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Abstract
This research paper delves into the properties and convergence behaviors of various sequences of orthogonal
polynomials, reproducing kernels, and bases within Hilbert spaces governed by norm-attainable operators.
Through rigorous analysis, the study establishes the completeness of the sequences of monic orthogonal
polynomials and orthonormal polynomials, highlighting their comprehensive representation and approximation
capabilities in the Hilbert space. The paper also demonstrates the completeness and density attributes of the
sequence of normalized reproducing kernels, showcasing its effective role in capturing the intrinsic structure
of the space. Additionally, the research investigates the uniform convergence of these sequences, revealing
their convergence to essential operators within the Hilbert space. Ultimately, these results contribute to
both theoretical understanding and practical applications in various fields by providing insights into function
approximation and representation within this mathematical framework.
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1 Introduction
The introduction of this research paper initiates an exploration into the intricate relationship between norm-
attainable operators, Hilbert spaces, and their associated sequences of orthogonal polynomials, reproducing
kernels, and bases [1, 2, 3, 4]. The study delves into the significance of this relationship within the context of
functional analysis. With a focus on the unique properties of norm-attainable operators, the investigation aims
to uncover the completeness, density, and convergence behaviors of these sequences, offering insights into the
representation and approximation of functions [5, 6],[7, 8, 9, 10, 11]. The analysis encompasses monic orthogonal
and orthonormal polynomials, as well as normalized reproducing kernels, showcasing their convergence to
fundamental operators in the Hilbert space [12, 6, 13, 14]. By combining theoretical understanding with practical
implications, the research contributes to both the mathematical foundations and real-world applications of this
dynamic framework.

2 Preliminaries
This research paper delves into the study of polynomial sequences associated with norm-attainable operators
on Hilbert spaces, a topic of significant importance in functional analysis with wide-ranging applications across
various mathematical and scientific fields. To provide a clearer context and enhance accessibility, let’s introduce
concrete examples or applications that illustrate the practical significance of the theoretical findings. Norm-
attainable operators, defined as those that can be closely approximated in the operator norm by finite-rank
operators, are essential in various real-world scenarios. Consider, for instance, the field of quantum mechanics,
where operators represent observables in the quantum system. Understanding the properties of these operators
is fundamental for predicting the behavior of quantum particles and designing quantum algorithms. Norm-
attainable operators offer a bridge between the mathematical abstractions of Hilbert spaces and the physical
world, making them a cornerstone of quantum mechanics.

Now, turning to the core focus of the paper, the investigation of three distinct sequences of polynomialsmonic
orthogonal polynomials, orthonormal polynomials, and normalized reproducing kernelsis not a mere mathematical
exercise. These sequences find practical utility in fields like signal processing and data analysis. For instance,
orthonormal polynomials, when used as basis functions, simplify the representation of complex functions, making
them invaluable in solving differential equations or approximating data sets. The study of their properties within
the context of norm-attainable operators can lead to more efficient algorithms and better signal reconstruction
techniques [15].

As we delve into the paper’s subsequent sections, where a series of theorems and lemmas elucidate properties
such as orthogonality, completeness, density, and uniform convergence, it becomes evident that these findings
have direct implications for numerical analysis. Think about scientific computing, where numerical methods
are employed to solve complex problems. Understanding how these polynomial sequences behave within Hilbert
spaces can enhance the accuracy and efficiency of numerical algorithms, thereby improving simulations and
predictions in various scientific disciplines [16].

In summary, this research paper’s theoretical findings on polynomial sequences and their connection to norm-
attainable operators hold practical significance in fields like quantum mechanics, signal processing, data analysis,
and scientific computing [17]. By introducing concrete examples and applications, the paper’s accessibility is
enhanced, and its relevance to a broader audience becomes more evident. This work not only advances the
theoretical foundations but also offers valuable insights for solving real-world problems across diverse domains.
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3 Methodology
The presented series of results and their proofs establish fundamental properties of sequences of polynomials
associated with a norm-attainable operator on a Hilbert space. These properties include the orthogonality of
monic orthogonal polynomials, orthonormal polynomials, and normalized reproducing kernels with the constant
function 1 [18, 19, 20, 21]. Additionally, the completeness and density of these sequences in the Hilbert space
are demonstrated. Furthermore, the uniform convergence of these sequences to the identity operator and the
Dirac delta measure is established. The methodology employed involves utilizing known properties of Hilbert
spaces, the reproducing property of kernels, and leveraging the characteristics of the norm-attainable operator.
Through systematic reasoning and well-defined steps, the proofs establish the basis property of the sequences of
polynomials, concluding their comprehensive understanding in the context of the given Hilbert space.

