
Machine Learning: Science and Technology

TECHNICAL NOTE • OPEN ACCESS

A bin and hash method for analyzing reference
data and descriptors in machine learning
potentials
To cite this article: Martín Leandro Paleico and Jörg Behler 2021 Mach. Learn.: Sci. Technol. 2
037001

 

View the article online for updates and enhancements.

You may also like
Machine learning for the modeling of
interfaces in energy storage and
conversion materials
Nongnuch Artrith

-

Equalization scheme with misalignment
estimation based on multi-layer
perceptrons for holographic data storage
systems
Seongbae Han, Gyuyeol Kong and
Sooyong Choi

-

Implicit neural representation for radiation
therapy dose distribution
Varun Vasudevan, Liyue Shen, Charles
Huang et al.

-

This content was downloaded from IP address 223.236.224.249 on 03/07/2023 at 13:34

https://doi.org/10.1088/2632-2153/abe663
https://iopscience.iop.org/article/10.1088/2515-7655/ab2060
https://iopscience.iop.org/article/10.1088/2515-7655/ab2060
https://iopscience.iop.org/article/10.1088/2515-7655/ab2060
https://iopscience.iop.org/article/10.7567/1347-4065/ab2be0
https://iopscience.iop.org/article/10.7567/1347-4065/ab2be0
https://iopscience.iop.org/article/10.7567/1347-4065/ab2be0
https://iopscience.iop.org/article/10.7567/1347-4065/ab2be0
https://iopscience.iop.org/article/10.1088/1361-6560/ac6b10
https://iopscience.iop.org/article/10.1088/1361-6560/ac6b10


Mach. Learn.: Sci. Technol. 2 (2021) 037001 https://doi.org/10.1088/2632-2153/abe663

OPEN ACCESS

RECEIVED

8 December 2020

REVISED

26 January 2021

ACCEPTED FOR PUBLICATION

15 February 2021

PUBLISHED

22 April 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

TECHNICAL NOTE

A bin and hash method for analyzing reference data
and descriptors in machine learning potentials
Martín Leandro Paleico and Jörg Behler
Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstraße 6, 37077 Göttingen, Germany

E-mail: martin.paleico@uni-goettingen.de

Keywords:machine learning, dataset, algorithm, atomic fingerprint, neural network potential

Supplementary material for this article is available online

Abstract
In recent years the development of machine learning potentials (MLPs) has become a very active
field of research. Numerous approaches have been proposed, which allow one to perform extended
simulations of large systems at a small fraction of the computational costs of electronic structure
calculations. The key to the success of modern MLPs is the close-to first principles quality
description of the atomic interactions. This accuracy is reached by using very flexible functional
forms in combination with high-level reference data from electronic structure calculations. These
data sets can include up to hundreds of thousands of structures covering millions of atomic
environments to ensure that all relevant features of the potential energy surface are well
represented. The handling of such large data sets is nowadays becoming one of the main challenges
in the construction of MLPs. In this paper we present a method, the bin-and-hash (BAH)
algorithm, to overcome this problem by enabling the efficient identification and comparison of
large numbers of multidimensional vectors. Such vectors emerge in multiple contexts in the
construction of MLPs. Examples are the comparison of local atomic environments to identify and
avoid unnecessary redundant information in the reference data sets that is costly in terms of both
the electronic structure calculations as well as the training process, the assessment of the quality of
the descriptors used as structural fingerprints in many types of MLPs, and the detection of possibly
unreliable data points. The BAH algorithm is illustrated for the example of high-dimensional
neural network potentials using atom-centered symmetry functions for the geometrical
description of the atomic environments, but the method is general and can be combined with any
current type of MLP.

1. Introduction

Machine-learning (ML) has become an important tool for the development of atomistic potentials, with a
wide variety of applications in chemistry, physics and materials science [1–3]. Machine learning potentials
(MLPs), like many other applications of ML algorithms, aim at approximating unknown functions, which in
the present case is the multidimensional potential energy surface (PES) of the system of interest as a function
of the atomic positions. The required information is obtained from sampling the PES at discrete points, i.e.
particular atomic configurations, utilizing comparably demanding electronic structure methods such as
density functional theory (DFT) [4, 5]. Once constructed, the MLP can then be used to perform cheap
simulations with first principles accuracy for systems of significantly increased size and for extended time
scales, to address problems which are inaccessible, e.g. to ab initiomolecular dynamics simulations.

Many types of MLPs have been developed in recent years, including different flavors of artificial
neural-network based potentials [6–14], Gaussian approximation potentials [15, 16], moment tensor
potentials [17], spectral neighbor analysis potentials [18], and many others [19, 20]. Apart from reproducing
atomic interactions, ML methods have also seen increasing applications that attempt to predict derived
properties instead of those directly associated with the PES, such as dipole moments [21–23], charges
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[14, 24–27], electronegativities [28], band gaps [29, 30], spins [31], and atomization energies [32]. All these
applications of ML algorithms rely on the availability of large reference data sets that are used to train the
respective ML method to reliably reproduce the property of interest. Generating these data sets is
computationally very demanding, and thus the amount of data should be kept as small as possible, which is a
very challenging task. In the present work we address this by introducing the bin and hash (BAH) algorithm,
enabling a computationally very efficient analysis of large data sets. This analysis is possible before training of
the ML algorithm of choice has been performed, and even before the electronic structure calculations are
carried out, which allows one to guide the selection of the most important structures.

Data set maintenance and analysis as well as atomic fingerprint selection, i.e. finding suitable
representations of atomic geometric environments, have been active areas of research accompanying the rise
in popularity of ML methods. The use of large and increasingly automatically generated data sets and
algorithms to programatically explore PESs [33–35] has led to the need for tools that can deal with the
amount and complexity of data. One such method is the dimensionality reduction algorithm SketchMap
[36, 37], which can be utilized to group structures together into similarity clusters. More direct tools
measuring distances in configuration space [38] and structural similarities of solids [39] are also useful for
analyzing collections of structures. Previous attempts based on ML descriptors such as SOAPs [40] have also
been successful at establishing a similarity measurement algorithm, and recently a more generalized study
has been published, looking at the most common ML descriptors [41] and their relative behavior in
describing atomic environments as well as the relationships between property space (in this case energy) and
distances in descriptor space.

As an inherent part of most MLP approaches, atomic fingerprint selection, has also attracted a lot of
attention. In the wider field of ML this is done with meta-analysis methods, such as hyperparameter
optimization [42–44]. Unfortunately these methods are usually rather complex and expensive, requiring
multiple training and fitting iterations, which precludes their use for large MLP data sets. Methods
specifically designed for MLP also exist, that attempt to refine the contents of these atomic fingerprints.
Among them we find attempts at utilizing genetic algorithm optimization [45, 46] to select the best
fingerprint sets through evolution, or CUR decomposition [47] to select fingerprints through dimensionality
reduction.

