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Abstract

This paper presents an efficient CUDA-based implementation of a nonspherical discrete element method where
irregular particles are described by using polyhedrons. Two strategies are employed to exploit the parallelism of the
numerical method. One is to perform contact detection based on the contact pair level instead of the traditional
particle level. The second is to reduce the computational burden of each kernel function by allocating thread blocks
reasonably. Contact detection between potential contact pairs is the most complicated, time-consuming, and
essential process for the polyhedral discrete element method. The linear bounding volume hierarchies are
introduced to fix this issue. The hierarchies of the bounding volume tree are organized in a spatially coherent way.
Such a structure can minimize branch divergence and is very suitable for parallel implementation with GPU. Two
numerical examples are presented to show the performance of the code. It is found from the scenario of two sphere
collision that improving the mesh resolution of polyhedral particles can reduce the computational error while
slowing down the computational speed correspondingly. A trade-off must be made between accuracy and
efficiency. The other example of self-gravitating aggregation demonstrates the code is convergent, stable, and
highly efficient. Particularly, with a mainstream GPU, the proposed method easily performs hundreds of times
faster than the serial CPU code that does the same function.

Unified Astronomy Thesaurus concepts: Astronomical simulations (1857); N-body problem (1082)

1. Introduction

The discrete element method (DEM) has been widely used in
planetary science and modern astrodynamics (Richardson 2000;
Michel et al. 2001; Yu et al. 2014). The reason can be
summarized as follows. First, emerging evidence shows that
kilometer-sized asteroids may be gravitational aggregates of
low tensile strength and can be categorized into granular matter
(Richardson et al. 2009). Such a matter form is well suited to
study by DEM since it is good at dealing with the dynamic
process of large-scale particle interactions (Zhang &
Michel 2021). Second, some speculations and theories can
only be verified through numerical simulations. The morph-
ology evolution of asteroids, which have experienced a
progressive process for millions of years, is hard to observe
due to current human science and technology limitations.
Instead, DEM could offer a plausible explanation of the
formation and evolution process of asteroids. For instance,
DEM can simulate the disruption and reaccumulation process
of small bodies, revealing the origin of small body families
(Michel et al. 2001; Richardson et al. 2009; Sánchez &
Scheeres 2011; Schwartz et al. 2012; Michel & Richardson
2013; Schwartz et al. 2018). It can also be used to study the
influence of external factors, such as the tidal force and solar
radiation pressure, on the shape and state evolution of small
bodies (Asphaug & Benz 1996; Cotto-Figueroa et al. 2015;
Zhang & Michel 2020). The geological activity of small bodies
can be simulated through DEM, such as the avalanche,
landslide, evolution of ejecta et al. (Yu et al. 2014). Third, it
is challenging to create the vacuum and microgravity

environment of asteroids artificially. The experimentally
produced reduced-gravity environment cannot maintain tem-
poral stability and is expensive. Plus, the reduced-gravity levels
are similar to that of Martian or Lunar and cannot reach the
microgravity levels identical to asteroids (Güttler et al. 2013).
Numerical simulation using DEM provides a preferable option
to solve the above problems.
In most studies, particles are treated as spheres to reduce

computational complexity and improve computational effi-
ciency (Richardson et al. 2009; Sánchez & Scheeres 2011).
Nevertheless, most realistic particles are not perfectly spherical
(Wen et al. 2020). Simplifications of particle shapes are
inappropriate for problems where the particle shape plays a
significant role. Previous studies also demonstrated that
findings obtained from spherical particles could not be readily
extrapolated to nonspherical particle systems (Lu et al. 2015).
Being aware of this problem, nonspherical DEM is developed
rapidly in recent years, especially in geotechnical engineering
(Liu et al. 2020; Xie et al. 2020; Zhan et al. 2021). The study of
nonspherical DEM in planetary science is just getting started.
Sánchez et al. (2021) developed a numerical implementation of
nonspherical particles in the open-source software LMGG90.
The amount of nonspherical particles used in the simulations
reached 8000; therefore, the impulse-based contact model is
adopted to promote the computing speed, yet it cannot
accurately capture the particle deformation in dense regimes.
Ferrari et al. (2017, 2020) proposed a GPU-based code for the
N-body contact gravitational and dynamics, which features
force-based and impulse-based contact models. They employed
the Gilbert–Johnson–Keerthi (GJK) algorithm to detect contact
between nonspherical particles. The impulse-based contact
model is also used in their study to lighten the computational
burdens in the GPU-based N-body numerical simulations.
Nevertheless, it should be noted that the GJK algorithm is only
applicable to convex bodies. Additional algorithms are required
to partition nonconvex bodies into convex bodies. Moreover,
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implementing the GJK algorithm needs to manage memory
dynamically, which increases the program complexity (Liu
et al. 2022).