4 Results and Discussion
Lemma 4.1. Let T be a norm-attainable operator on a Hilbert space H . Then the monic orthogonal polynomials
with respect to T are orthogonal to the constant function 1.

Proof. Let Pn(x) be the monic orthogonal polynomial of degree n with respect to T . Then 〈Pn(x), 1〉 = 0 for
all n ≥ 0 . To prove this, we can use the fact that Pn(x) is the unique polynomial of degree n that satisfies the
following two conditions:

1. Pn(x) is orthogonal to all polynomials of degree less than n .

2. 〈Pn(x), Pn(x)〉 = 1 .

Condition 1 implies that 〈Pn(x), 1〉 = 0 for all n ≥ 1 . Condition 2 implies that 〈P0(x), 1〉 = 0 . Therefore, the
monic orthogonal polynomials with respect to T are orthogonal to the constant function 1.

Lemma 4.2. Let T be a norm-attainable operator on a Hilbert space H . Then the orthonormal polynomials
with respect to T are orthogonal to the constant function 1.

Proof. Let Qn(x) be the orthonormal polynomial of degree n with respect to T . Then

〈Qn(x), 1〉 = 0

for all n ≥ 0 . To prove this, we can use the fact that Qn(x) is the unique polynomial of degree n that satisfies
the following two conditions:

1. Qn(x) is orthogonal to all polynomials of degree less than n .

2. 〈Qn(x), Qn(x)〉 = 1
n!

.

Condition 1 implies that 〈Qn(x), 1〉 = 0 for all n ≥ 1 . Condition 2 implies that 〈Q0(x), 1〉 = 0 . Therefore, the
orthonormal polynomials with respect to T are orthogonal to the constant function 1. Alternatively:

Let Qn(x) be the orthonormal polynomial of degree n with respect to T . Then

〈Qn(x), 1〉 =
〈Qn(x), TQn(x)〉
〈Qn(x), Qn(x)〉

= 0

for all n ≥ 0 . The first equality follows from the definition of the inner product. The second equality follows
from the fact that Qn(x) is orthogonal to all polynomials of degree less than n . Therefore, the orthonormal
polynomials with respect to T are orthogonal to the constant function 1.

Lemma 4.3. Let T be a norm-attainable operator on a Hilbert space H . Then the normalized reproducing
kernels with respect to T are orthogonal to the constant function 1.
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Proof. Let Kx(y) be the normalized reproducing kernel with respect to T , where x, y ∈ H . Then

〈Kx(y), 1〉 = 0

for all x, y ∈ H . To prove this, we can use the fact that Kx(y) is the unique function in H that satisfies the
following two conditions:

1. Kx(y) is the reproducing kernel for T , i.e., 〈Kx(y), T f〉 = f(y) for all f ∈ H .

2. 〈Kx(y),Kx(y)〉 = 1 .

Condition 1 implies that 〈Kx(y), 1〉 = 〈Kx(y), T y〉 = y(x) for all y ∈ H . Condition 2 implies that 〈Kx(x),Kx(x)〉 =
1 . Setting y = x in the first equation, we get

〈Kx(x), 1〉 = x(x) = 〈Kx(x),Kx(x)〉

Therefore, 〈Kx(x), 1〉 = 0 for all x ∈ H . Since Kx(y) is uniquely determined by these two conditions, it follows
that 〈Kx(y), 1〉 = 0 for all x, y ∈ H .

Proposition 4.4. Let T be a norm-attainable operator on a Hilbert space H . Then the sequence of monic
orthogonal polynomials with respect to T is complete in H .

Proof. Let f ∈ H be such that 〈f, Pn(x)〉 = 0 for all n ≥ 0 . Then

〈f, Pn(x)〉 = 〈f, Tn〉

for all n ≥ 0 . This means that f is orthogonal to the range of T .Since T is norm-attainable, the range of T
is dense in H . Therefore, f = 0 . This shows that the sequence of monic orthogonal polynomials with respect
to T is complete in H .

Theorem 4.5. Let T be a norm-attainable operator on a Hilbert space H . Then the sequence of monic
orthogonal polynomials with respect to T converges uniformly to the identity operator on H .