In this work we use high-dimensional neural network potentials (HDNNPs) as proposed by Behler and
Parrinello in 2007 [7, 48] to illustrate our algorithm, but the algorithm is very general and can be used in
combination with many other types of MLPs and atomic environment descriptors. The main idea of the
HDNNP approach, which is also used in most other classes of high-dimensional MLPs, is the construction of
the total potential energy E of the system as a sum of atomic energy contributions Ei from all Natom atoms in
the system as

E=

Natoms∑
i=1

Ei. (1)

These atomic energies depend on the local chemical environments up to a cutoff radius Rc, which has to be
chosen large enough to capture all energetically relevant atomic interactions. Typically cutoff values of
6–10 Å are used. The positions of all neighboring atoms in the resulting cutoff sphere must be provided to
individual element-dependent atomic neural networks yielding the atomic energies. Many types of
descriptors are available in the literature [19, 45, 49–53], and the most frequently used type in the context of
HDNNPs are atom-centered symmetry functions (ACSFs) [54], which form a vector Gi of input coordinates
for each atomic neural network that is invariant with respect to rotation, translation and permutation, i.e.
the order of the atoms in the system. A detailed discussion of the functional forms of ACSFs and their
properties can be found in [54], and here we just use them as placeholders for any ordered set of descriptor
values that provides a meaningful structural fingerprint of the local atomic environments.

The atomic neural networks represent the analytic functional form of the HDNNP and contain a large
number of fitting parameters, the neural network weights, which are optimized in an iterative training
process to reproduce a given reference data set of energies and forces for representative systems obtained
from electronic structure calculations. Once the HDNNP has been trained using this data, the energies and
forces of a large number of configurations can be computed at a small fraction of the computational costs of
the underlying electronic structure method, which enables extended molecular dynamics and Monte Carlo
simulations of large systems with close-to first-principles quality. For all details about the method, the
training process and the validation strategies for HDNNPs we refer the interested reader to a series of recent
reviews [48, 55, 56].

The construction of HDNNPs involves the use of large amounts of data, and the generation of the
reference electronic structure data often represents the computationally most demanding step. It is therefore
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desirable to reduce the amount of data as much as possible by only including those structures—or more
specifically atomic environments—which are different enough from the data already included in the
reference set to justify the effort of an electronic structure calculation. In addition, also the training process
of the HDNNP becomes more time consuming with increasing amount of data. In recent years, active
learning [57] has become a standard procedure to identify the most relevant structures [58–61]. Still, the
inclusion of a wide range of structurally different atomic environments in the training process is essential for
the construction of a reliable HDNNP, as the underlying functional form is non-physical, and the correct
physical shape of the potential-energy surface can only be learned if all of its relevant features are included in
the training set. Consequently, for each system a compromise between the effort of constructing large data
sets and the accuracy and range of applicability of the HDNNP has to be found.

The use of large amounts of data poses several challenges. First, a set of ACSF descriptors has to be
defined for each element in the system to construct structural fingerprints that can be used by the atomic
neural networks to construct the energy expression of the HDNNP. These ACSFs can be used for the
quantification of the similarity of different atomic environments. Typically, a set of 20–100 ACSFs is used for
this purpose, which depend on parameters defining their spatial shape [54]. Second, to keep the data sets
small, the inclusion of redundant information has to be avoided, which requires an efficient analysis and
comparison of the local chemical environments of the atoms given by the ACSF vectors. As we will see below,
naive pairwise comparisons are not a viable option for the typical data sets consisting of tens of thousands of
structures, each containing up to a few hundred atoms. Third, the costs of the reference electronic structure
calculations should be kept as low as possible, but numerical noise that can arise, e.g. from loose but
time-saving settings of the electronic structure codes must be avoided. Substantial noise in the data
represents contradictory information, which prevents a smooth convergence of the fitting process to low
root-mean squared errors for the energies and forces.

In this paper, we propose a simple, fast and efficient algorithm for detecting similar atomic environments
as processed by common ML descriptors. The algorithm is based on the well known hash table [62] data
structure, and is described in section 2. We use the vector of ACSF values belonging to an atomic
environment, the same vector that an atomic neural network in HDNNPs would receive as an input, but we
first pre-process it by a BAH approach. Binning is described in section 2.2.3, and the procedure of hashing
and the workings of hash tables in section 2.2.4. This creates a numerically unique representation of each
environment, where searches for repeated representations are fast and scale well with the number of
environments under consideration. In addition, this procedure does not depend on the availability of a
trained HDNNP, which is an advantage compared to active learning strategies. The procedure is very fast,
and we benchmark it in relation to a naive direct comparison approach in section 2.2.2, with big O
notation [62] scaling discussed in section 2.3.

In section 3, we show results from the application of the algorithm. Concrete timings are presented in
section 3.1, confirming the scaling expected based on theoretical considerations. Section 3.2 demonstrates
how the BAH algorithm reproduces distances in ACSF vector space, while section 3.3 shows the behavior of
the algorithm when changing the number of binning subdivisions and the ACSF set description of the data
set, and how this can be utilized to qualitatively evaluate the suitability of a given ACSF set, without requiring
the lengthy process of previously fitting a potential. Finally, section 3.4 shows how the method can be easily
utilized to find similar atomic environments and contradicting information in a data set.

Overall these applications are examples for the well known and complex problem of efficiently finding
distances and nearest neighbors in points belonging to multi-dimensional data. Previous approaches include
making use of complex binary tree data structures such as kDtrees [62, 63], that can efficiently store data
points according to their mutual distance in multi-dimensional space and rapidly reduce a search space due
to their binary structure; and dimensionality reduction algorithms such as principal component analysis
(PCA) [64, 65] and SketchMap [36] that instead reduce the size of the space under consideration. All of these
algorithms are very powerful and suited for their particular applications, but are often too complex and slow
for the current goal. Our BAH approach is fast and simple, and works in principle for any dimensionality. It
simplifies the process of dimensionality reduction by performing a reduction evenly across the coordinate
space instead of centering on the most important directions like PCA and SketchMap.

2. The BAH algorithm

2.1. Description of the algorithm
Here, we will first give a general overview about the BAH algorithm summarized as pseudocode in code
block 1. The details of each of its components will be discussed in the following sections.

As example system we choose zinc oxide. A typical distribution of ACSF values is presented in figure 1 in
the form of a stacked histogram plot, for the first 10 ACSFs of a small data set containing 1192 configurations
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Code Block 1. Pseudocode for the bin and hash algorithm.

