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Abstract
Multi-dimensional spectral-imaging is a mainstay of the scanning probe and electron
microscopies, micro-Raman, and various forms of chemical imaging. In many cases, individual
spectra can be fit to a specific functional form, with the model parameter maps, providing direct
insight into material properties. Since spectra are often acquired across a spatial grid of points,
spatially adjacent spectra are likely to be similar to one another; yet, this fact is almost never used
when considering parameter estimation for functional fits. On datasets tried here, we show that by
utilizing proximal information, whether it be in the spatial or spectral domains, it is possible to
improve the reliability and increase the speed of such functional fits by∼2–3×, as compared to
random priors. We explore and compare three distinct new methods: (a) spatially averaging
neighborhood spectra, and propagating priors based on functional fits to the averaged case, (b)
hierarchical clustering-based methods where spectra are grouped hierarchically based on response,
with the priors propagated progressively down the hierarchy, and (c) regular clustering without
hierarchical methods with priors propagated from fits to cluster means. Our results highlight that
utilizing spatial and spectral neighborhood information is often critical for accurate parameter
estimation in noisy environments, which we show for ferroelectric hysteresis loops acquired on a
prototypical PbTiO3 thin film with piezoresponse spectroscopy. This method is general and
applicable to any spatially measured spectra where functional forms are available. Examples
include exploring the superconducting gap with tunneling spectroscopy, using the Dynes formula,
or current–voltage curve fits in conductive atomic force microscopy mapping. Here we explore the
problem for ferroelectric hysteresis, which, given its large parameter space, constitutes a more
difficult task than, for example, fitting current–voltage curves with a Schottky emission formula
(Chiu 2014 Adv. Mater. Sci. Eng. 2014 578168).

1. Introduction

Spectroscopy enables essential insights into a wide range of fundamental processes ranging from
astronomical to sub-atomic scales, and is utilized in a spectrum of methods such as hyperspectral imaging
from satellites of Earth for identifying vegetation health [1–3], electron energy loss spectroscopy for
elemental analysis in electron microscopy [4–6], and micro-Raman imaging for understanding symmetry
breaking and structure in nanomaterials [7–10]. When implemented in an imaging framework, such spectral
imaging enables multiple channels of data to be collected across a spatial grid of points, allowing correlations
between functional properties and specific microstructural features to be studied.
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In some cases, tractable models exist to describe individual spectra and the spectra can be fit to such
models. Additionally, it is possible to perform inference on the given model parameters. Typical examples
include the Dyne’s functional equation for measurements of the superconducting gap in scanning tunneling
spectroscopy [11], various functional relationships describing current–voltage relationships in oxides [12],
and equations that describe features of hysteresis loops captured on ferroelectric materials with
piezoresponse force spectroscopy (PFS) techniques [13]. Analysis in most cases of hyperspectral data of this
sort is split into two general methods: (a) dimensionality reduction, often for visualization purposes [14–16],
typically with some form of matrix [17] or tensor factorization [18] approach, and perhaps subsequent
fitting of individual components of the spectra [19], or (b) individual fitting of spectra, independently, to
tractable models where available. Option (a) is highly useful when no such models exist, or when the basic
visualization of a feature’s spatial variability in a given dataset is sought after. On the other hand, quantitative
estimation of materials parameters usually requires inference of model parameters. The difficulty of applying
(b) is, however, that the data, especially in many microscopy settings, is often noisy. Moreover, it is readily
apparent that many spectra can be remarkably similar to one another, either due to spatial location (nearest
neighborhood), or due to the generic properties of materials, such as segregation of responses by different
phase mixtures and so on. As such, using independent functional fits from pixel to pixel that do not leverage
this information is likely to lead to sub-optimal results. Previously, we have shown that even for simple
four-parameter models such as that of a simple harmonic oscillator, standard least-squares based estimation
can lead to poor results for noisy data, that can be alleviated via the use of trained artificial neural networks
[20]. In that work, it was shown that utilizing the neural network to produce the prior, that was then ingested
by the least squares optimizer, led to far superior results, increasing the signal-to-noise extraction by nearly
an order of magnitude. The same type of use of neural networks for estimating priors to fit into more
traditional optimization routines has also been used for e.g. in x-ray scattering for phase reconstructions
[21]. Achieving better results from standard optimization routines is a straightforward way to improve the
resolution of the derived fitting parameters maps from imaging studies. In principle, the resolution can be
further enhanced via methods such as pan-sharpening for even greater impact [22].