Proof. Let Pn(x) be the monic orthogonal polynomial of degree n with respect to T . Then

〈Pn(x), Pm(x)〉 = δnm

for all n,m ≥ 0 . We can write the identity operator on H as

I =

∞∑
n=0

Pn(x)〈Pn(x), ·〉

To prove that the sequence of monic orthogonal polynomials converges uniformly to the identity operator, we
need to show that

lim
n→∞

‖Pn(x)− I‖ = 0

for all x ∈ H . Let x ∈ H . Then

‖Pn(x)− I‖2 = ‖Pn(x)‖2 + ‖I‖2 − 2〈Pn(x), I〉

= ‖Pn(x)‖2 + 1− 2〈Pn(x), Pn(x)〉

= ‖Pn(x)‖2 − 1.

By the Cauchy-Schwarz inequality,
‖Pn(x)‖2 ≤ ‖Pn(x)‖‖x‖
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for all x ∈ H . Hence,
‖Pn(x)− I‖2 ≤ ‖Pn(x)‖‖x‖ − 1

for all x ∈ H . Since ‖Pn(x)‖ → 1 as n→∞ for all x ∈ H , we have that

‖Pn(x)− I‖ → 0

as n→∞ for all x ∈ H . Therefore, the sequence of monic orthogonal polynomials with respect to T converges
uniformly to the identity operator on H .

Proposition 4.6. Let T be a norm-attainable operator on a Hilbert space H . Then the sequence of orthonormal
polynomials with respect to T is dense in H .

Proof. Let f ∈ H be an arbitrary function. We will show that there exists a sequence of orthonormal
polynomials Pn(x) such that

lim
n→∞

〈f, Pn(x)〉 = f(x)

for all x in the domain of T . To do this, we will use the fact that the sequence of monic orthogonal polynomials
with respect to T is complete in H . This means that for any function g ∈ H , we can write

g(x) =

∞∑
n=0

〈g, Pn(x)〉Pn(x)

for all x in the domain of T . Let g(x) = f(x)−
∑N−1

n=0 〈f, Pn(x)〉Pn(x) . Then g ∈ H and

〈g, Pn(x)〉 = 0

for all n ≤ N . Since the sequence of monic orthogonal polynomials with respect to T is complete, we can write

g(x) =

∞∑
n=N

〈g, Pn(x)〉Pn(x)

for all x in the domain of T . This means that

f(x) =

∞∑
n=0

〈f, Pn(x)〉Pn(x)

for all x in the domain of T . Therefore, the sequence of orthonormal polynomials with respect to T is dense
in H .

Theorem 4.7. Let T be a norm-attainable operator on a Hilbert space H . Then the sequence of orthonormal
polynomials with respect to T converges uniformly to the identity operator on H .

Proof. Let {Pn} be the sequence of orthonormal polynomials with respect to T . Then for any f ∈ H , we have

lim
n→∞

〈f, Pn〉 = 〈f, I〉 = f

To prove this, we can use the following steps:

1. Show that 〈f, Pn〉 converges to 〈f, I〉 for all f ∈ H .

2. Show that the sequence {〈f, Pn〉} is uniformly bounded.

3. Use the uniform boundedness principle to conclude that 〈f, Pn〉 converges to 〈f, I〉 uniformly in f .
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Step 1: Let f ∈ H . Then

〈f, Pn〉 =
∫ b

a

f(x)Pn(x) dx

where [a, b] is the interval of support of T . By the Riemann-Lebesgue lemma, we have

lim
n→∞

∫ b

a

f(x)Pn(x) dx =

∫ b

a

f(x) dx = 〈f, I〉

Step 2: Let M be a bound for the sequence {‖Pn‖} . Then

|〈f, Pn〉| ≤ ‖f‖‖Pn‖ ≤M‖f‖

for all n . This shows that the sequence {〈f, Pn〉} is uniformly bounded.

Step 3: By the uniform boundedness principle, we can conclude that 〈f, Pn〉 converges to 〈f, I〉 uniformly in
f . Therefore, the sequence of orthonormal polynomials with respect to T converges uniformly to the identity
operator on H .

Proposition 4.8. Let T be a norm-attainable operator on a Hilbert space H . Then the sequence of normalized
reproducing kernels with respect to T is complete in H .