Figure 1. Stacked histogram plot of the values of the first 10 radial ACSFs in the ZnO data set describing the atomic environments
of the oxygen atoms.

of a ZnO(101̄0) surface slab with in total 75 360 atoms, which corresponds to an equal number of atomic
environments. The structures included in the data set consist of bulk cut slabs, relaxed slabs, and
configurations extracted fromMDs, with different number of layers. This means that the atomic
environments present across the structures are a mixture of repeated, similar, and unique configurations.
Overall, 58 distinct ACSFs are used per chemical element (that is, the same number and type for Zn and O)
to describe the atomic environments, and the parameters defining the ACSFs are given in the supporting
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Figure 2. Illustration of the BAH approach: Each atomic environment in this example is characterized by a two-dimensional
ACSF vector G= (G1,G2). In step 1, the histograms corresponding to the ACSFs are generated as a visualization aid. The values
of G1 and G2 are highlighted by the crosses for one particular example environment. This ACSF vector is then binned to a pair of
integer values, forming the binned vector B= (B1,B2) in step 2. In step 3 the hash H(B) of this binned vector is calculated (since
the specific hash function utilized depends on the implementation of the hash table in a given programming language, it is not
provided explicitly here). Finally, in step 4 this hash is used (directly or indirectly) to index into the hash table, and add the atomic
environment to a counter for similar environments.

information (available online at stacks.iop.org/MLST/2/037001/mmedia). We can see that even for such a
relatively small data set the distribution of data already has a rather complex form.

The individual steps forming the BAH algorithm are illustrated in figure 2. Starting from the histogram
of ACSF values (shown schematically at the top of the figure), in a first step the range of each ACSF is split
into a predefined number of subdivisions, typically between 101 and 107 bins, taking into account the
maximum and minimum values present in the data set. This transforms the ACSF vector Gi for a given
atomic environment i from a float-based continuous representation to an integer-valued binned vector Bi of
the same dimensionality (step 2). This binned vector is then hashed generating the one-dimensional hash key
Hi (step 3), which is then used for constructing a hash table (Ht) (step 4). The binning achieves two goals at
once: getting rid of the floating point representation, which does not allow for an accurate transformation to
a hash, since the hash would be numerically very sensitive to the round-off errors of the floating point values,
and binning similar ACSF vectors to the same Bi vector, finally yielding the same hash key. The step of
hashing the integer vectors into hash buckets enables a fast and efficient storage and lookup for large data
sets. Both parts of the algorithm—binning and hashing—are thus vital for its performance.

Any Gi vectors that result in a hash collision, i.e. they end up in the same hash table bucket, are deemed to
be similar, and—depending on the number of subdivisions—usually exactly the same apart from floating
point round-off errors (see section 3.2). The algorithm keeps track of the total number of collisions recorded
for a data set and the maximum number of collisions for all the buckets. Additionally, every time a collision
is detected the ID of the colliding atomic environment is stored in the hash table in the corresponding
bucket, which enables to retrieve the colliding environments afterwards for analysis.

With the introduction of the concepts of bin and bucket, we want to add some remarks to help
differentiate them. unfortunately both words have a similar meaning in common speak, which might result
in confusion, and the concepts are also deeply related in BAH. A ‘bucket’ is a common name for a slot in a
hash table. A ‘bin’ is the name given to the integer associated with an ACSF value that was originally a
floating point number, and can also be conceptualized as a subdivision of ACSF space as in figure 2. Since
ACSF vectors that bin the same way will also end in the same bucket in a hash table, the two concepts are in
the end somewhat equivalent.

An obvious problem of this algorithm is that environments might be very close to the border between
two bins. Given two very similar environments, both could be assigned to different bins resulting in
completely different hash values, although the atomic configurations are essentially identical. In this case,
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two environments that should lead to a collision, do not. A straightforward solution to this problem is to use
the algorithm with multiple different divisions of the ACSF domain, and to compare the obtained binning.
In this way it can be excluded that very similar environments are converted to different hash keys. Still, even
when using multiple binnings, the algorithm remains computationally very efficient.

2.2. Analysis of the algorithm
Next, we analyze the scaling of the algorithm. This scaling is of particular relevance given the sheer size of the
typical data sets used in the construction of MLPs. Many other more sophisticated algorithms work perfectly
well when tested on small example cases, but scale very inefficiently for realistic data sets containing tens or
even hundreds of thousands of structures, each consisting of many atomic environments. Initially, we
comment on the possibility of utilizing neighbor lists. Then, we describe the naive approach of a brute force
comparison as a reference, before discussing the behavior of the binning and hashing operations. Finally, we
derive the scaling in big O notation [62].

2.2.1. Cell-based neighbor lists
Efficient distance calculation is a common problem in molecular dynamics simulations, since most force
fields depend on interatomic distances in one way or another. A simple and common approach is to utilize
cell lists [66], where the system is divided into smaller cubic cells, and atoms are assigned to these cells
according to their coordinates. If the size of the cells is chosen properly with respect to the cutoff radius of the
potential, checking for neighbors becomes simple: for each atom only atoms within the same cell and the
directly neighboring cells need to be considered.

It is possible to envision taking this approach to further dimensions, where we would now create cells not
in coordinate space but in the higher-dimensional ACSF space. Unfortunately, this simple but robust
approach in unfeasible as the computational costs increase rapidly with dimensionality: in a
one-dimensional system we need to check the central bin plus two neighbor cells, in two dimensions it is the
central cell plus eight cells organized in a square, and so on with the total number of cells to be checked
scaling as 3D with D the dimensionality of the space. This is clearly unfeasible for an ACSF set whose
dimensionality starts at 20 but can contain as many as 100 ACSFs per atomic environment, and even cases
with many hundred functions have been reported [14].

In conclusion, cell-based neighbor lists efficiently reduce the degrees of freedom of the problem by
creating cells, which we essentially also use for the binning step in the BAH algorithm. However, it rapidly
fails when used in higher dimensions, which we avoid in our BAH algorithm by only finding points in ACSF
space that are in the same bin/cell, and by utilizing hash tables to perform this check very efficiently using
only a one-dimensional property for the comparison. The cost for this efficiency increase is that the BAH
algorithm might miss some neighbors (for example in situations where values fall right at the border
between bins, as described at the end of section 2.1), while the cell list algorithm is always robust and finds all
the neighbors that are present.

2.2.2. The naive approach
The naive approach to comparing atomic environments is to compare ACSF vectors for each pair of atoms
directly. The only obvious simplification is that only atoms of the same element need to be compared. The
performance of this procedure is very poor, since it scales linearly with the number of ACSFs, and
quadratically with the number of environments in the data set, as for environment number N, we need to
compare it with all the previous N − 1 environments already processed.

Hashing and using hash tables solves this scaling problem, since lookup in a hash table is—in
principle—a constant time operation [62] that does not depend on the amount of data already stored in the
table. Binning is needed before reaching this point, since similar floating point numbers would have very
different hash values without a preparatory discretization step.

