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Abstract: The separation of aircraft in cruising flight in air corridors is based on the assurance of
an extremely low probability of collision due to position inaccuracy caused by navigation errors,
atmospheric disturbances, or other factors. The appropriate standard is the International Civil
Aviation Organization (ICAO) Target Level of Safety (TLS) of frequency of collision less than 5 × 10−9

per flight hour. An upper bound for the collision probability per unit distance is the probability
of coincidence, in the case of aircraft flying at the same speed along parallel tracks in the same
direction. This leads to the case of two aircraft flying at a constant separation, for which at least
three probabilities of coincidence can be calculated: (i) the maximum probability of coincidence at
the most likely point; (ii) the cumulative probability of coincidence integrated along the flight path;
and (iii) the cumulative probability of coincidence integrated over all space. These three probabilities
of coincidence are applied to the old standard and new reduced vertical separations of 2000 ft and
1000 ft respectively, for comparison with the ICAO TLS, and also to assess their suitability as safety
metrics. The possibility is raised of complementing the ICAO TLS 5 × 10−9 per hour, which is
suitable for the cumulative probability of collision, by two additional safety metrics: (i) one per hour
flown squared, which is suitable for comparison with the maximum joint probability density of
collision; and (ii) another times hour flown, for comparison with the three-dimensional cumulative
probability of coincidence. These three metrics (i) to (iii) have distinct dimensions, give different
information, and could be alternatives or supplements.

Keywords: aircraft separation; safety metrics; air traffic management; probability of collision;
airspace capacity

1. Introduction

The growth in air transport requires increasing air traffic capacity without degrading
safety [1–3]. Air traffic capacity is determined by aircraft separation. The latter is influenced
by two types of criteria: (i) the wake vortex effects, e.g., for aircraft on approach to land [4–9];
(ii) the position errors, e.g., longitudinal, lateral or vertical, that could lead to collisions. The
present paper addresses only the latter (ii) aspect; a simple safety criterion is the ICAO [10]
Target Level of Safety (TLS) specifying a frequency of collision less than 5 × 10−9 per
hour. A specified level of safety should be achievable by setting separation rules [11] and
specifying a corresponding navigation accuracy [12,13]; a final safety net is provided by
conflict resolution methods [14], or equipment such as T-CAS. The models of collision
probabilities [15–23] usually do not explicitly include atmospheric disturbances [24–26] and
their effects on airplane performance [27–33] and flight stability [34–41]; the implication is
that the navigation errors, atmospheric disturbances, flight maneuvers, or their combination
is such that the position error satisfies a given probability distribution [42–50].

The probability distribution uses as a parameter the root-mean-square (r.m.s.) position
error due to any single cause or combination: (i) weather effects, (ii) navigation errors,
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(iii) imprecise control inputs, (iv) sensor drift, or even (v) insertion of incorrect input data
in the flight management system. It might be argued that the errors (i) to (iv) are random,
whereas (v) wrong data input belongs to another class of “operator error”. However,
whatever the original cause of the error, what matters is the position drift accumulated
over time. In this respect, a (v) wrong input and (ii) a navigation error are “equivalent”
if they lead to the same r.m.s. position drift before being detected and corrected. In this
sense, the use of the r.m.s. position error is quite general and can cover all possible causes
and combinations.

The present paper considers the case of aircraft flying along air corridors that is
with the same speed and direction, so that the distance between them is constant. In
this case, the average crossing rate is zero, because it is proportional to the difference
in velocity errors [15]. The present paper use the alternative method [21] of collision
probabilities (Section 2) in three alternative but not equivalent forms, specifying three
safety metrics: (i) the maximum of the joint probability density of coincidence (Section 2.1)
that has the dimensions of inverse square of distance; (ii) the three-dimensional cumulative
probability of coincidence (Section 2.2) that has the dimensions of distance; and (iii) the
one-dimensional marginal probability of coincidence (Section 2.3) that has the dimensions
of inverse of distance. By using the aircraft velocity, all these three safety metrics can be
converted to the dimension of inverse time for comparison with the ICAO TLS standard.
Another option is to relate one of the safety metrics (ii) to the ICAO TLS standard, using
the other two metrics as alternatives or complements.

The three metrics are compared (Section 3) for standard and reduced vertical sep-
aration minima (Section 3.1). The sensitivity of the results to the choice of probability
distribution (Section 3.2) is demonstrated through the use of correction factors (Section 3.3).
One use of all three alternative or complementary safety metrics is to address [50] the
fundamental question of airways capacity: for a given safety level, what is the trade-off
between capacity/separation and position/navigation accuracy? For example, given an
improvement in position accuracy, what reduction in separation and increase in capacity is
possible with the same safety level? Or conversely, if the aim is to increase capacity and
decrease separation, by how much should navigation accuracy be improved to maintain
safety? The preceding questions can also be addressed while requiring a higher level
of safety, in a triple trade-off: safety vs. capacity/separation vs. position/navigation
accuracy. The answer to these questions is of interest to: (i) the Air Traffic Management
(ATM) service providers that should provide adequate capacity while ensuring safety;
and (ii) to the developers of navigation and flight control systems to assess the benefits
of increased performance of their equipment. Both contribute to the planning of an ATM
system that can cope with air traffic growth of 3–7% per year, doubling the number of
flights every 10–23 years, which may be regained after the current crisis caused by the
COVID-19 pandemic.

2. Three Alternative Safety Metrics for Collision Risk

Two aircraft are considered “dissimilar” if [20] the r.m.s. flight path deviations (σ1, σ2)
are different σ1 6= σ2; they coincide σ1 = σ2 in the particular case of “similar” aircraft [21]
that simplifies the analysis. The general case is considered next. It is assumed that the two
aircraft fly at the same speed along parallel flight paths, hence at a constant distance. This
distance is split into along and across track and altitude, and it is assumed that they are
statistically independent. Thus, in each of the three directions, there is a one-dimensional
separation L. This paper considers probabilities of collision for only one separation, say
altitude. However, aircraft can collide at any point in three-dimensional space, depending
on their flight path deviations. It is assumed that the deviations around mean velocity are
equally probable in all directions and thus depend only on radial distance. It is important
to note the distinction between (i) the r.m.s. flight path deviations, which are statistical
measure of random events, and could for example be isotropic; and (ii) the separation
distances set by ATM rules independent of local flying conditions, which are usually quite
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different along track, across track, and in altitude. For this reason, the ratio of (i) to (ii),
that is the r.m.s. position error as a fraction of the separation distance, turns out to be the
main parameter affecting safety to be quantified in the sequel. A Gaussian probability
distribution is taken as the starting point to calculate (i) the point maximum of the joint
probability density of coincidence (Section 2.1); (ii) the three-dimensional cumulative
probability of coincidence in all space (Section 2.2); (iii) the one-dimensional marginal
probability of coincidence along the line joining the two aircraft that is orthogonal to the
flight paths (Section 2.3).

2.1. Maximum of the Joint Probability Density of Coincidence

Consider two aircraft flying along parallel tracks at the same speed and at a constant
separation Lz in altitude, and distance Ly across track and Lx along track. Assuming
that the flight path deviations in the three orthogonal Cartesian directions are statistically
independent, the joint probability density in three dimensions is the product of three
one-dimensional probability densities. Thus, the general separation between two aircraft
flying at the same velocity along parallel tracks is reduced to three cases of constant
separation L = (Lx, Ly, Lz). Thus, only one separation L is considered next. It is assumed
that the probability density function of aircraft 1 deviating from its average position is a
Gaussian, and that is independent of the direction relative to its average velocity. Thus, the
one-dimensional probability density function of flight path deviations is given by:

P1

(→
r 1

)
=

√
2/π

σ1
exp

−1
2


∣∣∣→r 1

∣∣∣
σ1

2, (1a)

where σ1 is the r.m.s. position error; and using spherical coordinates (r, θ, φ), with (Figure 1)
origin on aircraft 1, and Ox -axis along the flight path, and polar axis Oz vertical upward,
the position vector

→
r 1 of the deviation of the first aircraft has Cartesian components:

→
r 1 = (r sin θ cos φ, r sin θ sin φ, r cos θ). (1b)