Here, we explore three strategies to better inform the prior used in functional fits for hysteresis loop
acquisition in PFS. These strategies utilize the averaging principle, where averaging like-spectra (spatially, or
based on clustering) and fitting to the averages, can provide better priors for individual spectra, and leading
to both better model parameter inference, as well as improved efficiency. We show our results on both
synthetic and real datasets, focusing on a nine-parameter phenomenological model based on locally acquired
hysteresis loops, to highlight the utility of this approach. Our results indicate that utilizing a nearest-neighbor
or K-means clustering strategy not only averages∼50% less time for computation, but substantially increases
the quality of the individual spectral fits compared to not using priors from similar pixels.

2. Main strategies

In PFS, acquired loops consist of two branches, a positive branch (PR+) and a negative branch (PR−), that
can be fit via a phenomenological expression based on error functions, specifically:

PR+ (V) = a0 + a1 ×

g1 ×
erf

(
v1−a2
g1

+ b0
)

(b0 + b1)

+ a4 × v1 (1)

PR− (V) = a0 + a1 ×

g2 ×
erf

(
v2−a3
g2

+ b2
)

(b2 + b3)

+ a4 × v2 (2)

where g1 =
b1−b0

2×erf((v1−a2)×1000)+1) + b0 and g2 =
b3−b2

2×erf((v2−a3)×1000)+1) + b2, erf(z) =
2√
π
·
t=0´
z
exp

(
−t2

)
refers

to the error function and v1 andv2 are the voltage values at the midpoint of the up and down voltage ramps,
respectively. In the above case, the coefficients a0 . . .a4 and b0 . . .b3 are then used to calculate physical loop
parameters such as nucleation threshold, imprint, work of switching, and switchable polarization [13, 23,
24]. The loss function is computed in terms of both branches of the loop, i.e. computing equations (1) and
(2) simultaneously with the individual hysteresis loop. Unfortunately, the complicated nature of this
expression tends towards difficult initialization procedures and loss landscapes with multiple local minima
that are routinely far from the global optimal conditions.

We compare four distinct strategies for improving the fitting of hysteresis loops acquired using PFS:
‘nearest neighbor’, ‘clustering’, ‘hierarchical’, and ‘random’. To evaluate the effectiveness of each strategy, a
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Figure 1. (a) Synthetic piezoresponse dataset at 0 V DC bias with example loop and schematic representations of the (b) nearest
neighbor strategy, (c) clustering strategy, and (d) hierarchical strategy.

synthetic dataset of size 128× 128 pixels was generated using equations (1) and (2) and nine spatial maps,
derived from different images, such that the loop parameters vary spatially. An example of the piezoresponse,
defined as the ferroelectric response at 0 V DC bias, from this simulated dataset, at 0 V DC bias, is shown in
figure 1(a). The loop at this condition is rather typical of ferroelectric loops acquired during the so-called
on-field setup, i.e. when the DC bias is active during the piezoresponse measurement, and the slope of the
loop usually stems from the electrostatic contribution to the signal.

Multiple strategies can be envisioned to obtain better priors based on the idea of fitting to a mean of
‘similar’ pixels to derive the prior for the present fit. One of the simplest is perhaps the ‘nearest neighbor’
strategy, which averages the surrounding N nearest neighbors around the pixel of interest, p∗. The number of
neighboring pixels can be chosen to adjust for different feature length scales, where N = 1 would consider
only the 1st shell of surrounding pixels, schematically shown in figure 1(b), and N = 2 would consider the
1st and 2nd shell of surrounding pixels. Prior to any fitting, the average loop found and fit 20 consecutive
times using non-linear least squares, with each fit starting at a random initial guess. Of the 20 fits, the fit with
the lowest sum of squares error is chosen and each pixel is initially assigned the average loop fit coefficients,
denoted as pavg in figure 1(b). At the pixel of interest, p∗, the coefficients from the surrounding pixels are
averaged and used as the initial guess for fitting the loop at p∗. After a successful fit, the coefficients at pixel
p∗ are updated to the coefficients found after fitting. Schematically in figure 1(b), the indicated p∗ would be
replaced with p12. The next pixel is then considered, moving linearly through each row and column until
each pixel has been fit. This strategy is likely to work well for samples that display high degrees of local spatial
homogeneity. On the other hand, it is also possible that similar responses are not necessarily correlated in
this manner. For instance, meandering domain walls which are only one or two pixels wide in the dataset
would have similar response across the domain wall, but this usually traces out a non-trivial path through the
images.