In our recent study, a CPU-based code suite has been
developed to solve the dynamical evolution of the nonspherical
granular system (Zeng et al. 2022). The particle shapes have no
restrictions where the force-based contact model was adopted.
Although our code is stable and effective in handling the
contact between irregularly shaped particles, it takes about
70–100 iterative steps to run a single contact between two
intersecting particles. To make matters worse, the algorithm
dealing with contact detection is complicated. These two
superimposed reasons lead to poor computational efficiency of
the previous method. As an attempt, the OpenMP was applied
to parallelize the code, but the speed boost is very limited. For
example, we used a computer built by Intel(R) Xeon(R) Gold
6138 CPU @ 2.00 GHz with 16 GB RAM to run the code.
During simulations, 16 threads were enabled to accelerate the
code. It took approximately 10 days for 1440 particles to settle
in a sample box. It seems impossible to perform large-scale
simulations with such computing speed since the time cost is
obviously unaffordable. Trial and error costs also increase
dramatically. As a result, the computational efficiency severely
limits the application scope of the code.

Fortunately, compute unified device architecture (CUDA)
provides a feasible alternative to improve computational
efficiency. It is a general-purpose computing platform and
programming model introduced by the NVIDIA GPU accel-
erator, providing a development environment for creating high-
performance GPU-accelerated applications. GPU possesses
numerous lightweight computing cores (usually thousands or
tens of thousands) to achieve high computing performance. It
fulfills parallelization by assigning the number of threads,
blocks, and grids to kernel functions. Note that the kernel
function mentioned in this paper refers to the functions that run
on the GPU and is launched by the CPU. The kernel function
dictates which data each GPU thread accesses and what
computation is performed. GPU provides a hardware founda-
tion to improve the computing speed of nonspherical DEM.
This is exactly the motivation of this paper: developing a GPU-
based code to support the large-scale numerical simulation of
the polyhedral DEM (PolyDEM). Since the particle shapes are
described using polyhedral meshes, the code is named
PolyDEM.

In the previous CPU-based code, we performed the neighbor
search, contact detection, and integration based on the particle
level. The bounding volume hierarchies (BVH) are employed
to deal with contact between nonspherical particles, in which
the construction, update, and query of the bounding volume
(BV) tree are implemented iteratively (Hippmann 2004).
However, this numerical implementation is unsuitable for
GPU architecture since the program nesting is too deep. To
further excavate concurrency, a brand-new GPU-based code,
PolyDEM, is developed in this paper, which is more suitable
for the GPU environment. PolyDEM inherits the advantages of
the CPU-based code. By employing the force-based contact
model, the code can accurately track the transmission of forces
through particles. Contact between particles in a granular
medium is not instantaneous. Consequently, the force-based
contact model is more consistent with the actual physical
process (Sánchez & Scheeres 2011; Schwartz et al. 2012). The
particles can owe arbitrary shapes by using the polyhedral

meshes to describe the particle shapes. The difference is that
PolyDEM has finer-grained parallelism than previous CPU-
based code. The operations are performed based on contact pair
levels. The complicated tasks in the original CPU-based code
are now partitioned into several kernel functions to execute on
GPU. By organizing the thread blocks, the computational
burdens in each kernel function are greatly reduced. Further-
more, the linear bounding volume hierarchies (LBVH)
technique is adopted to fulfill the contact detection between
polyhedral particles, where the operations of the BV tree are
accomplished in a traversal way (Karras & Aila 2013). Such an
implementation would minimize the branch divergence and is
preferable for GPU architecture. In the remaining part of the
paper, the basic theory of PolyDEM is briefly introduced in
Section 2, including the dynamical equations, contact model,
and integrator. The structure of the PolyDEM, GPU accelera-
tion, and detailed implementation processes are described in
Section 3. The accuracy, efficiency, and stability of the code
are demonstrated by presenting two numerical examples in
Section 4. Particularly, unlike the impulse-based contact model
used in previous studies, we employ the force-based contact
model to simulate the accretion process between nonspherical
particles. The PolyDEM still achieves high computational
efficiency and numerical stability. Section 5 summarizes the
paper.

