we define the normal operating height as the height which the water level in each
reservoir is expected to maintain free flow. It is important to note that the normal
operating heights are equilibrium points for which the stability of a nonlinear system can
be presented. These normal operating heights can also be interpreted as the steady
state heights, which are defined as

0 max max max

0

( ) ; ( ) ; 1, 2, ..., 1

( ) ; ( )
j j j j j j

perm perm perm
m m m m m m

H s H h V h r V j m

H s H h V h r V

     

   

where
max
jh is the maximum height of each detention pond,

perm
mh is the permanent

height of retention pond, max
jV is the volume for the maximum height max

jh , and perm
mV is

the volume for the permanent height perm
mh . The three major designed capacities of

retention pond are the volume of permanent height ( )perm perm
j jV V h , the volume of

temporary height ( )temp temp
j jV V h , and the volume of flood height ( )flood flood

j jV V h .
These volumes are designed for different return periods [10].
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From Assumption 3, we find that at any time t ≤ tc, the volume of retention pond is
derived from the volume of all the detention ponds [10]. That is

max max max
1 1 2 2 1 1( ) ( ) ( ) .... ( )perm

m m m mV h V h V h V h v     

This policy ensures that the capacity of the retention pond can fulfill the quantity and
quality of water needed for recreation and guide against flood downstream.

The linearization of (4) about the normal operating heights is

0 0 0 0 0 0 0 0

0 1/ 21 1
10 0 0 0

1 1

2 2 2 2

1, 2, ... , 1,

3 ( )
22 2

j j ji i
i j k

j i j j i j j j k j j k

m m m
m m m m

m m m m m m

dh B BB Bh h h
dt A H H A H H A H H A H H

j m

dh B Bh B H h
dt A H H A H H

 


 

 
    
      

  


  
         

(5)

with
o

j j jH H h 
and j jH h 

, where
0
jH is a constant.

The normal operating heights are conceptualized as the steady state which will
guarantee the stability of the system given in (4). Equation (5) is a system of linear
equations which gives a linearized form of the nonlinear system (4) about the steady
state heights. This equation can be expressed in terms of the steady state heights by
replacing the normal operating height 0

jH with the steady state height ( )jH s .
Linearization of a nonlinear system may not in general produce a better approximation,
but in order to guarantee the linearized system behaves as well as the original nonlinear
system, the linearized system must be stable about the steady state heights [22, 23].
The degree of nonlinearity of a system varies between mildly and highly nonlinearities. In
practice, linearizing a nonlinear system is a common practice and the result obtained is
comparable with the original nonlinear system. Bifurcation analysis shows that the
system is stable about its steady state [19,24]. As the solution of (5) approximates the
solution of (4), the height in each reservoir has to be bounded, which is between the
minimum and maximum heights, so that a tractable solution can be obtained. The
minimum point may not necessarily a zero height but is the height corresponding to zero
volume. In stability study, an accurate description of the system is provided without
necessarily solving the problem. Studying the stability behavior of a system is to
determine the condition of free flow of water in a reservoir network. For the reservoir Rj, j
=1, 2, …, m, the system matrix associated with (5) is the Jacobian matrix associated with
(4) which can be used as the decision making tool on the stability of a reservoir network.

3. STABILITY ANALYSIS OF THE STEADY STATE HEIGHTS

The stability of the system (4) is studied around the steady state height which is obtained
by solving (4) when 0jH j  . Starting from the inflow i=0 in (4) for j=1,2,…,m-1, we have

2

( ) ( ) ; 0jsc
j k

j

A I
H s H s i

B
 

    
 

where i =0 indicates that there is no inflow to the reservoir j and the reservoir k is the

lower reservoir that takes water from the reservoir j.
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The term of ( )jH s serves as the input to all reservoirs which receives inflow from the
upper reservoirs, and in general, the steady state height of m connected reservoirs
network is

2

1

2/3

1

( ) ( ) ; (1, 2,..., 1)

1( )

0, : :

i

i

j

j sc k
ij

m

m sc m
im

IH s A H s j m
B

H s I A A f
B

i j i and k j





 
        



   
    

   
  




(6)

where
0i 

indicate the sets of reservoirs that receive water from upper reservoirs. For
subsequent determination of normal operating heights, the formal reference reservoir j
becomes the inflow to the next reservoir and the formal reservoir that receives water
from the reference reservoir becomes the new reference reservoir, that is,