In contrast, clustering methods can help to identify these pixels, and can subsequently be used as the
initial seed, as shown schematically in figure 1(c). In the ‘clustering’ strategy, the loops are K-Mean clustered
intoM/100 clusters, whereM is the total number of pixels. The average loop of each cluster is then fit using
non-linear least squares 20 times, each time with a random initial guess of coefficients. Fits at the pixel of
interest, p∗, then uses the coefficients of the average loop for its corresponding cluster. This strategy helps
resolve fitting loops which have a low spatial correlation to the surrounding pixels. One challenge with this
method is that the number of pixels in each cluster varies, often substantially. This can lead to poorer priors
for clusters with comparatively small numbers of members, due to insufficient averaging.
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Figure 2. Results of fitting the synthetic dataset showing (a) R2 values for the four fitting strategies, (b) example fit loops at the
highlighted pixel in (a), and (c) the time taken for each fitting method where the color of each bar indicates the average R2 value.

The third strategy involves hierarchical clustering, where fits are propagated down the hierarchical tree,
schematically shown in figure 1(d). The principle is similar to the previous clustering method but differs in
that the clustering itself is hierarchical in nature, i.e. the data is repeatedly split to form a hierarchical
representation of similarity. One advantage of this approach can be that at the top of the tree, the numbers of
loops in every node is very high, leading to high signal-to-noise ratios and presumably better fits; however, it
drops substantially down the tree, which could again cause issues with insufficient averaging, especially if the
data is noisy and similarity between nodes on the same level is weak. Finally, we also tested against a ‘random’
strategy, which uses random coefficients as the initial guess for fitting. Coefficients are each chosen at
random within an N(0.1,5) distribution. The fit is performed twice at each pixel of interest, each with
different initial guesses. Below, we compare the performance of these three methods, as compared with
random initialization.

3. Synthetic dataset results

We compare R2 results for the random guesses, nearest neighbor (N = 3), K-means, and hierarchical
clustering strategies, as shown in figure 2(a). For the nearest neighbor method, the number of shells taken
into account during averaging was varied and only the best performing nearest neighbor method is shown in
figures 2(a) and (b). It can be seen that in this instance, the hierarchical method completely fails with a very
low average R2 value. Random guessing fairs better, but still has a mean R2 map of 0.825. Meanwhile, the best
performing methods are the nearest-neighbor and K-means strategies, which indicate almost perfect results,
with mean R2 values of 0.999 and 0.998 respectively. However, it should be noted that certain pixels are
present for which no optimization converged with these initializations; these are the white pixels in
figure 2(a). This dropout occurs when the initial guesses of the coefficients deviate too far from a minima
and thus the maximum iterations of the non-linear least squares algorithm is reached, or alternatively, the
proposed coefficient value is outside of the specified bounds.

An example of the loop fits using the different methods are shown in figure 2(b) where the corresponding
pixel is outlined in red (figure 2(a)). The hierarchical method and random initialization both perform
poorly. The time taken for each method to fit the simulated dataset is shown in figure 2(c) where the error
bars indicate three separate runs for statistics, and the color signifies the average R2 value. As such, the
random initialization takes the longest, whereas nearest neighbors takes less time, whilst K-means and
hierarchical methods take the least amount of time. The time savings are substantial, between 50% and 80%
compared with the random seeds. This is likely because the good initial estimates for the parameters reduce
the number of iterations for the least squares optimizer to arrive at a value within the prescribed tolerance
value for optimization termination. The reason for the very small time taken for hierarchical clustering
might be that the initial guesses were extremely close to a sub-optimal loss minimum. In that case the time
taken to run the optimization would be very small, but the result would be highly inaccurate, which appears
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Figure 3. Results of fitting real BFO dataset showing (a) R2 values for the four fitting strategies, (b) example fit loops at the
highlighted pixel in (a), and (c) the time taken for each fitting method where the color of each bar indicates the average R2 value.

Figure 4. Results of fitting real PTO dataset showing (a) R2 values for the four fitting strategies, (b) example fit loops at the
highlighted pixel in (a), and (c) the time taken for each fitting method where the color of each bar indicates the average R2 value.

to have been the case here. Additionally, the inaccurate results may have been caused by a few bad fits high up
on the tree, corrupting the fits which use that corrupted branch. As for the nearest neighbor method, it can
be seen in figure 2(c) that N = 3 performs sufficiently better than N = 1 and N = 2. This is likely to be due
to the length scale of features in the synthetic data set, which are quite large, thus a consideration of a larger
number of similar pixels, producing an initial guess which is likely to be closer to the global minima.