Since the one-dimensional Gaussian probability density [42–50] depends only on the
modulus of the position vector (1b) that is positive 0 ≤

∣∣∣→r 1

∣∣∣ < +∞, a factor of 2 is inserted
in (1a), so that the total probability over all space remains normalized to unity. The second
aircraft may have a distinct r.m.s. position error σ2, corresponding to a probability of
deviation to a position

→
r 2:

P2

(→
r 2

)
=

√
2/π

σ2
exp

−1
2


∣∣∣→r 2

∣∣∣
σ2

2, (2a)

where a coincidence occurs if:

→
r 2 = (r sin θ cos φ, r sin θ sin φ, L− r cos θ), (2b)

using a spherical coordinate system centered on the first aircraft with polar axis along
the flight path. Here, the size of the aircraft is omitted, by including it [8] either in the
separation L or in the r.m.s. position errors σ1 and σ2. The r.m.s. position errors can be
specified by ICAO navigation performance minima, in which case they would be equal for
aircraft in the same class; this is included in the more general case of aircraft with dissimilar
navigation performance considered here. Assuming that the position errors of the two
aircraft are statistically independent, the joint probability density of coincidence is the
product of (1a) and (2a):

P12(r, θ) = P1(
→
r 1).P2(

→
r 2), (3)
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where (Figure 2):

P1

(→
r 1

)
=

√
2/π

σ1
exp

[
−1

2

(
r

σ1

)2
]

, (4a)

P2

(→
r 2

)
=

√
2/π

σ2
exp

{
− r2 + L2 − 2r L cos θ

2(σ2)
2

}
. (4b)
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flight path, the probability of coincidence depends on (r, θ) but not on φ, because the configuration is
axisymmetric around the flight path.

Aerospace 2021, 8, x FOR PEER REVIEW 4 of 24 
 

where (Figure 2): 

( )
2

1 1
1 1

2 / 1exp ,
2
rP r π

σ σ

  
 = −  
   

  (4a) 

( )
( )

2 2

2 2 2
2 2

2 / 2   cosexp .
2

r L r LP r π θ
σ σ

 + − = − 
  

  (4b)

 
Figure 1. Using spherical coordinates (r, θ, ϕ) with origin on aircraft one, and polar axis along the 
flight path, the probability of coincidence depends on (r, θ) but not on ϕ, because the configura-
tion is axisymmetric around the flight path. 

 
Figure 2. Two aircraft flying along parallel straight flight path with constant separation distance 
Lz, with the first having a position drift 1r


 and the second having a position drift 2r


 leading to a 

coincidence anywhere in three dimensions. 

Figure 2. Two aircraft flying along parallel straight flight path with constant separation distance
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The radius r appears in both expressions, the polar angle θ appears only in (4b), and
the azimuthal angle φ does not appear at all, because the probability of coincidence is
axially symmetric in the present case of parallel flight tracks.

From (3; 4a,b), it follows that the joint probability of density coincidence depends on
the position (r, θ):

P12(r, θ) =
2

πσ1σ2
exp

[
−1

2

(
L
σ2

)2
]

exp
{
− r2

2

[
(σ1)

−2 + (σ2)
−2
]
+ rL(σ2)

−2 cos θ

}
. (5)

Its extremum is specified by the first derivatives:

∂P12(r, θ)

∂θ
= −P12(r, θ)·rL(σ2)

−2 sin θ, (6a)

∂P12(r, θ)

∂r
= P12(r, θ)·

{
−r
[
(σ1)

−2 + (σ2)
−2
]
+ L(σ2)

−2 cos θ
}

. (6b)

The extremum of the probability of coincidence occurs when both derivatives vanish:

r = rm, θ = θm :
∂P12

∂r
(r, θ) = 0 =

∂P12(r, θ)

∂θ
, (7a,b)

which is the case on the line orthogonal to the flight path (8a):

θ = 0,
rm

L
=

1

1 + (σ2/σ1)
2 , (8a,b)

at the position (8b), viz.: (i) for aircraft with equal r.m.s. position errors σ1 = σ2, the
maximum probability of coincidence is at a position r2 = L/2 halfway between them;
(ii) for aircraft with unequal r.m.s. position errors σ2 6= σ1, the maximum probability of
coincidence occurs at a position closer to the aircraft, which has more “accurate” navigation,
because it is the less accurately navigating aircraft that deviates most, viz. rm > L/2 if
σ1 > σ2 and rm < L/2 if σ1 < σ2. The solution (8a,b) of (6a,b; 7a,b) is unique, so there is
only one extremum at finite distance.

In order to prove that the extremum (8a,b) in the probability of coincidence (5) is
actually a maximum (and not a minimum, or an inflexion), it is necessary to consider
second-order derivatives, i.e., one order beyond (6a,b), viz.:

∂2P12(r,θ)
∂θ2 = −P12(r, θ)·rL(σ2)

−2
[
cos θ − rL(σ2)

−2 sin2 θ
]
, (9a)

∂2P12(r,θ)
∂r∂θ = −P12(r, θ)·L(σ2)

−2 sin θ
{

1 + rL(σ2)
−2 cos θ − r2

[
(σ1)

−2 + (σ2)
−2
] }

, (9b)

∂2P12(r,θ)
∂r2 = −P12(r, θ)·

{ [
(σ1)

−2 + (σ2)
−2
]
−
{

L(σ2)
−2 cos θ − r

[
(σ1)

−2 + (σ2)
−2
] }2

}
. (9c)

At the position of the extremum (8a,b), the second-order derivatives (9a,b,c) take
the values:

θ = θm, r = rm :
{

∂2

∂θ2 ,
∂2

∂θ ∂r
,

∂2

∂r2

}
P12 = −Pm

{
rmL/(σ2)

2, 0, (σ1)
−2 + (σ2)

−2
}

, (10a,b)

where Pm is the value at the extremum:

Pm ≡ P12(rm, θm) =
2

πσ1σ2
exp

{
− L2/2

(σ1)
2 + (σ2)

2

}
; (11)
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since:

d2P12 =
(
∂2P12/∂θ2)(dθ)2 + 2

(
∂2P12/∂r ∂θ

)
drdθ +

(
∂2P12/∂r2)(dr)2

= −Pm

{
rmL(σ2)

−2(dθ)2 +
[
(σ1)

−2 + (σ2)
−2
]
(dr)2

}
< 0,

(12)

is negative for arbitrary dθ and dr, the extremum is actually a maximum. The maximum
is unique because there is only one extremum (8a,b) that is a solution of (7a,b) with
(6a,b). The point maximum of the joint probability density of coincidence (11) is given
per unit of distance flown by each aircraft taken to the square. Since the ICAO TLS
specifies a probability of collision per flight hour flown, a change of units between distance
and time using the velocity is needed (Section 3.1). A different change of units will be
needed if instead of a point maximum of the joint probability density of coincidence (11) a
cumulative probability density is used; for example, a coincidence is possible anywhere,
and thus integrating over all space specifies a three-dimensional cumulative probability
of coincidence.