:  and : .j i k j 

Equation (6) shows that there is an inter-relationship between the steady state heights of
two adjacent reservoirs from the first reservoir down to the mth reservoir. The full
description of the steady state may not have been reflected in (6) since water discharge
from the mth reservoir is connected to stream which also has its normal operating height.
Incorporating this into (4) the network model is

 3/2
1 1

; 1, 2, ... , 1
j

m

j
j sc i i j j j k

m
m sc m m m m m s m

dH
A A I B H H B H H j m
dt

dH
A A I B H H B H H A f
dt  


       


      

(7)

and similar to (6), the steady state becomes
2

1

2/3

1

( ) ( ) ; 1, 2,..., 1

1( ) ( )

0, : :

i

i

j

j sc k
ij

m

m sc m s
im

IH s A H s j m
B

H s I A A f H s
B

i j i and k j





 
        



        
   

  




(8)

Equation (8) shows that the entire normal operating height of the reservoir in the network
can be estimated from the normal operating height of the connecting stream or river.
Consider dropping of the discharge term in the mth term of (7) and substituting (8) for

mH in (7), we have

1
0

i

m

sc m
i
I A A f


  (9)
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This can be simply interpreted that the total runoff in the entire catchment is equal to the
total water loss due to infiltration in the retention pond. The absence of the height in (9) is
an indication that there cannot be normal operating height at the mth reservoir when
there is no discharge from the retention pond. The steady state heights obtained from (6)
can be substituted in (5) to get the coefficient matrix of the system. This matrix can also
be generated by taking

; , ,j

r

H r i j kH





Bifurcation analysis relies on the Jacobian matrix that is evaluated at the steady state
height to determine the stability of the reservoir network. The lumped hydrologic and
hydraulic parameters in the Jacobian matrix have influence on the nature of the matrix
that will be used for stability study. The number of reservoirs in the network determines
the dimension of the matrix while the network configuration determines its nature. A
series connection of reservoir will produce a m × m non-symmetric tridiagonal diagonally
dominant matrix, while a hypothetical network will produce a m × m non-symmetric
diagonally dominant matrix. Theoretically, the unequal area of the sub-catchment is
responsible for the non-symmetric nature of these matrices. Equal areas are, however,
rare to come across in practice.

Let the Jacobian matrix associated with (7) be H(s) and j is the corresponding

eigenvalues. From Poincare Lyapunouv Theorem, if 0j  , for each j, the steady state
is said to be hyperbolic and the trajectory of a nonlinear system around the steady state
behaves in the same way as the associated linear system obtained through the
linearization of this nonlinear system [23].  In fact, the Jacobian matrix is the best linear
approximation to a continuously differentiable function near a given equilibrium point
[25]. The decision on the nature of stability of the steady state rests on the eigenvalue or
the definiteness of the matrix. In this formulation, the steady state obtained will produce a
negative definite Jacobian matrix which is required to get the global stability for the
system.

By similarity transformation, the non-symmetric tridiagonal matrix can be transformed
into a symmetric matrix [26-28]. This transformation confirms that the eigenvalues are
real and equal to the eigenvalues of the original non-symmetric matrix [26]. The condition

1, , 1 0 ,j j j ja a   for each j, is satisfied. That is, none of the sub-diagonal element

must be zero or have alternating sign. For 0 ,j  the steady state is a source and the

system is unstable, whereas for 0,j  the steady state is a sink and the system is

stable. But, if j admits both positive and negative signs, then the steady state is a
saddle point [22]. In our study, a system in which all the eigenvalues are negative is
wanted. This will guarantee the free flow of water in the catchment keeping the water
level around the normal operating heights.

The following proposition is a direct consequence of Proposition (2.1) in [26] which is
used to consider the negative diagonal entries in our work.

3.1 Proposition 1

Let An be the real symmetric tridiagonal matrix with the diagonal entries negative. If
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2
2

1 2
1 1
4 1 4i i ib a a

n




 
   

for i=1,2,…,n-1, where ai and bi are the tridiagonal entries of the matrix An, then the
determinant of An satisfies

det( ) 0.nA 

Proof:

1 1

1 2 2

2

1

1

n

n

n n

a b
b a b

Given A b
b

b a




 
  
 
 
 
  

 

 

1, 0 , 0 0n n i i i iLet A A then b a and a a       .