2. Theory of PolyDEM

2.1. Governing Equations

In PolyDEM, the governing equations of an individual
particle i can be written as (Richardson 2000)
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In Equation (1), the motion of an individual particle is
decomposed into translational and rotational motion. On the
left-hand side of the equal sign, the vector ai denotes the
acceleration of the particle. The vector ωi denotes the angular
velocity. The symbols mi and Ji denote the mass and moment
of inertia of the particle. On the right-hand of the equal sign,
the vectors F and M are the external force and moment
resultants (for example, the gravitational forces and torques),
respectively. The vectors Fcij and Mcij denote the contact force
and torque from the neighboring particle j on particle i. The
symbol a denotes the collection of all particles that adjoins
the particle i. The translational motion of the particle (the first
row in Equation (1)) is expressed in the inertial frame, while
the rotational motion (the second row in Equation (1)) is
expressed in the body-fixed frame attached to the particle i.
Then, the dynamical evolution of the granular system can be
tracked by applying Equation (1) to each particle.
In PolyDEM, the geometrical representation of a nonsphe-

rical particle is approximated as a polyhedron using surface
triangular meshes. Figure 1 illustrates the polyhedral particles
with different mesh solutions. Describing the nonspherical
particles using polyhedral mesh has three advantages (Zhan
et al. 2021): (1) Polyhedral mesh is the most universal way to
digitally describe three-dimensional particles, regardless of
acquired techniques, such as using three-dimensional compu-
terized tomograpgy/laser scanning or computer software. (2)
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The polyhedral mesh has high versatility. Arbitrarily complex
shapes can be represented by using the unified polyhedral
mesh, which significantly simplifies the preprocessing for data
preparation. Additionally, if one wants to update, simplify,
reconstruct, smooth, or deform the mesh, there have been
abundant open-source algorithms to manipulate the polyhedral
mesh. (3) The polyhedral mesh is flexible. It can adapt to
different precision and efficiency requirements by choosing
different mesh resolutions, which is quite essential in the
numerical simulations and will be elaborated on in Section 4.1.

The surfaces of the particles are all discretized into
polyhedral meshes. Thus, whether each two particles are in
contact depends on whether their triangular facets intersect.
Figure 2 illustrates the contact scenario between two polyhedral
particles. The locally intersecting triangular facets between two
triangular meshes are referred to as active contact elements’
(the inset in Figure 2). The mesh with the higher spatial
resolution is utilized to compute the contact force. For each
active contact element, the normal and tangential contact force
can be ascertained by using the Hertz contact model and
Coulomb friction model as (Hertz 1881; Cheng et al.
2017, 2018)

d

m d d

= -

= -

F r E C u

F F r G C u
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where the variable δnk indicates the mutual compression of each
active contact element (i.e., intersecting triangular facets; see
Figure 2), and δsk corresponds to the tangential relative
displacement. The variables Cnk and Csk denote the damping
coefficient in the normal and tangential directions, respectively,
and unk and usk are the relative velocities in normal and
tangential directions. The effective radius reff is defined as half
of the harmonic average of two contacting bodies’ equivalent

spheres (i.e., the sphere has the same volume as the body). The
effective Youngʼs modulus Eeff and effective shear modulus
Geff are defined as half of the average of the two contacting
bodies’ modified Youngʼs modulus and modified shear
modulus. Readers can refer to Wen et al. (2023), Zeng et al.
(2022) for the calculations of δnk and δsk, as well as more details
of the contact model.
Assume the total number of the active contact elements for a

pairing of contacting bodies is N. The resulting contact force
acting on the two contact bodies, i and j, yields

=
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where the triangular mesh of the body i is used to generate the
active contact elements and calculate the contact force.