2.2. Three-Dimensional Cumulative Probability of Coincidence over All Space

The three-dimensional cumulative probability of coincidence is defined (13) as the
integral over all space (Figure 1) of the joint probability density of coincidence (5):

=
P ≡

2π∫
0

dφ

π∫
0

dθ

∞∫
0

dr P12(r, θ)r2 sin θ; (13)

substituting (5) in (13) leads to:

=
P ≡ [4/(σ1σ2)] exp

{[
−(L/σ2)

2
]
/2
}

×
∞∫
0

r2 I0(r) exp
{
−
(
r2/2

)[
(σ1)

−2 + (σ2)
−2
] }

dr;
(14)

where the dφ-integration in (13) is trivial, and the dθ-integration appears in:

Io(r) ≡
π∫

0

exp
[
rL(σ2)

−2 cos θ
]

sinθ dθ. (15)

This integral is elementary:

I0(r) = −
[
(σ2)

2/rL
]

exp
[
rL(σ2)

−2 cos θ
]π

0
, (16)

so that only the dr-integration remains in (14).
Substituting (16) in (14), the three-dimensional cumulative probability of coincidence

is given by:
=
P =

4σ2

σ1
L−1 exp

[
−1

2

(
L
σ2

)2
]
(I+ − I−), (17)

where I± are the dr-integrations:

I± =

∞∫
0

r exp
[
−
(

r2/2
) (

σ1
−2 + σ2

−2
)
± rL σ2

−2
]

dr . (18a)

The change of variable r → −r :
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I± =

−∞∫
0

r exp
[
−
(

r2/2
) (

σ1
−2 + σ2

−2
)
∓ rL σ2

−2
]

dr . (18b)

shows that:

I+ − I− =

+∞∫
−∞

r exp
[
−
(

r2/2
) (

σ1
−2 + σ2

−2
)
+ rL σ2

−2
]

dr , (19)

so that it is sufficient to evaluate this integral. The latter is reducible to the well-known [51]
Gaussian integral:

+∞∫
−∞

exp
(
−ζ2

)
dζ =

√
π, (20)

as will be shown next.
The change of variable:

ζ ≡
(

r/
√

2
)(

σ1
−2 + σ2

−2
)1/2

− ξ, ξ ≡
(

L/
√

2
)

σ2
−2
(

σ1
−2 + σ2

−2
)−1/2

(21a,b)

where the ξ is a constant, implies:

dr =
√

2
(

σ1
−2 + σ2

−2
)−1/2

dζ, −
(

r2/2
) (

σ1
−2 + σ2

−2
)
+ rLσ2

−2 = −ζ2 + ξ2; (22a,b)

substitution of (22a,b) in (19) yields:

I+ − I− = 2
(

σ1
−2 + σ2

−2
)−1

exp
(

ξ2
) +∞∫
−∞

(ζ + ξ) exp
(
−ζ2

)
dζ , (23a)

where (i) the first term is zero, because the integrand ζ exp
(
−ζ2) is an odd function of ζ

integrated over the real line; (ii) the second term is specified by the Gaussian integral (20),
viz.:

I+ − I− = 2
√

π
(
σ1
−2 + σ2

−2)−1
ξ exp

(
ξ2)

= 2
√

πL(σ2)
−2(σ1

−2 + σ2
−2)−3/2 exp

[(
L2/2

)
σ2
−4/

(
σ1
−2 + σ2

−2)] ,
(23b)

where (21b) was used. Substitution of (23b) in (17) specifies the three-dimensional cumula-
tive probability of coincidence:

=
P = 4

√
2π(σ1σ2)

2
[
(σ1)

2 + (σ2)
2
]−3/2

exp
{
−
(

L2/2
)

/
[
(σ1)

2 + (σ2)
2
] }

. (24)

Note that this is a probability of coincidence times distance flown, because it results
from the integration in three dimensions of a probability of coincidence per square of
distance flown. Thus, it does not have the dimension of the ICAO TLS standard of
probability of coincidence per hour flown. A probability of coincidence per unit distance
flown will result if the probability of coincidence per square of distance flown is integrated
in one dimension, e.g., across the flight path.

2.3. One-Dimensional Marginal Probability of Coincidence

The joint probability density of coincidence across the flight path is obtained by setting
θ = 0 in (5), as shown by the choice of spherical coordinates in Figures 1 and 2:

P12(r, 0) =
2

πσ1σ2
exp

[
−(L/σ2)

2/2
]

exp
[
−
(

r2/2
)(

σ1
−2 + σ2

−2
)
+ rLσ2

−2
]
. (25a)
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The one-dimensional marginal probability of coincidence across the flight path is
obtained by a single dr integration over the real line:

P ≡
+∞∫
0

P12(r, 0) dr , (25b)

and is thus specified by evaluation of the integral

P ≡ [2/(πσ1σ2)]·exp
[
−(L/σ2)

2/2
]+∞∫

0
exp

[
−
(
r2/2

) (
σ1
−2 + σ2

−2)+ rLσ2
−2] dr ; (26a)

use of the same change of variable (21a,b) leads as before (22a,b) to:

P =
[
2
√

2/(πσ1σ2)
] (

σ1
−2 + σ2

−2)−1/2 exp
[
−(L/σ2)

2/2
]

exp
(
ξ2)+∞∫
−ξ

exp
(
−ζ2) dζ . (26b)

Introducing the complementary error function (27a):

erfc(−ξ) =
1√
π

+∞∫
−ξ

exp
(
−ζ2

)
dζ = 1− erf(−ξ) (27a,b)

that is related to the error function [50] by (27b), the one-dimensional marginal probability
of coincidence across the flight path (26a) is given by

P =
[
2
√

2/
(
σ1σ2
√

π
)] (

σ1
−2 + σ2

−2
)−1/2

exp
[
−(L/σ2)

2/2
]

exp
(

ξ2
)

erfc(−ξ) . (27c)

Assuming (29a), the complementary error function, reduces to unity and (27c) simpli-
fies to

ξ >> 1 :P = 2
√

2/π
[
(σ1)

2 + (σ2)
2
]−1/2

· exp
{
−
(

L2/2
)

/
[
(σ1)

2 + (σ2)
2
]}

, (28a,b)

which is the final expression for the two-dimensional marginal probability of coincidence
across the flight path.

In the case (28a) of aircraft with identical r.m.s. position errors, (28b) simplifies to (29a):

σ1 = σ2 ≡ σ :P=
[
2/
(
σ
√

π
)]

exp
{
−[L/(2σ)] 2

}
. (29a,b)

In the general case (5) of aircraft with dissimilar r.m.s. position errors σ1 and σ2, or
variances (σ1)

2 and (σ2)
2, the arithmetic mean:

2σ ≡ (σ1)
2 + (σ2)

2, (30a)

appears in (28b):
P =

[
2/
(
σ
√

π
)]

exp
{
−[L/(2σ)] 2

}
, (30b)

instead of σ in (29b). The maximum of the joint probability density of coincidence (11)
simplifies, for aircraft with identical r.m.s. position errors (31a) to (31b):

σ1 = σ2 ≡ σ : Pm =
[
2/
(

σ2π
)]

exp
{
−[L/(2σ)] 2

}
. (31a,b)

In the general case of aircraft with dissimilar r.m.s. position errors σ1 and σ2, or
variances (σ1)

2 and (σ2)
2, the maximum of the joint probability density of coincidence
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(11) involves not only the arithmetic mean of variances (30a) but also the geometric mean
of variances:

σ1σ2 =

√
(σ1)

2(σ2)
2 ≡ σ2/ f , (32a)

and thus can be written in the form:

Pm = f
[
2/
(

πσ2
)]

exp
{
−[L/(2σ)] 2

}
, (32b)

where f is a dimensionless factor.
The function f defined by (32a) is the square of the ratio of the arithmetic (30a) to the

geometric mean of variances:

f =
[
(σ1)

2 + (σ2)
2
]
/(2σ1σ2) = (σ1/σ2 + σ2/σ1)/2 , (33a)

and may be called the dissimilarity factor, since in general, it depends only on the ratio of
r.m.s. position errors:

f (λ) = (λ + 1/λ)/2 = f (1/λ), λ ≡ σ1/σ2; (33b,c)

in particular, the case of aircraft with identical r.m.s. position errors (34a) reduces to unity
(34b), which is its minimum value (34c) for all λ:

σ1 = σ2 ≡ σ : λ= 1, f (λ) ≥ fmin = f (1) = 1 (34a–c)

The minimum (34c) of (33b) can be justified from the first two derivatives (35a,b):

f ′(λ) =
(

1− 1/λ2
)

/2, f ′′ (λ) = −1/λ3, (34d,e)

Since f ′(λ) = 0 for λ = 1, and f ′(1) = 1 > 0. The three-dimensional cumulative
probability of coincidence (24) simplifies for aircraft with identical r.m.s. position errors to
(35a) to (35b):

σ1 = σ2 ≡ σ :
=
P =

(
σ
√

π/2
)

exp
{
−[L/(2σ)] 2

}
. (35a,b)

In the general case (24) of aircraft with dissimilar r.m.s. position errors, using the
arithmetic (30a) and geometric (32a) means of variances leads to:

=
P =

(
2
√

π
)(

σ/ f 2
)
× exp

{
−[L/(2σ)]2

}
. (36)

In conclusion, (i) as should be expected, the exponential term exp
{
−[L/(2σ)] 2

}
for identical aircraft is the only term involving the separation and appears in all three
cases, namely the maximum of the joint probability density of coincidence (31a,b), the one-
dimensional marginal probability of coincidence across the flight path (29a,b), and the three-
dimensional cumulative probability of coincidence (35a,b); (ii) in the case of aircraft with
dissimilar r.m.s. position errors, σ is replaced in the exponential term exp

{
−[L/(2σ)] 2

}
,

respectively in (32b; 30b; 36), by σ, which defined from (30a) the geometric mean of vari-
ances, and the separation L appears in the same form; (iii) in the case of the one-dimensional
cumulative probability of coincidence across the flight path, the factor multiplying the
exponential in (30b) involves only the arithmetic mean of variances (30a); (iv) the geometric
mean of variances (32a) appears through the dissimilarity function (33a–c) in the factor of
the exponential in (32b) and (36), respectively, for the maximum of the joint probability
density of coincidence Pm and the three-dimensional cumulative probability of coincidence
=
P. It should be expected that all the preceding expressions are Gaussians, and the purpose
of the derivations in Section 2 is to relate their parameters to the r.m.s. deviations (σ1, σ2)
of each aircraft, which are used as inputs to the applications in Section 3.
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3. Comparison of Safety Metrics in ATM Scenarios

The three safety metrics (Section 2.1, Section 2.2, Section 2.3) can be applied to a long
track, across track, or altitude separations. The latter is considered as an example (Section 3)
of the comparison of the alternative and complementary metrics (Section 2) in the case
of standard and reduced vertical separations (Section 3.1). The results are sensitive to
the probability distribution (Section 3.2), as shown by the magnitude of correction factors
(Section 3.3).

3.1. Application to Standard and Reduced Vertical Separations

Taking the general case of two aircraft with similar or dissimilar r.m.s. position
errors, three results have been obtained in the Section 2: (i) the two-dimensional marginal
cumulative probability of coincidence (30b) across the flight path (Section 2.3):

P = 1.12838 σ−1 exp
[
−0.25(L/σ)2

]
; (37)

(ii) the maximum joint probability density of coincidence (32b) that (Section 2.1) occurs at
the position (8a,b):

Pm = 0.63662
(

f /σ2
)

exp
[
−0.25(L/σ)2

]
; (38)

(iii) the three-dimensional cumulative probability of coincidence (36) over all space (Section 2.2):

=
P = 3.54491

(
σ/ f 2

)
exp

[
−0.25(L/σ)2

]
. (39)

The last two expressions (38,39) involve the aircraft dissimilarity function (33a,b,c),
for which some values are given in Table 1. Table 1 confirms that the aircraft dissimilarity
function is unchanged f (λ) = f (1/λ) interchanging the two aircraft, i.e., exchanging σ1
and σ2, or λ and 1/λ. Thus, all three probabilities of coincidence (37–39) are unaffected
by interchange of the two aircraft. The probability of coincidence has been calculated
by integration over all space, assuming implicitly that all positions are accessible. The
aircraft dynamics [24–41] limit the region of space that can be reached and thus lead to
a smaller cumulative probability. If follows that neglecting aircraft dynamics leads to an
upper bound for the probability of collision.

Table 1. Since the aircraft dissimilarity function (33b) is unchanged by interchanging the two aircraft,
the three values in (33a) apply to six values of the dissimilarity parameter (33c).

λ ≡ σ1/σ2 1 3 9
f (λ) 1 5/3 = 1.6667 41/9 = 4.5556

1/λ ≡ σ2/σ1 1 1/3 1/9

The standard vertical separation has been L = 2000 ft for a long time; after a decade of
studies [16–19], to prove that the change could be safely made, Eurocontrol introduced the
reduced vertical separation minima (RVSM) over Europe, halving the vertical separation
to L = 1000 ft, for flight levels between FL 290 and FL 410. This was the precedent for the
Federal Aviation Administration (FAA) to make a similar reduction in vertical separation,
and similar measures gradually extended over the rest of the world. It can be argued
that RVSM was the first major consequence of practical importance of the calculation of
collision probabilities, since it provided a safe increase in ATM capacity. The standard or
old vertical separation of 2000 ft is still used elsewhere, e.g., in uncontrolled air space over
the Atlantic. Since the standard and reduced vertical separation are both in use, both are
considered as examples of application to ATM. Taking a vertical separation La = 2000 ft =
0.329 NM (Lb = 1000 ft = 0.165 NM) where an international nautical mile is 1 NM = 1852 m
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and 1 ft = 0.3048 m leads to the following probabilities of coincidence: (i) two-dimensional
marginal probability of coincidence (30b), per nautical mile flown:

La = 2000 ft : Pa = 2.7086 σ−1 exp
(
−1.12838× 10−2/σ2

)
, (40a)

Lb = 1000 ft : Pb = 1.12838 σ−1 exp
(
−6.7715× 10−3/σ2

)
; (40b)

(ii) maximum (32b) of the joint probability density of coincidence, per square nautical
mile flown:

La = 2000 ft : Pma = 0.63662
(

f /σ2
)

exp
(
−2.7086× 10−2/σ2

)
, (41a)

Lb = 1000 ft : Pmb = 0.63662
(

f /σ2
)

exp
(
−6.7715× 10−3/σ2

)
; (41b)

(iii) three-dimensional cumulative probability of coincidence (36), times nautical
miles flown:

La = 2000 ft :
=
Pa = 3.54491

(
σ/ f 2

)
exp

(
−2.7086× 10−2/σ2

)
, (42a)

Lb = 1000 ft :
=
Pb = 3.54491

(
σ/ f 2

)
exp

(
−6.7715× 10−3/σ2

)
. (42b)

It has been found before in other applications [20,21,52,53] that the ICAO Target Level
of Safety (43):

S = 5× 10−9hour−1 (43)

is obtained for r.m.s. position error (44):

L/σ ∼ 10− 12 (44)

which is about one order of magnitude less than the minimum separation distance. Since
La = 2000 ft (Lb = 1000 ft), this suggests considering values of σ around σa = 200 ft
(σb = 100 ft), below and above up to less than L in Tables 2 and 3.

Table 2. Upper bound to probabilities of collision assuming Gaussian probability distribution with vertical separation

La = 2000 ft. Three values of the dissimilarity parameter in (40) are used in the maximum Pm and of the 3D cumulative
=
P

probability of coincidence, which was calculated for a vertical separation L = 2000 ft, for several values of the r.m.s. position
error σ, which is calculated from (30a) as the arithmetic mean of the variances of the position errors of the two aircraft. The
latter alone specifies the 2D marginal probability of coincidence across the flight path P, which can be compared directly
with the original ICAO TLS standard and is independent of the aircraft dissimilarity factor.

Arithmetic
Mean of

Variances
σ (ft)

Maximum of the Joint Probability Density of
Coincidence

Pma (per Square NM)
1D Marginal

Probability of
Coincidence
Pa (per NM)

3D Cumulative Probability of Coincidence
=
Pa (Times NM)

λ = 9, 1/9 λ = 3, 1/3 λ = 1 λ = 1 λ = 3, 1/3 λ = 9, 1/9

1000 3.94× 10 1.44× 10 8.64 2.52 2.14× 10−1 7.73× 10−2 1.03× 10−2

500 7.84 2.87 1.72 2.51× 10−1 5.34× 10−3 1.92× 10−3 2.57× 10−4

400 1.29 4.73× 10−1 2.84× 10−1 3.31× 10−2 4.51× 10−4 1.62× 10−4 2.17× 10−5

300 1.78× 10−2 6.50× 10−3 3.90× 10−3 3.41× 10−4 2.62× 10−6 9.42× 10−7 1.26× 10−7

200 3.72× 10−8 1.36× 10−8 8.16× 10−9 4.76× 10−10 1.62× 10−12 5.83× 10−13 7.81× 10−14

180 1.30× 10−10 4.77× 10−11 2.86× 10−11 1.50× 10−12 4.14× 10−15 1.49× 10−15 2.00× 10−16

160 4.54× 10−14 1.66× 10−14 9.96× 10−15 4.65× 10−16 1.01× 10−18 3.65× 10−19 4.88× 10−20

140 3.80× 10−19 1.39× 10−19 8.34× 10−20 3.40× 10−21 5.68× 10−14 2.04× 10−24 2.74× 10−25

120 5.15× 10−27 1.88× 10−27 1.13× 10−27 3.96× 10−29 4.85× 10−32 1.75× 10−32 2.34× 10−33

100 3.98× 10−40 1.46× 10−40 8.74× 10−41 2.55× 10−42 2.17× 10−45 7.81× 10−46 1.05× 10−46
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Table 3. Upper bound to probabilities of collision assuming Gaussian probability distribution with vertical separation
Lb = 1000 ft. See Table 2 for a reduced vertical separation Lb = 1000 ft.