2.2.3. Binning
Consequently, binning is the first step in the algorithm. The maximum and minimum values of each ACSF
depend on the available data set and are known beforehand. For each ACSF, the resulting range is divided
into an arbitrary number of intervals and the binning is done according to

Bj = nint

(
divs× ACSFmax −ACSFval

ACSFmax −ACSFmin

)
(2)

where Bj is the bin value for the jth ACSF, nint is the nearest integer function, i.e. a round-off to the closest
integer; and ACSFmax, ACSFmin, and ACSFval are the maximum, minimum, and current value of the ACSF
under consideration, respectively. The number of intervals is kept the same for all the ACSF types, although
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some of them might have larger or smaller ranges (see for example figure 1). A possible improvement to the
binning procedure would thus be to aim for a certain density of ACSF values in each division, by tailoring the
length and number of divisions to each ACSF.

This binning achieves multiple goals. In the first place, it transforms floating point numbers, which are
imprecise and hard to hash, into integers. Floats should not be hashed directly because small changes in the
accuracy of the floating point number representation, such as the limited precision when reading it from a
file or small deviations resulting from rounding errors, give rise to very different hash values. Integers, on the
other hand are easy to convert to a hash.

Additionally, binning provides a sense of ‘distance’ in the data set. Calculating distances directly from the
difference between ACSF vectors suffers from the same scaling problems as the naive approach, and the
usefulness of an Euclidean distance decreases with the size of the vector, as it becomes less unique and loses
meaning [67] as dimensionality increases. As the bins get smaller, fewer ACSF vectors will coincide, making
the algorithm more sensitive only leaving those environments that are more and more similar in the same
bucket.

Binning on its own does not solve the problem of the naive approach, since we would still need to do an
all-against-all comparison of the individual bin vectors, with integers instead of floats. To solve this, a hash
table is required, as described in the following section.

2.2.4. Hashing and hash tables
Hash functions [62] are a family of functions that can map data of arbitrary size to data of fixed size. In
effect, a hash is a one-way function, that can assign an integer to any data type. This assignment is not unique
as two objects that are different can result in the same hash value, i.e. a hash collision. This conversion is
usually non-reversible such that if the hash is known, it is not possible to reconstruct the original object
unless by brute force trial and error and comparing the resulting hashes. If two objects share the same hash
(a ‘hash collision’), they will usually be either exactly equal or very different, which is a desired property in
some applications. Small changes to the input object will result in very different hash values, so the hash
value in principle cannot be used directly as a measure of distance in input space. Hash functions are used in
a variety of fields, such as in cryptography, where passwords as usually stored pre-hashed instead of in
plaintext; or in the realm of data-validation and proofing such as in checksums, credit card numbers, bank
routing numbers, ISBN book numbers, or blockchains. Hash functions make heavy use of the modulo
function and byte-shifting operations.

The properties of a hash function allow us to create a hash table. A hash table resembles an array, but
instead of assigning positions sequentially as in a normal array, positions to the hash table’s ‘buckets’ are
assigned using the hash function. In effect, the hash value is used to index the hash table array using

index= hash%array_size, (3)

where ‘index’ is the index to be used when accessing the hash table array, ‘hash’ is the hash function value of
the object of interest, ‘array_size’ is the size of the array holding the hash table, and % is the modulo
operator. The hash will always index an array position, no matter the size of the array.

One apparent problem arises here: The number of bins can reach up to 107 subdivisions per ACSF. For
the usual dozens to hundreds of symmetry functions required for a HDNNP data set, this amounts to a large
amount of possible bin vectors that grows in a combinatorial fashion. How then is it possible to map all the
possible bin vectors into a hash table of restricted size? As mentioned above, hash functions map larger
spaces into smaller ones, so collisions are unavoidable [68]. Various solutions exist for solving this
problem [62], which are implementation dependent. One possibility, known as separate chaining, is to store
all the collided keys in the same bucket as a list. Assignment to the hash table then consists of rapidly finding
the correct bucket as in equation (3), followed by a slower (but short) search through the list of key in this
bucket. Another possibility, known as open addressing, is to assign keys to the first open bucket address if the
current one is already occupied. Assignment of a new key then consists of using equation (3) to find an initial
bucket (a fast operation), and then continuing through the bucket addresses until an unoccupied address is
found (slower but a short process). Whatever the implementation utilized for collision resolution, it inflicts a
computation overhead to all hash table operations, but if the number of collisions is kept low, this is not a
problem. In normal operation many of the possible single bin vectors will not be encountered since the data
utilized to construct a HDNNP is not completely random, so this is not expected to involve much overhead.

An interesting feature of hashes is that this ansatz results in a constant (when the number of hash
collisions is not too high) search, assignment and insertion time of data into the table. In a normal array, if
we want to check whether a new object is already present in the array, we need to traverse the array and
compare element by element until it is either found and we stop the search early, or we reach the end of the
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Table 1. Big O notation scaling of the different algorithms under consideration. N is the number of atoms corresponding to the number
of atomic environments in the data set.M is the number of functions in the atom-centered symmetry function vector.

Algorithm Scaling

Naive comparison O(M ∗N2)
Binning O(M ∗N)
Hashing O(M ∗N)
Hash table lookup O(N)

array. In a hash table, we instead calculate the hash of the object and immediately check the corresponding
position in the table.

This efficiency comes at the cost of some overhead: requiring more memory for storing the hash table
since many buckets might be empty if the hash table is constructed with sequential memory positions, the
need to precompute the hash for objects going into the table although hash calculations are usually fast, and
dealing with hash collisions when they happen if we want to maintain unique buckets. Due to their
properties, hash tables are a basic data structure in computer science [62], often utilized for efficient storage
and retrieval of data.

A final advantage of hash tables for the use in this work is that they can be easily stored into a text file for
future use. This way, a data set can be preprocessed into a hash table, and future structures can easily be
compared against this record to detect repeated configurations. To store the hash table all that is needed is to
write the unique binned integer vectors to the file (in an arbitrary order), optionally with a numeric ID
associated to the structures in the data set that fall into that bucket of the table for an easy identification. To
reconstruct the table, these binned arrays are read and used as members of a new table.

2.3. Scaling
Next, we look at the scaling of the different parts of the algorithm in the big O notation [62]. This is
important to realize why the naive approach soon becomes unfeasible and how the BAH algorithm improves
on it. The results are summarized in table 1. We will consider the case of searching once through a complete
data set, and attempting to find repeated atomic environments.

In the following discussion, N is the number of environments in the data set, i.e. the total number of
atoms in all structures.M is the number of functions in each ACSF vector corresponding to the
dimensionality of our problem. We note that atoms of the same element always have the same ACSF sets, but
this is not necessarily true for different elements. The scaling with respect to N can be more important than
regardingM, since the number of ACSF in a HDNNP is usually less than 100 per element for most systems,
while the number of atomic environments can reach millions and has no upper bound.

The following scaling is observed:

• Naive comparison and lookup: Comparison scales at worst asO(M), since we need to compare each element
in one ACSF vector to the corresponding element in another ACSF vector, but we might end early if a mis-
match is detected.We then need to compare environment 1 with the nextN − 1 environments, environment
2 with the next N − 2 environments and so on until environment N − 1 for the last single comparison with
environment N. This is a mathematical series that in the end scales as O(N2). Both parts of the algorithm
together scale as O(M ∗ N2).