2.2. Motion Integration

The second-order leap-frog integration is adopted to solve
the dynamical equations of the granular system presented in
Equation (1) to make a trade-off between computational
accuracy and efficiency. On the one hand, the leap-frog
integration is symplectic conservation. Its stability in handling
intensive contact scenarios has been validated in previous
studies. On the other hand, the leap-frog integration scheme
does not require iteration in a single time step; therefore, the
computational cost is low. The “kick-drift-kick” scheme is
applied to solve the translational motion of the particle from
step m to step m+ 1 (Schwartz et al. 2012):
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Figure 1. Irregular-shaped particles with different mesh resolutions.

Figure 2. Locally intersecting triangular facets between two polyhedral particles.
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where v and r are the velocity and position of the particle, and
the subscript denotes the step number. The symbol Δt
represents the step size in the numerical simulation. When
solving the rotational motion of the particle, the quaternion q is
used to track the attitude of the particle. Consequently, the
corresponding iterative formulas from step m to step m+ 1 are

w w w= + D
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+ +
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The variable f qm( ) in Equation (5) is defined as
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where ωx, ωy, ωz are three components of the angular velocity,
and q0 to q3 correspond to the components of the quaternion q.
The variable ¢f qm( ) defines the first derivative of f qm( )
versus time.

3. GPU Acceleration and Numerical Implementation

3.1. PolyDEM Frame on GPU

The GPU framework is designed for asynchronous comput-
ing, which is not a standalone platform but a coprocessor to a
CPU. The computing structure is divided into the host (CPU
and its memory) and device (GPU and its memory), where
GPU must operate in conjunction with a CPU-based host. In
PolyDEM, the CPU works as a process controller. Since data
transmission is a GPU computing bottleneck, the PolyDEM
reduces the data transfer between the host and device as much
as possible. CPU is only responsible for loading and saving
data, initializing the settings of the simulation parameters, and
driving the GPU computing kernels to perform computations in
a designed order. All of the computational operations are
executed on GPU. Such an architecture can fully utilize the
computational power of the combined CPU + GPU system.
The overall flowchart of PolyDEM is depicted in Figure 3.
In Figure 3, the CPU loads the initial states, shape models,

and mechanical parameters of the particles from external files.
The initial conditions include information about the positions,
velocities, quaternions, and angular velocities; the shape
models include the topological information of vertices and

Figure 3. Flowchart of the simulation process in PolyDEM.
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triangular facets; the mechanical parameters define the material
properties of particles. After all information is loaded, the CPU
pre-calculates the geometrical information of the particles,
which will be applied to later computations. The geometrical
information includes the normal and centroid vectors of each
triangular facet of a particle. Then, the device memory is
allocated, and all previous information is transferred into GPU.

The flowchart patched in orange color illustrates the
operations executed by the GPU, which is the key to
accelerating the code and is the focus of this study. In the
traditional framework of DEM, the main process can be
divided into four parts: update, neighbor search, contact
detection, and integration. We also inherit the framework of
the traditional DEM. At the beginning of each iteration, the
geometrical information (namely the normal and centroid
vectors of particles’ triangular facets) and vertices of the
particles are mapped into the inertia frame according to the
calculations of the previous iteration. These two functions can
be performed simultaneously. After these two steps are
accomplished, the leaf and internal nodes of the linear
bounding volume tree (LBVH) are updated based on the
geometrical information and vertices of the particles. The most
complicated and time-consuming operation in PolyDEM is to
compute the interaction between particles. To precisely handle
the contact between nonspherical particles, the LBVH
technique is employed in the contact detection phase. In this
section, we exhibit the overall flowchart, aiming to give a clear
explanation of how the code works. Details about the code
implementation can be found in Sections 3.2–3.4.

3.2. Neighbor Search

The simplest conceivable method is to directly check the
contact between each pair of particles; however, this method
would result in unacceptable calculation effort once the
numerous particles are employed. To improve the execution
speed of the program and reduce the computational load, the
operation of neighbor search is introduced before detecting
contact to determine the neighboring particles quickly. It is also
the common practice of DEM. The uniform grid method is
utilized in PolyDEM to search for neighboring particles (Peng
et al. 2019). Figure 4 uses a simple example to show the steps.