Arithmetic
Mean of

Variances
σ (ft)

Maximum of the Joint Probability Density of
Coincidence

Pmb (per Square NM)
1D Marginal

Probability of
Coincidence
Pb (per NM)

3D Cumulative Probability of Coincidence
=
Pb (Times NM)

λ = 9, 1/9 λ = 3, 1/3 λ = 1 λ = 1 λ = 3, 1/3 λ = 9, 1/9

500 1.56× 102 5.76× 10 3.46× 10 5.04 1.07× 10−1 3.86× 10−2 5.17× 10−3

300 7.40× 10 2.71× 10 1.62× 10 1.42 1.09× 10−2 3.92× 10−3 5.24× 10−4

200 5.17 1.89 1.13 6.62× 10−2 2.25× 10−4 8.11× 10−5 1.09× 10−5

150 7.11× 10−2 2.60× 10−2 1.56× 10−2 6.83× 10−4 1.31× 10−6 4.71× 10−7 6.30× 10−8

100 1.49× 10−7 5.44× 10−8 3.26× 10−8 9.52× 10−10 8.10× 10−13 2.92× 10−13 3.90× 10−14

90 5.21× 10−10 1.91× 10−10 1.14× 10−10 3.00× 10−12 2.07× 10−15 7.46× 10−16 9.98× 10−17

80 1.81× 10−13 6.64× 10−14 3.98× 10−14 9.30× 10−16 5.06× 10−19 1.82× 10−19 2.44× 10−20

70 1.52× 10−18 5.56× 10−19 3.33× 10−19 6.81× 10−21 2.84× 10−24 1.02× 10−24 1.37× 10−25

60 2.06× 10−26 7.54× 10−27 4.52× 10−27 7.92× 10−29 2.42× 10−32 8.73× 10−33 1.17× 10−33

50 1.59× 10−39 5.83× 10−40 3.50× 10−40 3.72× 10−44 1.08× 10−45 3.91× 10−46 5.23× 10−47

The ICAO Target Level of Safety specifies a probability of coincidence (43) per hour
flown, which may be converted to the following: (i) probability of coincidence per nautical
mile flown at the speed V in knots for comparison with (37) the one-dimensional marginal
probability of coincidence:

P < Q1 ≡ S/V = 5× 10−9[V(knots)]−1(NM)−1; (45)

(ii) dimensionless probability of coincidence for a flight duration T in hours

Q2 ≡ ST = 5× 10−9T(hours); (46)

(iii) dimensionless probability of coincidence for a flight at speed V in knots over a distance
D in nautical miles:

Q3 ≡ PaD = Pa

(
(NM)−1

)
× D(NM) . (47)

As an example, Table 4 considers in the middle and last columns the standard La and
reduced Lb vertical separations for which data are given respectively in Tables 2 and 3; for
example, the r.m.s. vertical position errors σa = 180 ft and σb = 90 ft specify respectively
the two-dimensional marginal probabilities of coincidence Pa and reproduced in Table 4
from Tables 2 and 3. The ICAO TLS is met (45):

V < S/P = 5× 10−9/P, (48)

for the velocities Va and Vb with upper limits indicated; the value Va exceeds the speed
capacity of all existing aircraft and Vb is exceeded only by few supersonic aircraft. For
a great circle tour of the earth corresponding to the distance (49a), the probability of
coincidence would not exceed (49b)

D = 4× 104km = 2.16× 104NM : R = P D. (49a,b)

Concerning the maximum of the joint probability of coincidence, the values of Pma
and Pmb are given respectively in Tables 2 and 3, and they are reproduced in Table 4 for
identical aircraft assuming r.m.s. altitude position errors respectively of σma = 160 ft and
σma = 80 ft and an aircraft dissimilarity factor λ = 3 or λ = 1/3. A modified ICAO TLS
standard (50a) with the same value (43) per hour squared is satisfied (50b) for velocities up
to (50c):

PmV2 ≤ Sm = 5× 10−9hour−2 : V ≤

√
Sm

Pm
, (50a,b)
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as indicated in Table 4. The upper bound for the velocity Vma is not met by all existing
subsonic transport aircraft, where Vmb is applies mostly to turboprops. For a great circle
tour of the earth (49a), the probability of coincidence:

Xm = D2Pm, (51)

is also indicated in Table 4. Concerning the three-dimensional cumulative probability of
coincidence, it is considered for an aircraft dissimilarity factor λ = 9 or λ = 1/9 with r.m.s.
altitude errors σa = 200 ft and σb = 100 ft. The modified ICAO TLS standard (52a) with
the same numerical values as (43) is met (52b) for velocities up to (52c):

P/V ≥ S = 5× 10−9 hour :
=
V ≤

=
P/

=
S; (52a-c)

The upper bounds for the velocities
=
Va and

=
Vb are met by all aircraft, including

supersonic types. The values in Table 4 assume the same numerical value for the original
ICAO TLS (43) and its modifications (50a,b) and (52a,b) with different dimensions in the
absence of other data. Another aspect to be considered (Section 3.2) is the alternatives to
the Gaussian probability distribution used in Tables 2–4.

Table 4. Comparison of the International Civil Aviation Organization (ICAO) Target Level of Safety (TLS) applied to:
(top) the one-dimensional marginal probability of coincidence along the flight path (25b); (middle) the maximum of the
joint probability of coincidence (11); (bottom) the three-dimensional cumulative probability of coincidence over all space
(13). In each case is considered; (left) the standard vertical separation La = 2000 ft; (right) the reduced vertical separation
Lb = 1000 ft. For each of the six combinations of identical aircraft is indicated: (i) the assumed r.m.s. altitude position
error; (ii) the corresponding probability of coincidence; (iii) the maximum speed that meets the ICAO TLS in the original or
modified form; (iv) the probability of coincidence for a great circle tour of the earth.

Quantity Unit Standard Reduced

Vertical separation ft La = 2000 Lb = 1000
r.m.s. altitude error ft σa = 180 σb = 90

One-dimensional marginal probability of
coincidence with λ = 1 (NM)−1 Pa = 1.50× 10−12 Pb = 3.00× 10−12

Maximum velocity to meet the ICAO TLS kt Va ≤ S
Pa

= 3.33× 103 Vb ≤ S
Pb

= 1.67× 103

Probability of coincidence in a great circle tour of
the earth - Ra ≤ PaD ≤ 3.24× 10−8 Rb ≤ PbD ≤ 6.48× 10−8

r.m.s. altitude error ft σma = 160 σmb = 80
Probability density ofcoincidence with λ = 3 or

λ = 1/3 (NM)−2 Pma = 1.66× 10−14 Pmb = 6.40× 10−14

Maximum velocity to meet the ICAO TLS (50a) - Vma ≤
√

Sm
Pma

= 5.48× 102 Vmb ≤
√

Sm
Pmb

= 2.79× 102

Probability of coincidence in a great circle tour of
the earth - Xma = PmaD2 = 7.74× 10−6 Xmb = PmbD2 = 2.99× 10−5

r.m.s. altitude error ft =
σa = 400

=
σb = 200

Cumulative probability of coincidence with λ = 9
or λ = 1/9 NM

=
Pa = 2.17× 10−5

=
Pb = 1.09× 10−5

Maximum velocity to meet the ICAO TLS (49b) -
=
Va ≤

=
Pa/

=
S = 4.34× 103

=
Vb ≤

=
Pb/

=
S = 2.17× 103

3.2. Gaussian and Laplace as Particular Exponential Distributions

The choice of a probability distribution is an essential element to calculate collision
probabilities and thereby assess the safety of Air Traffic Management (ATM). The Gaussian
probability distribution [42] is widely used because of the central limit theorem of the
statistics, which states that a sequence of N statistically independent events converges to a
Gaussian with a O

(
1/
√

N
)

accuracy; since collisions are rare events, N is not large, and
the first condition of validity of the central limit theorem is not met. In addition, the central
limit theorem depends on the satisfaction of a second condition, namely the Linderberg’s
condition [43], requiring that events with large deviation from the mean make a small
contribution to the variance; this condition is related to the fact that it is precisely the large
deviations that pose the greatest collision risk. Hence, the main objection to the use of the
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central limit theorem may not be Linderberg´s condition but is certainly the failure of the
law of large numbers.