Since

2
2

1 2

1 1
4 1 4i ib a a

n




 
    , then nA is positive definite. That is, det( ) 0nA  .

Therefore, nA is  negative definite since n nA A  .

Remark: Proposition 1 shows that the normal operating heights which produced the
Jacobian matrix will always make the network stable.

4. EXAMPLE

Consider a catchment endowed with 10 sub-catchments, which is connected in series as
shown in Figure 1, and the hydrologic and hydraulic parameters that are given in Table
2.

Figure 1. Network of 10 reservoirs connected in series

For each reservoir in the network, the normal operating heights that will guarantee free
flow of water are determined.

5. RESULTS AND DISCUSSIONS

Figure 1 shows the series connection of network with 10 reservoirs. The associated
Jacobian matrix given in (10) is generated by the coefficient of the linearized system in
(5) and is evaluated at the normal operating heights or the steady state height in (6)
which was obtained by setting (4) to zero. This Jacobian matrix is a non-symmetric
tridiagonal matrix with the entries obtained from the hydrologic and hydraulic parameters
of each sub-catchment. Notice that the non-symmetric behavior of the tridiagonal matrix
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is caused by the surface area in each reservoir. Nevertheless, the diagonally dominant
property of the original matrix is retained and the symmetric behavior of the transformed
matrix can be used to determine the definiteness. As a result, the definiteness of the
original matrix is guaranteed, as given below:

1 1

1 1

1 1 2 2

2 2 2 2

2 2 3 3

3 3 3 3

3 3 4 4

4 4 4 4

4 4 5 5

5 5 5 5

5 5 6 6

6 6 6 6

6 6 7

7 7 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

( )
0 0 0 0 0 0 0

0 0 0 0 0

A A

A A A A

A A A A

A A A A

A A A A
H s

A A A A

A A A

 

   

   

   

   

   

  



 
  
 

 
  
 

 
  
 

 
  
 


 
  
 

 
 


7

7

7 7 8 8

8 8 8 8

8 8 9 9

9 9 9 9

9 9

10 10 10

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

A

A A A A

A A A A

A A A



   

   

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
       
 

       
  

       (10)

with
2

1
2 /3

1/3

1

1/

; 1, 2, ..., 1
2

3
2

;

i

i

j j

j

j
j j

sc
i

m

m sc m
i

sc sc c
j j sc

B
j m

I A

B I A A f

A I t
A A A

k











  

 
  

 

 
   
 





where the relationship between the area of catchment and the area of reservoir was
established in [29] and the value of k and  are, respectively, 1/120 and 3/2 as
discussed in [30]. These two constants are used to determine the surface area of the
reservoirs which are part of the input of decision matrix.

We obtain negative eigenvalues or negative definiteness as criteria that guarantee free
flow or stability of the system. It was observed in [26] that the general characterization of
positive definiteness, which is given by eigenvalues, seems inadequate as far as the
applied and numerical matrix theories are concerned. This is because of the enormous
computational efforts that are involved in the calculations of the eigenvalues. Depending
on the magnitude of the problem and availability of computational tools, the principal
minors due to Sylvester’s theorem, can be used as decision criteria. This is exploited in
the proof of the proposition on the negative definiteness of the decision matrix.

The results obtained in Table 2 shows that the surface area of the reservoirs is
determined by the rain intensities and the corresponding time of concentration. To derive
the area and volume relationship of the reservoirs in a catchment, the pyramidal
consideration was used in [30] to get the relationship.
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Table 2. Computed normal operating heights and respective eigenvalues