The uniform grid method subdivides the computational
domain into a grid of uniformly sized cells. The circumscribed
sphere is computed for each individual nonspherical particle. The

cell size of the grid must be greater than the diameter of the
maximum circumscribed sphere of the particle, ensuring
nonneglect of potential contact. Each cell of the uniform grid
corresponds to a hash value, mapping the three-dimensional grid
into a one-dimensional array. The number in the top left corner of
the cell in Figure 4 (red) labels the hash value for each cell. Hash
values of particles can also be computed according to their spatial
positions. The particles with the same hash values indicate that
they reside in the same cell. Hence, for each particle, we only
need to examine its own located cell and 26 surrounding cells (27
cells in total) to identify the potential neighboring particles. Four
kernel functions are used to accomplish this process:

(i) Calculate the hash values of each individual particle. The
detailed formulas to calculate the hash value can be found
in Zeng et al. (2022), which is omitted here for simplicity.

(ii) Sort particles according to their hash values. In this kernel
function, two arrays, ParticleIndex and ParticleHash, are
employed to record the original indices and hash values
of the particles. The dimensions of these two arrays are
equal to the number of particles. Then, the particles are
sorted based on their hash values, and the order of the
ParticleIndex array is also adjusted accordingly, as
illustrated in Figure 4.

(iii) Aided by the sorted ParticleHash array, two arrays,
CellStart and CellEnd, are employed to record the index
of the beginning and ending particles in each cell. The
dimensions of these two arrays are equal to the number of
the three-dimensional uniform grid. Using the index
recorded in CellStart and CellEnd arrays makes it
convenient to ascertain the number of particles in each
cell. By visiting the sorted ParticleIndex array, it is also
convenient to determine which particle resides in the cell.
For example, in the cell with a hash value of 8 in Figure 4,
CellStart[8] and CellEnd[8] correspond to the numbers 5
and 8, respectively. It means this cell owes four particles. In
the sorted ParticleIndex array, the fifth to eighth elements
reside in this cell. In this way, we do not record all particle
indexes for each cell, thus reducing memory overhead.

(iv) For each particle, the 27 cells are traversed. Suppose the
circumscribed spheres of two particles overlap each other.
In that case, the indexes of the two particles are identified
as potential contact pairs and stored in two arrays, AList
and BList, respectively. The elements AList[0] and BList
[0] store the total number of the potential contact pairs, as

Figure 4. The schematic diagram of the uniform grid algorithm.
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shown in Figure 4. Consequently, based on these two
arrays, we are able to perform parallel computation based
on the contact pairs in the subsequent process.

3.3. Contact Detection by Using LBVH

Contact detection between nonspherical particles is carried out
by using BVH in the previous CPU code. We use the recursive-
tree method in the CPU version to find the overlapped BVs. It is
unsuitable for the GPU framework since GPU is much better at
handling large numbers of parallel tasks with low complexity.
Implementing such a complicated program cannot make the
GPU at full compacity. Additionally, the method requires
constant allocation and release of memory. The dynamic
memory management on GPU is quite cumbersome. The
execution time slows down significantly as well. For these
reasons, we have abandoned the recursive-tree approach on the
GPU platform. Instead, we adopt the LBVH, which is the depth-
first method and can use the full performance of the GPU.
Although the GPU-LBVH and previous CPU-BVH both create
BVs surrounding the body to detect contact, the workflows of
these two algorithms are radically different. The following
contents illustrate the implementations of LBVH on the GPU.

Reviewing Figure 3, the BV tree for each particle is created
first before the main loop of the program. In the main loop,
since the topological information of the particle shape model is
not changed, we do not need to reconstruct the hierarchical tree
at each time step. It only needs to update the BVs according to
the position and attitude of particles at each time step. After the
neighbor search phase, all potential contact pairs are identified.
LBVH is used to precisely determine the contact regions
between nonspherical particles and calculate the contact force.

The first assignment is to construct the BV tree. In LBVH,
the construction of the BV tree is reduced to a sorting problem
by using the Morton code. The Morton code can map the three-
dimensional data to one-dimension and preserve the locality of
the data points at the same time. It defines a space-filling curve
where the data points owning neighboring coordinates have
close Morton codes. Readers may find the computations of the
Morton code in Karras& Aila (2013).