The statistics of collisions, similar to other rare events [44], corresponds to the tail of
the probability distribution [45]. It was been argued long ago that the Gaussian underesti-
mates the probability of collision, because its tail decays too fast. This led to the Laplace
distribution as a preferred choice [15]. Both the Gaussian and Laplace distributions are
particular cases [45] of the generalized exponential distribution, which has been shown to
model the tail and or large flight path deviations obtained from radar tracks [16,18,20]; the
modeling of both the core and tail, i.e., the full range of flight path deviations from small
to large, can be done by further extension to the combined Gamma and generalized error
probability distribution [46]; the latter can be asymmetric relative to the mean value [47–49],
e.g., for a crossing of climbing and descending aircraft [53], the probabilities may be differ-
ent for altitude gain or loss. For the purpose of safety assessment, the collision probability
may be replaced by an upper bound that is easier to estimate [54]. The probability of
collision can be specified [15] as the probability of penetration of the safety volumes around
each aircraft; it is not necessary to discuss here the details of the safety volume, because
it can be replaced in the case of aircraft flying on parallel paths by an upper bound [21],
which is the probability of coincidence.

3.3. Correction Factor for Generalized Gaussian Distribution

In order to determine the probability distribution that better fits the large flight path
deviations of aircraft measured from radar tracks [16,18], it is sufficient to consider [46,50]
the generalized exponential distribution that includes both the Gaussian and Laplace
distributions. The Laplace distribution:

P0(z) =
1

σ
√

2
exp

(
−
√

2
|z|
σ

)
, (53)

gives higher collision probabilities than the Gaussian (1a), because its tail decay more
slowly for large deviations. This decay is still too fast, and the collision probabilities
are underestimated, suggesting that the tail be modeled by the generalized exponential
distribution:

P(z; k) = A exp
(
−a |z/σ|k

)
; . (54)

The parameter k can be chosen to match the decay of the tail of the probability
distribution to the data derived from radar tracks. The deviations of aircraft from their
flight paths have a variety of causes, appearing as random data that are best used not
directly but rather after statistical processing; since large flight path deviations are rare
events, large amounts of data must be processed.

The constants (A, a) in the generalized exponential distribution (54) satisfy two condi-
tions: (i) total probability unity (55a); (ii) σ is the r.m.s. value (55b):

1 =

+∞∫
−∞

P(z; k)dz (55a)

σ2 =

+∞∫
−∞

z2P(z; k)dz. (55b)

Substituting (54) in (55a,b) and evaluating the integrals specifies [46] the values of the
constants (A, a) in terms of (σ, k):

A ≡ {1/[2σΓ(1 + 1/k)]}
√

Γ(3/k)/Γ(1/k), (56a)

a ≡ [Γ(3/k)/Γ(1/k)]k/2, (56b)
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where Γ denotes [51] the Gamma function, e.g., Γ(3) = 2 and Γ(1/2) =
√

π. It can be
checked that [46] the Laplace distribution (53) is the particular case k = 1 of (54; 56a,b), and
for k = 2, the Gaussian distribution (1a) is obtained. The case k = 1/2:

F(z) ≡ P(z; 1/2) =
√

15/2
σ

exp
(
− 4
√

120
√

z/σ
)

, (57)

is a relatively simple unimodal distribution that fits reasonably well the tail of the proba-
bility distribution of altitude deviations measured in flight, as can been seen in Figure 3
reproduced from [46]. Figure 3 includes the combined Gamma and generalized exponential
distributions to model both the body and tail of the probability of small and large flight
path deviations. The parameter p = 0 excludes the Gamma part of the combined distri-
bution, and k = 0.53 is a reasonable fit to the tail using only the generalized exponential
distribution retained in the sequel.
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to model the tail of the probability distribution.

In order to replace the calculation for the Gaussian distribution (Section 2) by the
calculation for the generalized exponential distribution, upper C and lower B bounds are
considered:

C ≥ |P(z; 1/2)/P(z; 2)|2 = |F(z)/P1(z)|2 ≥ B. (58)

The correction to the probability density functions (1a,b) appears to the square in the
joint probability density function (3,5) and hence also to the square in its maximum (38) in
the marginal (37) and cumulative (39) probabilities of coincidence respectively in one and
three dimensions that are obtained by integration; hence, the square of the correction factor
(58) modifies for collision probabilities. Substituting (1a):

P1(z) =
[
1/
(

σ
√

2π
)]

exp
(
−z2/2σ2

)
, (59)
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together with (57) in (58) yields:

C ≥ 15π exp
[
(z/σ)2 − 2 4

√
120
√

z/σ
]
≡ G(z) ≥ B. (60)

The function (60) has an extremum for

0 = dG/dz = G(z)
{

2z/σ2 − 4
√

120/
√

σz
}

, (61)

corresponding to

zm/σ =
(

4
√

120/2
)2/3

= (15/2)1/6 = 1.399083, (62a)

Gmin = G(zm/σ) = 15π exp
{
−3(15/2)1/3

}
= 0.13272 (62b)

It can be checked that this is a minimum, because the second derivative

d2G/dz2 = G(z)
{

2/σ2 + 4
√

15/2/
√

σz3 +
[
2z/σ2 − 4

√
120/

√
σz
]2
}

, (63)

is positive (64) at (62a):

G′′ (zmin/σ) = 3Gmin/σ2 = 0.39816/σ2 > 0, (64)

so that the lower bound B in (60) can be taken to coincide with (62b).
The function G(z) is unbounded for large z, and the upper bound is calculated choosing

the position (z = L/2, θ = 0) of most likely collision of similar aircraft:

C(L/σ) ≡ G(z = L/2) = 15π exp
{
(L/2σ)2 − 2 4√120

√
L/2σ

}
; . (65)

This is used as a correction factor applied to Tables 2 and 3 to arrive at Tables 5 and 6. This
correction factor, using σ instead of σ, changes several equations: (i) the two-dimensional
marginal probability of coincidence (30b) across the flight path changes from (40a,b) to:

CP = (53.1736/σ) exp
{
−6.61950

√
L/2σ

}
; (66)

(ii) the maximum of joint probability density of coincidence (32b) changes from (41a,b) to:

CPm = 30.0000
(

f /σ2
)

exp
{
−6.61950

√
L/σ

}
; (67)

(iii) the tree-dimensional cumulative probability of coincidence (36) changes from (42a,b) to:

C
=
P = 167.0498

(
f /σ2

)
exp

{
−6.61950

√
L/σ

}
. (68)

The results (66, 67, 68) can be applied both to standard La = 2000 ft and reduced
Lb = 1000 ft vertical separation. The probabilities in Tables 5 and 6 are larger than unity
for a large r.m.s. position error σa ≥ 400 ft(σb ≥ 200 ft); this is possible for probability
per hour—for example, if the mean time between events is less than one hour, that is
several events can occur within that time period. These large values correspond to r.m.s.
altitude errors that are almost one-half of the vertical separation and are not practically
relevant. In the cases of significance to ATM applications, of small r.m.s. position errors,
σa ≤ 300 ft(σb ≤ 150 ft) corresponds to σ/L ≤ 1/7, and the generalized error distribution
gives much higher probabilities of coincidence in Tables 5 and 6 than the Gaussian in
Tables 2 and 3. The magnitude of the correction factor in Tables 5 and 6 is an indication of
the sensitivity of collision probabilities to the choice of probability distribution.
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Table 5. Table 2 was calculated for a Gaussian probability distribution (59) and is recalculated for a generalized exponential probability distribution (57), using the correction factor (65).