j
,d jc jsc
A ja ct jr jA ( )jH s j

Min(I) Ave(I) Max(I) Min(I) Ave(I) Max(I) Min(I) Ave(I) Max(I)
1 0.33 2200 1.0 11.13 0.564 110.8649 338.991 594.4526 13.5728 338.076 1797.099 -0.1601 -0.0108 0.0024
2 0.32 3100 1.5 19.20 0.691 200.3954 612.7479 1074.511 13.215 327.847 1741.942 -0.0629 -0.0050 -0.0009
3 0.62 600 2.0 17.96 0.798 64.13369 196.1012 343.8819 12.234 299.789 1590.638 -0.0254 -0.0019 -0.0004
4 0.33 1850 2.5 20.67 0.892 149.1982 456.2026 799.994 12.051 294.579 1562.543 -0.0184 -0.0016 -0.0003
5 0.32 4600 2.5 19.03 0.892 259.2085 792.5805 1389.864 11.341 274.270 1453.027 -0.0003 -0.0000 -0.0000
6 0.62 1630 2.5 20.13 0.892 134.7377 411.9867 722.4573 9.422 219.423 1157.271 -0.0022 -0.0001 -0.0000
7 0.33 1780 3.0 31.88 0.978 194.1055 593.5153 1040.785 8.767 200.702 1056.315 -0.0051 -0.0004 -0.0001
8 0.32 7400 3.5 33.99 1.055 523.8722 1601.841 2808.979 6.727 142.379 741.814 -0.0109 -0.0011 -0.0002
9 0.62 8140 4.0 30.00 1.128 513.6149 1570.477 2753.979 3.285 43.970 211.148 -0.0134 -0.0008 -0.0002
10 0.33 9000 5.0 27.00 1.261 511.9364 1565.345 2744.979 2.003 7.312 13.466 -7.0146 -13.385 -18.164

g=9.8m/s,   L=10m,  f=0.013m3/s,    k=1/120, τ=3/2, Min(I)=0.0003972m3/s     Ave(I)=0.0021239m3/s,     Max(I)=0.00499319m3/s

Remark: In Table 2, the surface area A for the minimum rainfall intensity Min(I), average rainfall intensity Ave(I), and maximum
rainfall intensity Max(I) are calculated to determine the respective normal operating heights ( )jH s and their eigenvalues j .  The
zeros that appear in the eigenvalue column is due to approximation. The actual values are -2.6042X10-5 in Ave(I), -5.0700X10-6 and -
3.2414X10-5 in Max(I) column respectively.
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Thus, we apply this relationship to determine the surface area of the reservoirs in a
catchment [29]. In such a way, the associated normal operating heights are determined for
each sub-catchment in each rain rate.

In our discussed network, the normal operating heights have been evaluated by the
parameters that make up (10) which Proposition 1 has shown to guarantee stability. On the
other hand, for a network with data on normal operating height, (8) is substituted in each
coefficient of h j in (5) to get (10). The stability of the reservoirs is then determined by finding
the principal minors or the eigenvalues of (10). There are a number of reasons that the
stability test may fail, these includes prolonged rain event, high rain intensity, short inter
event time and sediment accumulation. These factors are rare in occurrence for a good
design since return period of 100 years are usually used for flood design. The only factor
which has a great effect on the others is the sediment accumulation. It affects the effective
capacity of the reservoirs and a decrease in all design parameters which eventually result in
frequent flooding. It is suggested that the minimum sediment should be required, and the
flow pattern and the hydraulic selection might be redesigned to restore the stability of the
reservoirs.

6. CONCLUSIONS

The stability of a series connection of a reservoir network configuration was discussed in this
paper. This was done by calculating the surface area and the normal operating heights of
the reservoirs from the catchment parameters. The network configuration, which gives the
symmetric diagonally dominant tridiagonal matrix when the similarity transformation is
applied, makes the computation and the reservoir network analysis useful and interesting.
Retention pond is the most important reservoir in the network because the water flow in the
network can be regulated and the discharges can be controlled to the connecting stream.
The effect of the connecting stream on the stability of the network has been shown in (7) and
the steady state in (8) is considered as the normal operating height of the connecting stream
on the stable situation. To capture the stability behavior effectively, the network is examined
at the following heights:

max(a)  0; ; 1, 2,..., 1

(b)  0; ( , )
j j j

perm flood
m m m m

h h h as t j m

h h h h

    

 





As a result, the coupled equations can allow us to determine the time for water to rise from
the normal operating height perm

mh and the flood height flood
mh in the catchment. In addition,

the time estimate for flood occurrence can be reduced as the reservoir lost its effective
capacity due to sediment accumulation. In the future research, a complete model description
with considering the sediment accumulation will be taken into account for the stability of the
network. It is expected that a controller design can provide a foundation of the optimal
control policy in reservoir modeling.
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