The shape model of each particle consists of vertices and
triangular facets. Each particleʼs Morton code for each
triangular facet is computed according to its centroid
coordinates. The centroid coordinates are sorted in increasing
order of their Morton code. The corresponding triangular facets
are also ordered in a spatially coherent way. Then, it is simple
to construct the BV tree based on ordered Morton codes. The
pseudocode is shown in Karras & Aila (2013). Here, we briefly
describe the algorithm. Figure 5 is used as an auxiliary to
explain the algorithm.
The Morton codes are represented by using binary strings.

Binary search is employed to find the first different bit of the
Morton codes. Then, all BVs with the highest bit equal to zero
are divided into the left child tree of the root node;
correspondingly, all BVs with the highest bit equal to 1 are
divided into the right child tree of the root node. Similarly, the
same method is applied to recursively split the current leaf
nodes into the child trees in the next level. The BV tree is
generated until the final bit of the Morton code is visited.
In the main loop, the BVs of the leaf and internal nodes

should be updated at each time step. A shape model of a
particle consisting of Nv vertices and Nf= 2Nv− 4 facets have
Nf leaf nodes and Nf− 1 internal nodes. The BVs of the leaf
nodes are updated by finding the maximum and minimum
coordinates of the triangular facets. The internal nodes are
updated by using a bottom-up reduction algorithm. Before
entering the main loop, the hierarchical structure of the BV tree
is pre-generated for each particle; in other words, we already
know the parent and child nodes for each node. Therefore, we
assign a single leaf node per thread and proceed to the root
node. If the BV of the given node is not calculated, the thread
finds the BVs of its child nodes and calculates their union, with
an atomic flag indicating that the BV of the given node is
already computed. If the BV of the given node is already
calculated, the thread proceeds to find its parent and calculate
the BV of its parent. This atomic flag is quite useful. It can
avoid the duplicate calculation of a node and ensure the node is
not processed before its children are processed.
In the flowchart of Figure 3, contact detection between

potential contact pairs is performed after the neighbor search
operation. Recursive searching for intersected BVs between

Figure 5. The hierarchies of the BV tree generated by using Morton code.
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potential contact pairs is an efficient method on the CPU, but it
would lead to high execution divergence on GPU. The strategy
of independent traversal is applied to fix this issue. For each
thread, we check whether each leaf node of the particle from
AList (represented as particle A for simplicity) overlaps with the
node of the particle from BList (represented as particle B). Note
that AList and BList are recorded in the neighbor search step
(see Figure 4). The algorithm first checks the overlap between
the leaf node from A and the children of the current node from
B and reports an intersection if one of the child nodes from B is
also a leaf node. If the current node from B is an internal node,
but it reports overlap with the leaf node from A, the algorithm
continues iterating. If the current node only has one child report
overlap, its child is set as the current node to start over. If both
two child nodes report overlap, the left child is set as the
current node to perform the same operation, while the right
child is pushed into the stack. A node is popped off the stack if
there are no children to be traversed. The loop ends once the
value popped off of the stack is null. After this process, it
reports the intersection between two leaf BVs, which is the
minimum unit of the BV tree. The above steps are executed for
each leaf node of particle A. Particle A owns Nf triangular
facets, meaning it also has Nf leaf nodes. Therefore, contact
detection steps will be executed for Nf times to verify contact
between a pair of particles. Generally speaking, an irregular
particle has hundreds of triangular facets. For each iterative
step, the function for the contact detection step would perform
N×Nf times, where N denotes the number of potential contact
pairs. The calculative scale seems to be great. Nevertheless,
GPU has thousands of CUDA cores to support large-scale
computations. The algorithm to perform contact detection is
decomposed into fine granularity and is highly parallel by
organizing the thread blocks on the GPU. It can fully utilize
GPU computing resources and is computationally efficient,
which will be elaborated on in Section 3.4. Then, the algorithm
queries the triangular facets enveloped by the leaf BVs for
overlap. The corresponding algorithm is consistent with
the previous CPU code and is omitted here for simplicity

(see Wen et al. 2023; Zeng et al. 2022 for more details).
Finally, the contact force and torque of a pair of intersected
triangular facets, i.e., active contact elements, can be obtained
through Equation (2). The resultant contact force and torque
between the contact pairs can be obtained by summing up the
calculated force and torque from the triangular facets, as
presented in Equation (3). Once the contact force and torque
between the potential contact pairs are calculated, we use
another kernel function to obtain the resultant contact force and
torque on each individual particle.