Arithmetic Mean
of Variances

σ (ft)
Correction Factor

C

Maximum of the Joint Probability
Density of Coincidence
CPm (per Square NM)

2D Marginal
Probability of
Coincidence
CP (per NM)

3D Cumulative Probability
of Coincidence
C
=
P (Times NM)

λ = 9, 1/9 λ = 3, 1/3 λ = 1 λ = 1 λ = 3, 1/3 λ = 9, 1/9

1000 1.71 × 10−1 6.73 2.46 1.48 4.31 × 10−1 3.66 × 10−2 1.32 × 10−2 1.76 × 10−3

500 2.21 × 10−1 1.73 6.35 × 10−1 3.80 × 10−1 5.55 × 10−2 1.18 × 10−3 4.25 × 10−4 5.68 × 10−5

400 6.95 × 10−1 8.97 × 10−1 3.29 × 10−1 1.97 × 10−1 2.30 × 10−2 3.14 × 10−4 1.13 × 10−4 1.51 × 10−5

300 1.78 × 101 3.17 × 10−1 1.16 × 10−1 6.94 × 10−2 6.06 × 10−3 4.66 × 10−5 1.68 × 10−5 2.24 × 10−6

200 1.27 × 106 4.71 × 10−2 1.72 × 10−2 1.03 × 10−2 6.02 × 10−4 2.05 × 10−6 7.38 × 10−7 9.89 × 10−8

180 2.00 × 108 2.60 × 10−2 9.55 × 10−3 5.72 × 10−3 3.00 × 10−4 8.29 × 10−7 2.98 × 10−7 4.00 × 10−8

160 2.82 × 1011 1.28 × 10−2 4.69 × 10−3 2.81 × 10−3 1.31 × 10−4 2.85 × 10−7 1.03 × 10−7 1.38 × 10−8

140 1.41 × 1016 5.34 × 10−3 1.95 × 10−3 1.17 × 10−3 4.78 × 10−5 7.98 × 10−8 2.87 × 10−8 3.85 × 10−9

120 3.42 × 1023 1.76 × 10−3 6.42 × 10−4 3.86 × 10−4 1.35 × 10−5 1.66 × 10−8 5.98 × 10−9 8.00 × 10−9

100 1.03 × 1036 4.09 × 10−4 1.50 × 10−4 8.98 × 10−5 2.62 × 10−6 2.23 × 10−9 8.02 × 10−10 1.08 × 10−10

Table 6. As in Table 2 for a reduced vertical separation L = 1000 ft (as in Table 3) with correction factor of the generalized error probability distribution relative to the Gaussian (as in
Table 5).

Arithmetic Mean
of Variances

σ (ft)

Correction
Factor C

Maximum of the Joint Probability
Density of Coincidence
CPm (per Square NM)

2D Marginal
Probability of
Coincidence
CP (per NM)

3D Cumulative Probability
of Coincidence
C
=
P (Times NM)

λ = 9, 1/9 λ = 3, 1/3 λ = 1 λ = 1 λ = 3, 1/3 λ = 9, 1/9

500 1.71 × 10−1 2.70 × 10 9.84 5.91 8.61 × 10−1 1.83 × 10−2 6.60 × 10−3 8.84 × 10−4

300 1.47 × 10−1 1.09 × 10 3.99 2.39 2.09 × 10−1 1.61 × 10−3 5.77 × 10−4 7.72 × 10−5

200 6.95 × 10−1 3.59 1.31 7.86 × 10−1 4.60 × 10−2 1.56 × 10−4 5.64 × 10−5 7.58 × 10−6

150 1.78 × 10 1.26 4.62 × 10−1 2.77 × 10−1 1.21 × 10−2 2.33 × 10−5 8.38 × 10−6 1.12 × 10−6

100 1.27 × 106 1.89 × 10−1 6.89 × 10−2 4.13 × 10−2 1.20 × 10−3 1.03 × 10−6 3.70 × 10−7 4.94 × 10−8

90 2.00 × 108 1.04 × 10−1 3.82 × 10−2 2.28 × 10−2 6.00 × 10−4 4.14 × 10−7 1.49 × 10−7 2.00 × 10−8

80 2.82 × 1011 5.11 × 10−2 1.8 × 10−2 1.12 × 10−2 2.63 × 10−4 1.43 × 10−7 5.14 × 10−8 6.89 × 10−9

70 1.41 × 1016 2.14 × 10−2 7.82 × 10−3 4.68 × 10−3 9.57 × 10−5 3.99 × 10−8 1.43 × 10−8 1.93 × 10−9

60 3.42 × 1023 7.04 × 10−3 2.58 × 10−3 1.55 × 10−3 2.71 × 10−5 8.27 × 10−9 2.98 × 10−9 4.00 × 10−10

50 1.03 × 1036 1.63 × 10−3 5.89 × 10−4 3.60 × 10−4 3.82 × 10−6 1.11 × 10−9 4.02 × 10−10 5.37 × 10−11
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4. Discussion

The fundamental problem addressed in this paper of ensuring extremely low collision
probabilities has implications for conflict resolution measures [55,56], which apply both
to manned and unmanned aircraft if operating in non-segregated airspace [57–59], as
an alternative to geofencing [60]. Conflict resolution may be automated [61] if reliable
trajectory information is available [62], which is not always the case, for example for aircraft
collision with birds [63].

The present paper has addressed the trade-off between (i) safety or collision probability,
(ii) separation or airspace capacity, and (iii) position or navigation accuracy. The scenario
considered is aircraft flying on air corridors at equal velocity and in the same direction
along parallel tracks. In this case, the average crossing rate is zero, because it is proportional
to the difference in speed errors [15]. A different approach is used based on coincidence
probabilities that provide an upper bound for collision probabilities [21]. This method
applies both for aircraft: (i) whose relative velocity is zero [20], e.g., flying along air
corridors with the same velocity and direction; (ii) whose relative velocity is not zero,
e.g., flying along air corridors in opposite directions, or crossing [64] or climbing and
descending [53]. The method is used to obtain three safety metrics: (a) the maximum of
the joint probability density of coincidence (Figure 2); (b) the one-dimensional marginal
probability of coincidence (Figure 1); (c) the three-dimensional cumulative probability
of coincidence. The theory applies to (i) altitude, and (ii) along and (iii) across track
separations or any combination of them. It is illustrated by the cases of standard and
reduced vertical separations. The comparison is made with the ICAO TLS standard and its
analogues in Table 4.

The safety metrics depend on separation and the r.m.s. position errors of each aircraft
due to all causes: navigation errors [12,13], atmospheric disturbances [24–26], and pilot
inputs affecting performance [27–33] and stability [34–41]. The theory allows (Table 1) for
aircraft with dissimilar r.m.s. position errors (σ1, σ2) that appear: (i) only as the arithmetic
mean of variances in (b) the 1D marginal probability of coincidence; (ii) also as the geometric
mean of the variances or r.m.s. positions errors in the (a) maximum of the joint probability
density of collision and (c) the 3D cumulative probability of coincidence. The three metrics
appear in Tables 2 and 3 respectively for standard and reduced vertical separations, and
several values of the r.m.s. altitude errors of the two aircraft. The values of all metrics (a,
b, c) depend on the probability distribution of large flight path deviations; the evidence
of radar tracks (Figure 3) shows that the generalized exponential (also called generalized
Gaussian or Laplace distribution) with weight k = 1/2 is a better fit than the original
Gaussian and Laplace distributions, which correspond respectively to the weights k = 2
and k = 1. The latter distributions have a tail decaying too fast and thus underestimate the
collision risk. This is shown by the introduction of a correction factor from the Gaussian
k = 2 to the generalized exponential distribution with k = 1/2, which converts Tables 2–6
respectively for standard and reduced vertical separations.