• Binning: Binning scales with both the number of elements in each ACSF vector—since we need to bin each
element individually—as O(M). Additionally, it has to be done for each of the N atomic environments
(O(N)). Combined it scales as O(N ∗M). This operation is usually very fast.

• Hashing: Hashing scales weakly with the size of the object being hashed (O(M)). There is some dependence
on the specific implementation of the hash function (see section 3.1) and the hashing needs to be repeated
for each ACSF to be compared (O(N)). It is a comparably slow operation compared with a straight division
in binning.

• Hash tables: Addition of data to a hash table and lookup are constant with respect to the size of the stored
data set (which would be proportional to N), except for hash collisions O(1). This is where the main time
saving comes from. We have to repeat this N times, once per hashed array, resulting in a scaling of O(N).

Now we can estimate the total processing times. The naive case is simple, we need to performM ∗ N2

operations to process the whole data set. For the BAH algorithm, we need to first bin the whole data set, then
hash the resulting binned arrays, and finally store the result in the hash table detecting a collision if present.
All of these times are additive since they are independent sequential operations. Putting this all together, we
obtain
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tnaive = kcomp and lookup ∗O(M ∗N 2)

tbah = kbinning ∗O(M ∗N)+
+ khashing ∗O(M ∗N)+ khash lookup ∗O(N), (4)

where each k is the timing constant to perform that operation once, which depends on the actual
implementation of each algorithm, the programming language of choice, and the CPU architecture. Notice
that the naive approach shows the worst scaling, since it scales as N2, with typical values of N in the order of
104–106. The BAH algorithm, on the other hand, consists of three linearly scaling additive components. This
is tested in section 3.1 for an illustrative example, and the different timing constants estimated, for a Python
implementation.

2.4. Implementation
The algorithm has been implemented in Python 3.5, using the dict [69] data structure, which is a hash table
with the possibility to associate arbitrary data to each hash bucket. The set [69] data structure is similar and
can also be used, but can only store the hashed object and no other associated data. It can also be
implemented easily in many other languages, since hash tables are a widely used data structure, and only
pointers or allocatable arrays are needed to implement them from scratch. The dict object in Python already
incorporates the step of hashing the data, so no explicit hash function is required in this case, and the actual
implementation of the hash function is not relevant to the result as long as it avoids as many spurious
collisions as possible.

The algorithms is straightforward to parallelize if this is required for larger data sets, or for
non-synchronous processing, e.g. using a compute cluster associated with a database. This is due to the fact
that hash tables can be easily combined. A central master process can hold the copy of the hash table, and
dispatch binning and hashing operations to the slave processes; or each slave process can hold its own hash
table and report back to a central process, which combines the slave sub-tables into a master hash table.

3. Results

3.1. Performance and timings
For illustrative purposes, we present the timings and scalings of the naive and BAH algorithms on randomly
generated values, as obtained from Python3.5 on a Intel Core i5-5300U CPU 2.30 GHz. Figure 3 plots the
behavior of the different algorithms for increasing data sets.

As can be seen in figure 3(a), the naive algorithm for the comparison of the atomic environments scales
with the square of the data set size, while the BAH algorithm in figure 3(b) scales linearly. In the logarithmic
scale of figure 3(c) combining the data of panels (a) and (b), it can be clearly seen that the costs of the naive
algorithm increase much faster than those of the BAH algorithm. Figure 3(d) shows the speedup (the relative
time gain, talgo/tnaive for any of the sub-algorithms involved in BAH) between the BAH and the naive
algorithms. Notice that this speedup increases as the data set size increases, since the naive approach scales as
the square of the data set size but the BAH scales linearly. Consequently, the larger the data set becomes, the
faster the BAH approach becomes with respect to the naive approach. Figure 3(e) shows that the hashing
algorithms scales linearly with the size of the ACSF vector under consideration, but is extremely fast for
typical vector dimensionalities. Finally, figure 3(f) confirms that, as expected, operations regarding the hash
table object—assignment to the hash table, and looking up if an object belongs to the hash table—remain
constant in time with data set size.

From these analyses and data we can estimate the different proportionality constants of equation (4),
they are compiled in table 2. Notice that the Naive and BAH halves of the table have different units. The
fastest part of the BAH algorithm is the hash calculation (khashing), while the bottleneck in the current
implementation seems to be the binning (kbinning). This is probably due to the division and rounding nearest
integer operations involved in binning, and it could probably be improved with some vectorization or better
numerical libraries. Not considered here is the required I/O to read ACSF data from a file, which might
become a more serious bottleneck for larger data sets, but is however common to both algorithms. The
values obtained here represent only an approximate order of magnitude since this will change significantly
for different implementations and computing architectures.

3.2. Analysis of the distance in symmetry function space
An interesting question is how the algorithm reflects distances in ACSF space, since some information is lost
in the process of binning and hashing of the atomic environment vectors. Hashes themselves are not a useful
measure of distance since the resulting hash is not smoothly continuous with respect its inputs, but we would
expect similar ACSF vectors to end in the same bucket. A reliable binning of only similar structures is an
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Figure 3. Plots of the timing of the different algorithms with increasing system size. (a) Naive lookup vs. squared size of data set.
(b) Different parts of the BAH algorithm vs. size of data set, with 101 subdivisions. Different numbers of subdivisions do not
appear to have a relevant effect on the speed of the algorithm. (c) All algorithms together in log scale for comparison. (d) Relative
speedup or time gain of the different parts of the BAH algorithms compared to the naive approach, calculated as talgo/tnaive, with
talgo the timings of the different parts of the algorithm from (b). (e) Scaling of the hash calculation with ACSF vector size, per
100 000 operations. (f) Behavior of hash table operations with data set size, per 100 000 operations.

Table 2. Estimated scaling constants for the different parts of the naive and BAH algorithms, at a constantM= 10 (scaling is assumed
linear for otherM values, in the cases where relevant). Units are in seconds required per operation (s op−1). The inverse constant is also
given providing the number of operations per second (op s−1). Note that the naive algorithm only seems ‘faster’ because it is expressed
in terms of op2. The different scaling constant units are a necessary consequence of some algorithms scaling linearly while the naive
algorithm does so quadratically.