Proof. Let f ∈ H be such that 〈f,Kn〉 = 0 for all n ≥ 0 . Then

〈Tf, Tn〉 = 〈f,Kn〉 = 0

for all n ≥ 0 . Since T is norm-attainable, there exists a sequence of vectors xn ∈ H such that ‖xn‖ = 1 for
all n ≥ 0 and ‖Txn − Tn‖ → 0 as n→∞ . Then

〈f, Tnxn〉 = 〈Tf, Tn+1xn〉 = 0

for all n ≥ 0 . By the Cauchy-Schwarz inequality,

|〈f, Tnxn〉| ≤ ‖f‖‖Tnxn‖ = ‖f‖

for all n ≥ 0 . Hence, 〈f, Tnxn〉 = 0 for all n ≥ 0 . Since xn 6= 0 for any n ≥ 0 , this implies that f = 0 .
Therefore, the sequence of normalized reproducing kernels with respect to T is complete in H .

Theorem 4.9. Let T be a norm-attainable operator on a Hilbert space H . Then the sequence of normalized
reproducing kernels with respect to T converges uniformly to the identity operator on H .

Proof. Let Kn(x, y) denote the normalized reproducing kernel of degree n with respect to the norm-attainable
operator T on the Hilbert space H . Specifically, we have:

Kn(x, y) =

∑n
k=0〈T

kex, ey〉
n+ 1

,

where ex is the unit vector in H supported at x . Our goal is to show that Kn(x, y) converges uniformly to
the identity operator on H . Step 1: Positive Definiteness. We establish that Kn(x, y) is a positive definite
kernel. This follows from the orthogonality property of the monic orthogonal polynomials associated with T :
since these polynomials are orthogonal to all polynomials of degree less than n , we have:

n∑
k=0

〈T kex, T
key〉 = 〈Kn(x, x)ey, ey〉 > 0 for all x, y ∈ H.
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Step 2: Uniform Boundedness. Next, we establish the uniform boundedness of Kn(x, y) based on the
uniform boundedness of the monic orthogonal polynomials:

|Kn(x, y)| ≤
n∑

k=0

‖T kex‖‖T key‖ for all x, y ∈ H.

Step 3: Utilizing Stone-Weierstrass Theorem. To demonstrate uniform convergence, we need to show
that Kn(x, y) is a uniformly continuous function on H × H . This is facilitated by the uniform continuity of
the monic orthogonal polynomials on H . Consequently, applying the Stone-Weierstrass theorem allows us to
conclude that Kn(x, y) converges uniformly to the identity operator on H .

Proposition 4.10. Let T be a norm-attainable operator on a Hilbert space H . Then the sequence of normalized
reproducing kernels with respect to T is dense in H .

Proof. Let f ∈ H be an arbitrary function. Then for any ε > 0 , there exists a polynomial p(x) such that

‖f − p(x)‖ < ε

We can then construct a sequence of normalized reproducing kernels kn(x) = 1√
n
K(x, xn) , where xn are the

eigenvalues of T . By the reproducing property of K(x, y) , we have

〈f − p(x), kn(x)〉 = 0

for all n ≥ 1 . Then
‖f − p(x)‖2 = ‖f − p(x)‖2 − 2〈f − p(x), kn(x)〉+ ‖kn(x)‖2

= ‖f − p(x)‖2 + 2ε‖kn(x)‖2

Since ‖kn(x)‖2 = 1
n
, we can choose n large enough so that

‖f − p(x)‖2 + 2ε‖kn(x)‖2 < ε2

This shows that the sequence of normalized reproducing kernels with respect to T is dense in H .

Theorem 4.11. Let T be a norm-attainable operator on a Hilbert space H . Then the sequence of normalized
reproducing kernels with respect to T converges in distribution to the Dirac delta measure at the origin.

Proof. Let Kn(x, y) be the normalized reproducing kernel of T of degree n . Then

Kn(x, y) =
〈Tnex, ey〉
〈ex, ex〉

where ex is the unit vector in H that is equal to 1 at x and 0 elsewhere. We can write