The ICAO Target Level of Safety specifies a probability of collision S ≤ 5 × 10−9 per
hour flown, which may be converted into: (i) probability of collision S/V per nautical mile
flown at a speed V in knots; (ii) probability of collision S.T for a flight of duration T in
hours; (iii) probability of collision S.D/V for a flight at speed V knots over a distance D in
nautical miles. The ICAO TLS is applicable to the one-dimensional marginal probability of
coincidence, which is (30b) a probability of coincidence per unit of distance flown; the unit
of distance, e.g., nautical mile, should be the same for the separation distance L and r.m.s.
position error σ, which were calculated from (30a) the arithmetic mean of variances of the
position errors of the two aircraft.

When using the maximum of the joint probability density of coincidence (32b), the
latter appears as per square of the distance flown. In the examples, a modified ICAO TLS
standard Sm = 5× 10−9 per hour flown squared was used; this value is more restrictive than
the original ICAO TLS standard S = 5 × 10−9 per hour flown in that it specifies a smaller
position error σ. However, it is not necessary to specify the same value S = 5 × 10−9 for S;
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another value could change the conclusion concerning σ. In contrast, the three-dimensional
probability of coincidence (36) is specified times distance flown; a modified ICAO TLS

standard
=
S = 5× 10−9 times hour is a less severe restriction in that it leads to larger r.m.s.

position error σ. The conclusion could be changed for another value of
=
S; thus, there

remains the open question of whether the original ICAO TLS standard 5 × 10−9 per hour,
which is suitable for the cumulative probability of collision, should be supplemented by
two additional modified standards: (i) one per hour flown squared, which is suitable for
comparison with maximum probabilities of collision; (ii) another times hour flown, for
comparison with three-dimensional probabilities of collision. All of these could be used as
alternatives or complementary safety metrics.

Although the practical motivation is the estimation of the risk of collision along air
corridors, considerable attention has been paid to the choice of probability distribution
of flight path deviations. Since aircraft collisions are very rare events and imply large
flight path deviations, they involve only the “tail” and not the “body” of the probability
distributions, and some widely used results do not apply, for example the Central Limit
Theorem [42,43], specifying a Gaussian. The tail of the Gaussian decays very fast, giving a
very low probability of collision, which is therefore an unsafe underestimation of risk. This
was recognized in the earliest studies of collision risk along air corridors [15] that used the
Laplace distribution, whose tail decays more slowly than the Gaussian, yielding a larger
collision probability. The availability of radar data on large flight path deviations [17–19]
has led to probability distributions [20] whose tails decay more slowly than the Laplace
distribution and have proved safe in the implementation of RVSM by Eurocontrol [16].

The model of collision risk along flight corridors was applied to (i) vertical separation,
since the benefits of RVSM are very well known and documented. The model also applies
to (ii) lateral separation for flights on parallel tracks at the same flight level and also to (iii)
longitudinal separation for aircraft flying along the same path. A very effective method to
significantly reduce collision risk is to use simultaneously two or three separations (i) in
altitude, (ii) lateral, and/or (iii) along track. The methods presented can be applied to (a) all
three separations individually or (b) any combination of two or (c) all three together; if they
are statistically independent, the product of probabilities applies, and if not, correlation
functions must be used.

All the steps from the choice of the probability distribution for large flight path
deviations up to the final metrics for collision risk have been documented in some detail,
because they apply to any encounter geometry, not only flight along air corridors, but
also to level crossings [55] and climbing and descending flights [53]. A complete flight
plan can often be described by straight paths between waypoints and curved trajectories
approximated by straight segments. For a given aircraft, the collision risk with all others
can be estimated between waypoints and added to specify the collision risk over the entire
flight plan.

The assessment of collision risk depends mainly on two opposing parameters: (i) the
separation that can be increased to reduce collision risk; and (ii) the root-mean-square
(r.m.s.) flight path deviation σ that must be reduced to decrease collision risk. Thus, a
lower ratio σ/L implies a lower collision risk, although σ and L need not appear only
in the combination σ/L and may appear separately. Another contrast between the two
parameters is that whereas the separation L can be mandated by ATM rules for vertical,
along, and across track separations, the r.m.s. position error σ is much more complex and
affected by multiple factors, some of which cannot be controlled and must be measured
and taken into account.

The r.m.s. position error σ depends on the accuracy of the navigation system in still
air conditions. However, wind and turbulence if not accounted for can increase the r.m.s.
position error over time. The insertion of erroneous data into a flight management system
is an almost instantaneous source of error that may remain until it is detected and corrected.
Therefore, it is of critical importance to include in the r.m.s. position error all contributions,
including navigation drift, atmospheric effects, and erroneous data. The main limitations
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of probabilistic assessment of collision risk may come not from the model but rather from
the input of r.m.s. positions errors that do not take into account all relevant aspects of the
flight conditions.
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Abbreviations

a constant (56b) in the exponential of the generalized probability distribution (54)
f dissimilarity factor (32a) for aircraft with distinct r.m.s. position errors
k weighting exponent in the generalized exponential probability distribution (54)
r distance (1b) from aircraft “1”
→
r i position vector of the aircraft “i” respectively, (1b) and (2b) for i = 1, 2
rm distance of maximum probability of coincidence (7a; 8b)
zm position (62a) of the minimum Gm in (62b) of the function G in (60)
A constant factor (56a) in the generalized exponential probability distribution (54)
C correction factor (65) between the Gaussian k = 2.0 and generalized exponential probability distribution with k = 1/2
D distance flown (47)
F generalized exponential probability distribution (54) with weight k = 1/2 in (57)
G ratio (60) of generalized exponential probability distribution (57) with weight k = 1/2 to the Gaussian distribution (59)

with weight k = 2.0
Gm minimum (62b) of the function G in (60)
I0 azimuthal integral (15) appearing in the three-dimensional cumulative probability of coincidence (13,14)
I± radial integrals (18a) appearing in the evaluation of the three-dimensional cumulative probability of

coincidence (13, 17)
L separation distance between aircraft (2b), e.g., standard (40a) or reduced (40b) vertical separation
P generalized exponential distribution (54; 56a,b) with (57) weight k = 1/2
P two-dimensional marginal probability of coincidence across the fight path (25b)
=
P three-dimensional cumulative probability of coincidence over all space (13)
Pi one-dimensional Gaussian probability distribution (1) of aircraft “i” as a function of position,

respectively in (1a) and (2b) for i = 1, 2
Pm maximum of the joint density of coincidence (11)
P0 Laplace probability distribution (53)
P12 joint probability density of coincidence (3)
Qk alternative ICAO target levels of safety for k = 1, 2, 3 using different units in, respectively, (45), (46) and (47)
R two-dimensional probability of coincidence for a great circle tour of the earth (49b)
S ICAO Target Level of Safety (43)
=
S modified ICAO TLS (52b) based on the three-dimensional probability of coincidence over all space (13)
Sm modified ICAO TLS (50a) based on maximum probability of coincidence (11)
T flight duration in hours (46)
V airspeed (45)
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Xm maxima probability of coincidence for a great circle tour of the earth (51)
φ polar angle (1b) in Figure 1
λ ratio r.m.s. position errors (33c)
σi r.m.s. position error of the aircraft “i” appearing respectively in (1a) and (2a) for i = 1, 2
σ arithmetic mean of variances (30a) or squares of the r.m.s. position errors
θ azimuthal angle (1b) in Figures 1 and 2.
θm azimuthal angle of maximum probability of coincidence (7a)
ξ constant (21b) appearing in the evaluation of the integrals (18a)
ζ change of variable (21a) used to evaluate the integrals (18a)
Subscripts
1 first aircraft
2 second aircraft
a standard vertical separation of 2000 ft
b reduced vertical separation of 1000 ft
Abbreviations
r.m.s. root mean square
ATM Air Traffic Management
ICAO International Civil Aviation Organization
TLS Target Level of Safety
RVSM Reduced Separation Vertical Minima
T-CAS Traffic Collision Avoidance System
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