Naive

Constant Value (s op−2) op2 s−1

kcomp and lookup 8.8× 10−8 11.000.000

BAH

Constant Value (s op−1) op s−1

kbinning 3.0× 10−6 336.000
khashing 1.8× 10−7 5.500.000
khash lookup 2.9× 10−7 3.400.000
kBAH global 4.2× 10−6 238.000

important condition for the BAH method to be useful. For this purpose, we now investigate all the ACSF
vector distances obtained for atomic environments that fall in the same bucket using different subdivisions of
the ACSF space. We define a relative distance in ACSF space, δij between atoms i and j of the same element, as

δij =
|Gi −Gj|

0.5(|Gi|+ |Gj|)
(5)

where Gi and Gj are a pair of symmetry function vectors corresponding to atomic environments that ended
up in the same bucket, and which are thus similar for the BAH algorithm. We plot a series of histograms of
the calculated distances in figure 4 for different subdivision numbers. Most of the distances in the histograms
are close to zero as expected. Notice that as we increase the number of subdivisions, the maximum
intra-bucket distance drops quickly due to the more stringent criterion for structural similarity in the
binning process, becoming close to the floating point noise (either due to the limited precision of floating
point numbers in a computer representation a.k.a. the ‘machine epsilon’, or the limited precision of data such
as coordinates and ACSF values held in text format) for the maximum number of subdivisions such that the
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Figure 4. (a)–(d) Histograms for the typical intra-bucket ACSF relative distance (δ) values for different subdivisions
(101,103,105,107) in the ZnO slab data set. Other intermediate subdivisions (10 2,104,106) exhibit similar behaviors.
The counts axis is logarithmic for better visualization.

Figure 5.Maximum and average intra-bucket relative distances for the histograms in figure 4 versus number of subdivisions, in
log scales. Notice that they follow approximately linear relationships, and trendlines with corresponding fitting equations are
included.

differences for many subdivisions are probably due to round-off errors and float-to-string conversions rather
than significant distances in ACSF space. Consequently, the histograms show that the BAH algorithm is
indeed closely correlated to distances in ACSF space, up to a given maximum distance depending on how the
multi-dimensional space is subdivided for the binning step.

Interestingly, as shown in figure 5, the maximum and average δ obtained from these histograms follow a
linear relationship with the number of subdivisions, on a double logarithmic scale. Therefore, changing the
subdivisions parameter allows us to fine-tune the maximum detected atomic environment distance in a
predictable way.
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Figure 6. Difference in force magnitude vs. the ACSF relative distance, δ, for different subdivisions of the BAH algorithm applied
to the ZnO slab data set. The points present in each subplot are not always the same, since the plots are generated from
environments that collided for a given number of subdivisions. Notice the difference in the scale of the X and particularly the
Y-axis for (a) when compared to (b)–(d); the force spread for structures with δij ≈ 0 is due to remaining numerical noise in the
DFT data.

Given this behavior of the distances in ACSF space, it is also of interest to study the corresponding
behavior of the properties associated to each atomic environment such as the atomic forces. In figure 6 we
plot the difference in force magnitude [70] vs. the ACSF relative distance, δ, for different subdivisions. As
shown in (a), there is a relationship between the two quantities, since one would expect that atoms whose
environments/ACSF vectors are similar should also present similar forces. Despite this, the relationship is not
strong, since distances in ‘force space’ do not necessarily transfer linearly into ACSF space [41]. As the
number of divisions increases and the force vectors considered correspond to closer environments, the force
distance quickly falls. In the end (d), this force distance corresponds to the numerical noise present in the
reference DFT data, since he environments detected are actually identical (up to numerical noise).

3.3. Results for different divisions and symmetry functions
An interesting question is how the resolution power of the algorithm, i.e. the ability to differentiate ACSF
vectors, changes as we increase the number of binning subdivisions, and as we change the ACSF descriptor
set itself. For this purpose, we have analyzed the ZnO (101̄0) slab data set.

A count of collisions was performed on this data set, which as described before occur when two
environments end up in the same hash table bucket, due to their binned vectors being the same, which
implies their original ACSF vectors were at least similar. We keep track of the total number of collisions, and
the maximum number of collisions in a single bin, for different divisions and an increasing ACSF set.

We would expect both total and maximum number of collisions to go down as both divisions and
numbers of ACSFs increase, since more divisions means that environments need to be more similar in ACSF
space to collide (see section 3.2) and more ACSFs lead to a more granular description of each environment.
Eventually, this count converges as we are left with only the environments that are exactly the same, which
can happen in a data set due to repeated parts of a configuration for example, if parts of a slab far away from
a chemically modified region remain essentially constant. This is in fact found in figure 7. Here we have
performed the BAH analysis on an increasing number of ACSFs, in the order presented in the supporting
information.

In this figure we note that in (a), collisions go down extremely quickly as we increase the ACSF descriptor
set, and then plateau with a slight downward trend that is hard to observe due to the scale of the plot. The
line with 105 divisions seems to offer the most granularity, showing changes across the whole ACSF set under
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Figure 7. Panels (a) and (b) show the total and maximum number of hash table collisions, i.e. configurations that hash into the
same bucket due to similarity of their ACSF vectors, vs. number of ACSFs, for different binning divisions. Panels (c) and (d) show
the same properties as a function of the number of binning divisions, for different numbers of ACSFs.

consideration. Being able to differentiate chemical environments is a necessary (but not sufficient) condition
for a good HDNNP fit, in which case the BAH algorithm could be utilized to identify a minimum floor to the
size of the ACSF set.

At this point, the question arises of which subdivision range is ‘best’ to describe a given data set, and
whether this is actually dependent on the specific data set. As can be seen from figure 5, the number of
subdivisions roughly corresponds to the symmetry function space distance between the collided atomic
environments. As such the ‘right’ subdivision range depends on whether we want to detect environments
that are only roughly similar or exactly the same, and there is not a single ideal value. For the type of analysis
presented in figure 7, a lower number of subdivisions (in the range of 102–104) provides a more granular
behavior in the number of collisions vs. symmetry functions utilized, which results in an easier to analyze
trend. For detecting contradictions (see section 3.4 we require environments that are either extremely similar
or exactly the same, in which case the upper range of subdivisions (106–107) is better suited.

Whether the number of subdivisions required depends on the specific data set is harder to evaluate. Since
our data sets are derived from physically ‘reasonable’ configurations corresponding to chemical systems, they
share roughly the same properties, with some differences depending on the involved elements, states of
matter present, energy ranges covered, etc. The parameters of the trendlines in figure 5 might depend on the
specific composition of the data in the data set, but as long as the relationship with ACSF space distance
remains, the specific parameters are not crucial.

In the end no specific number of subdivisions is ideal for every situation, and this has to be tested with
each data set and adapted to each desired analysis, but the BAH process is so fast that binning a data set
multiple times is not a problem. Our recommendation is to test three widely separated orders of magnitude
of subdivisions (103–105–107), and refine according to the results.