4. Experimental results

Bismuth ferrite (BFO) and lead titanate (PTO) are two well-explored ferroelectrics [25] with two different
domain structures owing to their distinct crystal structures (rhombohedral vs. tetragonal), and are here used
as model systems to explore generalizability of the four fitting strategies. PFS was performed on both
materials using an Asylum Cypher AFM, resulting in 50× 50 pixel spectral maps for each material. All four
fitting strategies were performed in an identical manner as the synthetic dataset with the results for BFO and
PTO shown in figures 3 and 4, respectively. A similar trend in R2 and total fitting time are seen for BFO and
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Figure 5.Map of physical parameters in PTO, obtained from the fitting coefficients obtained using the clustering strategy.

Figure 6. (a) Piezoresponse of PTO rotated and indicating the region of interest. (b) Nucleation bias in the dense domain pattern
and the piezoresponse shifted to the left by one pixel. (c) Pearson correlation coefficients of all physical parameters after shifting
to the left (negative) and right (positive) by a certain number of pixels.

PTO loops, the K-means based clustering strategy is the fastest and contains the highest R2 values in both
data sets. Due to this consistency, the K-means based clustering strategy reveals that it can be generalizable to
a wide range of feature sizes and obtains accurate fits. It should be noted, the R2 are worse for the PTO case
for all methods; this is expected, however, given that the spatial map indicates lower values within the large
in-plane domains which are not expected to display switching behavior in a vertical PFS measurement,
neglecting shear effects [26].

For measurements taken on BFO, the loops show an almost ideal behavior; thus, the nearest neighbor
and clustering strategies work seemingly well with R2 values above 0.993. In stark contrast, the loops in PTO
are less ideal, as compared to BFO, and thus the R2 values trend lower than those in BFO. However, due to
the high level of detail in the spatial maps for PTO, we can now inspect the switching near a dense ferroelastic
structure where the domain width is only a few pixels. Using the obtained fits from the clustering strategy,
the coefficients are used to calculate the physical parameters, namely the imprint, coercive biases (V+, V−),
remnant polarizations (R+, R−), switchable polarization, work of switching, and nucleation bias, shown in
figure 5 [13]. A clear distinction can be seen between the a- and c-domains in all parameters which follows
the domain pattern seen in the PFS maps.

Regions of dense a-c domain structure, like the region observed in the upper left-hand corner of the
image, are expected to contain interesting physics [27–29]. Thus, the region is isolated and rotated, as shown
in figure 6(a), to allow for easier mapping and further correlation analysis. The correlation between physical
parameters is explored using Pearson correlation coefficients, where a coefficient of 1 indicates perfect
correlation [30]. The piezoresponse at 0 V is shifted to the left and right and compared to each physical
parameter map, as shown in figure 6(b), to identify the shift which produces the maximum correlation,
where a negative shift indicates a shift to the left. Some parameters such as work of switching seem to vary
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less with shifting the piezoresponse map, as those parameters are likely less sensitive to domain orientation.
Conversely, imprint and nucleation bias seem more sensitive to the shift as they are very sensitive to the
specific geometry of the domains [13, 18]. Shifting the parameters reveal a maximum correlation with a
piezoresponse shift of one pixel to the right, indicating that the maxima and minima are located to the right
of the domain wall. This may be due to wall twist effect lowering nucleation bias at some finite distance [31].

5. Conclusions

We have shown three strategies for fitting PFS loops which takes into account the surrounding loop
information. It was shown overall that taking priors from similar loops increases the accuracy of the fit and
reduces the processing time. Using the clustering strategy provided the highest R2 values, as compared to the
other strategies, for all scenarios presented. In addition, clustering is less sensitive to the feature size and
domain shape, which is not the case for the nearest neighbor strategy. By obtaining accurate PFS loop fits,
quantitative physical parameters can be determined, and interesting physics can be extracted. The developed
strategies for prior determination are broadly applicable to many fields, further increasing the speed and
accuracy of any fitting process. In addition, these methods could be combined with neural networks for prior
generation to further improve the spatial resolution of multi-dimensional hyperspectral datasets.

Data availability statement

The code used here is openly available via the Github repository BGlib, a part of the pycroscopy ecosystem
[32]. The data that support the findings of this study are openly available at the following URL/DOI:
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Materials

The BiFeO3 investigated here consisted of a 20 nm thick thin film deposited via pulsed laser deposition,
grown on a conductive 2 nm thick La0.67Sr0.33MnO3 back electrode and LaAlO3 (310) substrate, using
conditions previously reported [33, 34]. Additional details on sample preparation and properties can be
found in work published by Paull et al [35]. The polydomain PbTiO3 investigated here consisted of a 700 nm
pulsed metal-organic chemical vapor deposited thin film grown on KTaO3 (100) with a SrTiO3 back
electrode. Further details concerning the PbTiO3 synthesis can be found in work published by Nakashima
[36].
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