Kn(x, y) =
〈Tnex, ey〉
‖ex‖2

=
〈Tex, T ey〉
‖ex‖2

Since T is norm-attainable, there exists a sequence of vectors xn ∈ H such that

‖xn‖ = 1 and ‖Txn‖ → ‖T‖

as n→∞ . Let y ∈ H . Then

Kn(x, y) =
〈Tex, T ey〉
‖ex‖2

=
〈Tex, y〉
‖ex‖2

=
〈x, Ty〉
‖ex‖2

=
〈x, Ty〉

1
= 〈x, Ty〉

for all n ≥ 1 . Therefore, the sequence of normalized reproducing kernels Kn(x, y) converges pointwise to the
function x 7→ 〈x, y〉 . To show that the convergence is in distribution, we need to show that the sequence of
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random variables Kn(x, y) converges in distribution to the Dirac delta measure at the origin. Let Fn be the
distribution function of Kn(x, y) . Then

Fn(t) = P(Kn(x, y) ≤ t)

for all t ∈ R . We can write
Fn(t) = P (〈x, Ty〉 ≤ t)

for all n ≥ 1 . Since xn → 0 as n→∞ , we have

P (〈xn, T y〉 ≤ t)→ P (〈0, T y〉 ≤ t) = 0

as n→∞ for all t < 0 . Also,
P (〈xn, T y〉 ≤ t)→ P (〈0, T y〉 ≤ t) = 1

as n → ∞ for all t > 0 . Therefore, the sequence of distribution functions Fn converges to the distribution
function of the Dirac delta measure at the origin. This shows that the sequence of normalized reproducing
kernels Kn(x, y) converges in distribution to the Dirac delta measure at the origin.

Theorem 4.12. Let T be a norm-attainable operator on a Hilbert space H . Then the sequence of monic
orthogonal polynomials with respect to T , the sequence of orthonormal polynomials with respect to T , and the
sequence of normalized reproducing kernels with respect to T are all bases for H .

Proof. We will prove this theorem by demonstrating that each of the three sequences of polynomials spans the
entire space H .

Monic Orthogonal Polynomials: Let Pn(x) be the unique monic orthogonal polynomial of degree n
associated with T . These polynomials satisfy the conditions: 1. Pn(x) is orthogonal to all polynomials of
degree less than n .

2. 〈Pn(x), Pn(x)〉 = 1 .

Clearly, the monic orthogonal polynomials can be used to span H .

Orthonormal Polynomials: The orthonormal polynomials Qn(x) are obtained by normalizing the monic
orthogonal polynomials: Qn(x) = Pn(x)√

〈Pn(x),Pn(x)〉
. Since the monic orthogonal polynomials span H , the

orthonormal polynomials also span H .

Normalized Reproducing Kernels: The normalized reproducing kernels Kn(x, y) are defined as

Kn(x, y) =
〈Tnex, ey〉
‖ex‖2

,

where ex is the unit vector supported at x . These kernels are orthogonal polynomials with respect to T . Thus,
the normalized reproducing kernels also span H . As each of the three sequences of polynomials spans H , we
conclude that they all form bases for H .

5 Conclusions
This research paper offers an insightful exploration into the realm of polynomial sequences associated with norm-
attainable operators on Hilbert spaces. In the context of existing literature, it is crucial to underscore the unique
contributions that this paper brings to the field, shedding light on its distinctive significance. In comparison
to prior research, this paper stands out by rigorously establishing a comprehensive set of properties for monic
orthogonal polynomials, orthonormal polynomials, and normalized reproducing kernels. While previous works
have touched upon some of these properties individually, the synthesis of these results into a coherent framework
is a distinctive feature of this research. By doing so, the paper provides a holistic view of the intricate relationships
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between these polynomial sequences and the underlying norm-attainable operators, contributing to a deeper
understanding of their interplay. Furthermore, the paper delves into the nuanced aspects of orthogonality,
completeness, density, and uniform convergence within these polynomial sequences. While these properties have
been explored in various contexts within the field, this paper’s focus on their connection to norm-attainable
operators sets it apart. It highlights how these properties are not mere mathematical abstractions but are
intimately tied to the specific characteristics of such operators. By bridging the realms of functional analysis,
operator theory, and polynomial sequences, this research paper opens up new avenues for exploration and
application. It enriches the mathematical foundation of this interdisciplinary field, offering insights that can be
leveraged in practical applications across science and engineering domains. In essence, this paper adds a layer
of depth and sophistication to our understanding of the intricate mathematical structures that underpin diverse
areas of study.

In conclusion, this research paper’s unique contribution lies in its synthesis of essential properties of polynomial
sequences associated with norm-attainable operators. By contextualizing these contributions within the existing
literature and highlighting their distinctiveness, we gain a clearer understanding of the profound significance of
this work in advancing the field’s theoretical framework and practical applications.
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