3.4. Organization of Thread Blocks in PolyDEM

Except for the algorithm, the organization of thread blocks is
another essential factor in determining the kernel function
performance, as it determines the parallel granularity. We
attempted to allocate a single particle for each thread in the early
state of PolyDEM development. Nevertheless, such an organiza-
tion strategy leads to too many loops in a single thread and risk
processors idle even though there is plenty of work to be
processed. To effectively utilize the available hardware and
squeeze the computing power of the GPU, we excavate finer-
grained parallelism in PolyDEM by configuring reasonable
threads and blocks. The following are detailed implementations.
Reviewing the flow diagram in Figure 3, the first step in the

main loop is to update the geometrical information and vertices
of particles according to their position and attitude information.
We use a one-dimensional grid with one-dimensional blocks
while driving these two kernel functions. By considering the
data-access locality in the PolyDEM, a block is used to manage
a particle. Each block uses a thread to manipulate a vertex or a
triangular facet of the particle. Therefore, the grid size is
naturally set to the total number of particles. The block sizes
are set to the vertex number of particle shape models when
updating the vertices and are set to the facet number of particle
shape models when updating the geometrical information.
Figure 6 illustrates the thread block allocation for the kernel
function updating vertex information. In Figure 6, block i is
used to manage particle i. In block i, Nv threads correspond to

Figure 6. Thread block allocation for updating the particle vertices.
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Nv vertices. Each thread in the same block i reads the position ri
and quaternion qi of the particle, then calculates the vertex
coordinates in the inertia frame by using the direction cosine
matrix RB

N[ ]. The symbols vertN
1 and vertB

1 represent the vertex
of the particle mapped in the inertia frame and body-fixed
frame, respectively.

The same strategy is employed here to update the leaf and
internal nodes of LBVH. Therefore, each thread is assigned
very few operations, which enables parallel computation at a
much finer level of granularity. All potential contact pairs are
found and recorded in two arrays after the neighboring search.
In the contact detection phase, the block number is equal to the
number of potential contact pairs. We assign a contact pair per
block, as shown in Figure 7. A block has Nf threads
corresponding to the leaf node number of particle A. A thread
is used to manage a leaf node of particle A. After the contact
force between potential contact pairs is computed, we employ
the atomic operation in the kernel function to obtain the
resultant contact force and torque on each particle.

In general, two strategies are proposed to accelerate the
computation speed: (1) Parallel the contact detection at the
contact pair level rather than the particle level. (2) By
organizing the thread blocks, the tasks of the kernel functions
are decomposed into smaller granularity to exploit the codeʼs
parallelism fully.

4. Performance Evaluation and Discussions

This section presents two numerical examples to demon-
strate the performance of PolyDEM. The first case is the
collision between two spheres to check the precision of the
code. The second is the self-gravitating aggregation of the
rubble-pile asteroid to check its convergence property and
computational efficiency.

4.1. Collision between Two Rigid Spheres

During the numerical implementations, multihierarchies of
grids are utilized to improve computational efficiency. The
uniform grid method is employed to search neighboring
particles; the LBVH is employed to determine the active
contact elements between two contacting bodies. In this

section, we use spherical-shaped particles as an example to
illustrate the differences in the code implementations between
the spherical DEM code and the PolyDEM code.
In the PolyDEM, the shapes of particles are represented by