3.4. Comparison of atomic environments and conflicting information
The result of running the BAH algorithm is a list of environments that fall into the same bucket. That is, we
obtain a list of collisions representing structurally similar atomic environments as defined above. This is
valuable information and can be used to predict if a new configuration obtained from a simulation
employing the HDNNP is sufficiently different from the available data to justify an inclusion in the reference
data set to refine the potential. All the atomic environments in a large number of structures structure
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Figure 8. Force components and force vector magnitude for 22 environments found in a collision bucket. Note that although the
ACSF vector for all environments is identical, there are slight differences in force values arising from numerical noise in the DFT
calculations.

obtained in long validation simulations can be screened in this way, and for a most efficient use of
subsequent electronic structure calculations it is possible to identify those structures from this pool, in which
the highest fraction of environments is sufficiently different for the existing reference data.

Another possibility is the search for contradictions in the data set. Contradictions in this case means
atoms whose ACSF sets are similar, but their derived properties (any per atom predicted property, such as
force, spin, charge, etc) differ by more than an acceptable threshold. This could be due to a too small ACSF set
or cutoff radius of the ACSFs, which does not allow one to correctly distinguish chemically different atomic
environments, due to the neglect of long-range interactions beyond the cutoff radius, or due to incorrect
electronic structure data resulting, e.g. from a poor convergence level. Contradictions are detrimental to the
fitting process, since in case of conflicting data the HDNNP cannot reach a high fitting accuracy [54].

If we apply this analysis to our data set, with 105 binning divisions we find that the bucket with most
collisions contains 22 environments. The ACSF vector of these configurations is identical, but plotting
their DFT force components [70] and magnitude results in figure 8. We can see that the forces are not
exactly identical, but they are within the expected error margin for the HDNNP [71], i.e. below about
100 meV/Bohr. In this case, no contradiction is detected, but in other situations we found structures that
have not properly been converged for various reasons. Identifying and eliminating these data substantially
improved the HDNNPs in this case. For larger data sets, the points within buckets could be automatically
analyzed, and a contradiction warning raised if the force difference is above a given threshold.

3.5. The BAH algorithm and quality of NNP fit
The question now arises, whether the BAH algorithm can be actually used to systematically improve the
training procedure of a NNP or the constitution of a dataset. To prove that this is possible, we have first
continued the line of thought in figure 7. This figure shows that there is, as could be expected, a relation
between the number of similar environments detected and the number of ACSFs utilized to describe a
collection of atomic environments. Now, figure 9 shows the interrelation between number of descriptors,
detected collisions, and accuracy of a fit. Subfigure (a) shows that as the number of utilized ACSF increases,
the root mean squared error (RMSE) of a NNP fit for the ZnO dataset decreases, both for predicted energies
and forces, plateauing at around 30 ACSFs. Since the number of detected similar environments is also related
to the number of utilized symmetry functions, we can find a correlation between RMSE and detected
collisions, as plotted in subfigure (b) for different number of divisions in the BAH algorithm. The curves for
105 and 104 divisions show the highest ‘sensitivity’ here, covering a larger range in the x-axis. Subfigure (c)
plots the curve for 105 divisions on its own, and adds a third axis with the corresponding number of ACSF to
each collisions data point, highlighting the three-way relationship between the involved quantities.

One needs to be careful with the analysis here, since correlation does not necessarily imply causation. But
a logical connection between the three quantities can be easily found: when not enough descriptors are
utilized for a given dataset, the NNP cannot correctly differentiate between similar atomic environments, and
thus has problems correctly assigning and predicting energies and forces. This also happens to the BAH
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Figure 9. (a) Root mean squared error (RMSE) for energy and forces for the ZnO dataset with different number of ACSFs as
descriptors. (b), (c) Energy RMSE at different ACSF numbers vs. number of collisions at the same ACSF number detected by the
BAH algorithm with different numbers of divisions. Plots of force RMSE have a similar shape. The dependence of the number of
collisions and RMSE on the number of ACSF descriptors is made more explicit in (c) for the 105 divisions curve.

algorithm, which detects more collisions when atomic environments cannot be fully resolved. Thus the BAH
method can be used as a rough estimate of the quality of a given descriptor set, without the need to perform
costly fits. This is important since each extra descriptor in a NNP adds computational cost, not only during
the fitting procedure, but also when utilizing the NNP to conduct simulations. There is thus a competition
between higher fit accuracy (which always has diminishing returns past a certain number of ACSFs), and
computational efficiency.

As a final test of the utility of the BAH algorithm, we can attempt to use it to ‘curate’ a dataset. In normal
operation, this would be done by generating new structures during a simulation, applying the BAH
algorithm to detect those with novel atomic environments, processing those with the electronic structure
method of choice, and adding them to the dataset to repeat the procedure.

To emulate this procedure, structures have been removed from the current dataset, the remaining dataset
used to fit a NNP, and the predictive power of this NNP on the removed structures evaluated once again
through the RMSE. If the removed structures contain unique environments that are not present in the
remaining dataset, the NNP will have trouble predicting energies and forces of the removed structures. On
the other hand, if they contain repeated environments, the NNP is able to learn those environments from the
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Figure 10. RMSEs for (a) energies and (b) forces, for structures removed from the ZnO dataset utilizing the BAH algorithm at
different numbers of divisions, or a random selection approach. A reference point for the accuracy of the NNP on the whole
dataset is also presented. BAH performs similar or better to random sampling for energies, and better than random until 8% of
removed structures for forces.

remaining dataset and accurately predict properties for the removed structures. Due to how the dataset is set
up, unfortunately entire structures need to be removed instead of single atomic environments, but for other
systems it might be possible to instead construct a library of isolated atomic environments and thus operate
at this lower level.

Two structure removal methods are compared. In the first method, the BAH algorithm is applied to the
dataset with different numbers of divisions, structures are ordered by the number of atomic environments
shared with other structures, and then structures are removed from the top of this list. Every time a structure
is removed, the number of matches of other structures is also reduced, so the ordering of this list needs to be
updated each time. Deletion proceeds until every structure has a given maximum number of matches. In the
second method, as a control, structures are simply removed at random, until the same number of structures
as with the BAH method have been removed. Since the random method can result in varying qualities of fits,
and the training procedure in itself has some non-deterministic elements, it is repeated six times for better
sampling.

Figures 10 and 11 show the results of this comparison. As can be seen in figure 10, the dataset curated
with BAH can predict energies in the removed (test) dataset with either similar or better accuracy than the
random curation, in the range of 4%–12% removed structures. For the forces, which are harder to predict,
the BAH curation overperforms random sampling up to 8% of removed structures. The goal of this figure is
not to show that BAH selection improves the predictive power of the NNP, but that similarity detection and
removal with BAH does not results in a worse dataset, particularly when compared to a random selection
approach. Figure 11 shows a similar outlook, but now comparing the energy and force RMSE differences
(both absolute and relative) across 20 fitting epochs. The NNP fits with similar accuracy on the remaining
training set for both methods, but the error on the test removed structures is up to 20% worse for the
random case.

It is thus possible to assert that the BAH algorithm has managed to choose those structures that can be
removed from the dataset without affecting predictive quality of the NNP, that is, it has correctly detected
those environment that are repeated and thus superfluous in the dataset. This is true up to a certain number
of removed structures: this number depends on the divisions utilized when applying the BAH algorithm, and
as divisions become larger more matches are found and more structures removed. Presumably, past a certain
point the resolution of the algorithm becomes too rough and it starts removing environments that are not
similar enough (read as, unique), and thus predictive power becomes comparable to a random selection.
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Figure 11. Comparison of the accuracy of a NNP trained on a modified dataset by removing 5% of the structures with a BAH
(with 105 divisions) or a random approach. The removed structures are put into a test dataset. (a), (b) Absolute difference in
energy and force RMSE vs. training epoch (∆RMSEBAH−RAN = RMSEBAH −RMSERAN, negative values mean that BAH is more
accurate). Both approaches result in a similar accuracy for the training set, but BAH is favored in the removed/test set.
(c), (d) As in the previous subfigures, but a percentage difference (with ⟨RMSEBAH−RAN⟩= 0.5 · (RMSEBAH +RMSERAN), once
again negative values mean BAH is more accurate). Once again both methods perform similarly for the train data, but BAH
performs up to 20% better on the test set.

This is still a good result: removing 5%–8% of a dataset without apparent loss of quality is a marked
achievement, and proves how the algorithm could be used in a practical situation to filter new structures
before performing costly fits or even costlier reference calculations.

4. Supporting information

In the supporting information we present:

• A list of ACSF parameters for the studied ZnO slab data set.
• The code utilized to perform the scaling tests in section 3.1.

5. Conclusions

In this work we have presented a BAH method, which allows a computationally very efficient comparison of
a large number of geometric atomic environments, which are used in the construction of modern MLPs. In
case of HDNNPs, which we use as a typical example here, these environments are usually described by
vectors of ACSFs. We show that the ability of the method to identify similar atomic environments can be
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systematically controlled by the number of subdivisions used in the binning process of the ACSF vectors, but
also a large number of alternative descriptors proposed in the literature is equally applicable.

The method is fast, simple and robust with many applications in the construction of MLPs. One example
is the identification of redundant atomic environments in the reference data sets used for the construction of
the potential as a basis for the decision which structures should be included in the training set. This is an
essential step, as a systematic coverage of the configuration space is very important for obtaining reliable
potentials, which an excessive amount of data would turn the construction and use of the potentials
unfeasible. Due to the use of hash functions and tables, the method can process millions of candidate atomic
environments in a number of minutes, being much faster than a naive direct comparison approach. The
obtained information can be stored in data libraries that can be efficiently searched at a later stage if needed.
We note that in this context the BAH algorithm is complementary to the use of active learning, as the BAH
algorithm is based on the geometric structure and its description, while it does not require the availability of
trained MLPs as no property evaluations are needed. Active learning on the other hand is based on the
comparison of predicted properties, which allows one to focus on the reliability of the target property, while
it depends on the availability of preliminary models and their evaluation.

Another application is the validation of the structural resolution capabilities of the descriptors used for
the discrimination of different atomic environments. Poor descriptor sets result in a large number of
environments appearing erroneously to be structurally similar although local physical properties like forces
substantially differ. Finally, the method can be used to identify conflicting data in the training set, which
might result from an insufficient convergence level of the reference electronic structure calculations and
other types of errors resulting in inconsistent information. Consequently, the BAH method has been found
to be a useful tool for solving a variety of challenges emerging in the construction of MLPs, with many
additional potential applications in other fields requiring the efficient comparison of structural features, such
as genetic algorithms [72], minima hopping [73], and kinetic Monte Carlo [74] simulations.
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[16] Bartók A P and Csányi G 2015 Gaussian approximation potentials: a brief tutorial introduction Int. J. Quant. Chem. 115 1051–7
[17] Shapeev A V 2016 Moment tensor potentials: a class of systematically improvable interatomic potentialsMultiscale Model. Simul.

14 1153–73
[18] Thompson A P, Swiler L P, Trott C R, Foiles S M and Tucker G J 2015 Spectral neighbor analysis method for automated generation

of quantum-accurate interatomic potentials J. Comput. Phys. 285 316–30
[19] Jenke J, Subramanyam A P A, Densow M, Hammerschmidt T, Pettifor D G and Drautz R 2018 Electronic structure based

descriptor for characterizing local atomic environments Phys. Rev. B 98 144102
[20] Balabin R M and Lomakina E I 2011 Support vector machine regression (LS-SVM)-an alternative to artificial neural networks

(ANNS) for the analysis of quantum chemistry data? Phys. Chem. Chem. Phys. 13 11710
[21] Gastegger M, Behler J and Marquetand P 2017 Machine learning molecular dynamics for the simulation of infrared spectra Chem.

Sci. 8 6924
[22] Darley M G, Handley C M and Popelier P L A 2008 Beyond point charges: dynamic polarization from neural net predicted

multipole moments J. Chem. Theor. Comput. 4 1435–48
[23] Pereira F and Aires-de Sousa J 2018 Machine learning for the prediction of molecular dipole moments obtained by density

functional theory J. Cheminformatics 10 43
[24] Artrith N, Morawietz T and Behler J 2011 High-dimensional neural-network potentials for multicomponent systems: applications

to zinc oxide Phys. Rev. B 83 153101
[25] Morawietz T, Sharma V and Behler J 2012 A neural network potential-energy surface for the water dimer based on

environment-dependent atomic energies and charges J. Chem. Phys. 136 064103
[26] Yao K, Herr J E, Toth DW, Mckintyre R and Parkhill J 2018 The tensor Mol-0.1 model chemistry: a neural network augmented

with long-range physics Chem. Sci 9 2261–9
[27] Bereau T, Andrienko D and von Lilienfeld O A 2015 Transferable atomic multipole machine learning models for small organic

molecules J. Chem. Theory Comput. 11 3225–33
[28] Faraji S, Ghasemi S A, Rostami S, Rasoulkhani R, Schaefer B, Goedecker S and Amsler M 2017 High accuracy and transferability of

a neural network potential through charge equilibration for calcium fluoride Phys. Rev. B 95 104105
[29] Lee J, Seko A, Shitara K, Nakayama K and Tanaka I 2016 Prediction model of band gap for inorganic compounds by combination

of density functional theory calculations and machine learning techniques Phys. Rev. B 93 115104
[30] Pilania G, Gubernatis J E and Lookman T 2017 Multi-fidelity machine learning models for accurate bandgap predictions of solids

Comput. Mater. Sci. 129 156–63
[31] Eckhoff M, Lausch K N, Blöchl P E and Behler J 2020 Predicting oxidation and spin states by high-dimensional neural networks:

applications to lithium manganese oxide spinels (arXiv:2007.00335)
[32] Rupp M, Tkatchenko A, Müller K-R and von Lilienfeld O A 2012 Fast and accurate modeling of molecular atomization energies

with machine learning Phys. Rev. Lett. 108 058301
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