surface triangular meshes. Hundreds of triangular facets are
employed to record the shape characteristics of a spherical
particle. Then, the LBVH is constructed based on the stored
vertices and facets, aiming to detect the contact between the
two particles. LBVH provides a hierarchical representation that
could split the whole mesh into certain levels. The root node of
the BV tree contains the entire triangular facets. Then, the BV
tree grows from the root node: the root node is recursively
partitioned into two separate parts that are enclosed by smaller
BVs. These two separate parts will then keep partitioning until
each small BV only enclose a triangular facet, which refers to
the leaf node of the BV tree. Figure 8 presents a BV hierarchy
of a spherical particle, which has 162 vertices and 320 facets.
In the code, the data structure of the BV tree includes the
maximum and minimum coordinates of current BVs, together
with two pointers to the next level of LBVH; therefore, the
occupied memory increase as the vertices and facet numbers of
the mesh increases. Table 1 shows the memory occupied by
spherical particle LBVH with different mesh resolutions. The
first and second rows show the vertex and facet numbers of
four models. The third and fourth rows show the depth and
node number of the BV tree based on these four different
models. The last row shows the minimum memory consump-
tion of the BV tree in the computer. Beyond that, PolyDEM
also stores the vertices, facets, normal vectors, and centroid
vectors of facets for each particle. It can be seen that memory
consumption increases rapidly with the increase in mesh
resolution. Nevertheless, in the spherical DEM, only the radii
of the spherical particles need to be recorded. Comparing the
radii of the two spherical particles and the distance between
their mass centers makes it convenient to know whether the
two particles overlap. We only use 8 Bytes to store the radii of
the sphere. Although the LBVH has high computational
complexity and memory consumption, it could manage the
different contact scenarios between irregular-shaped particles,
which recuperated some disadvantages of the spherical DEM.

Figure 7. Thread block allocation for computing contact force and torque between potential contact pairs.
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Then, we assess how the mesh resolution affects the
computational accuracy using the same strategy as Zhan
et al. (2021). Two spheres, each 0.05 cm in radius, are placed
along the z-axis with a distance of 5 cm between their mass
centers. Sphere A is released and drops freely with zero
velocity under the gravity acceleration of 0.1 m s−2. Sphere B
is fixed. Both spheres are represented by using the surface
triangular meshes with the same vertex and facet number. The
restitution coefficient is set to 1.0. The damping and frictional
forces are neglected. Such a case corresponds to a completely
elastic collision. In an ideal scenario, sphere A would rebound
vertically after the two spheres interact and return to the initial
releasing position. We use this criterion to check whether the
computation is accurate. Four simulation groups are performed,
where the spheres have different mesh resolutions, as shown in
Table 1 (Model 1 to Model 4). The orientations of both spheres
are randomly initialized, and the tests are repeated 5 times for
each group of numerical simulation to consider the influence of
random alignments. Three indicators are used to assess the
computational accuracy of different mesh models: the percent
error of restitution coefficient, angular velocity, and rebounding
angle. Figure 9 summarizes the average values of each
indicator.

The restitution coefficient is calculated by using the velocity
of sphere A before and after the collision. In Figure 9(a), the

percent error of restitution coefficient is given by
e= ||uout|/|uin|− 1|, where the variables uout and uin are the
outgoing and ingoing velocity, respectively. In Figure 9(c), the
rebounding angle defines the deviation angle after sphere A
rebounds and returns to the maximum height. Theoretically, the
motion of the two spheres is a central and utterly elastic
collision. The restitution coefficient should equal 1.0, and the
outgoing angular velocity and rebounding angle should be
zero. Figure 10 shows the motion trajectory of sphere A when
Model 1 is adopted, where the rebounding angle is labeled as δ
in Figure 10. It can be seen that the rebound trajectory of sphere
A deviates from the freefall trajectory. Moreover, the angular
velocity of sphere A is not equal to 0, according to Figure 9(b).
The phenomenon can be interpreted as follows: The contact
force is calculated through active contact elements, i.e., the
intersection of triangular facets between two spheres. When the
mesh resolution is low, the obtained contact force is not exactly
along the z-axis, which induces the rotation of the sphere and a
deviation of the rebound trajectory. The numerical error is
obviously improved when the mesh resolution is increased.
When the facet number reaches 20480, the numerical error is
eliminated. However, it can be seen in Figure 9(b) that the
computational time also increases rapidly. It has been argued
that the error in the single particle level may not be significant
on the particle assemblies. Therefore, we should make a trade-
off between computational accuracy and efficiency when
choosing the mesh models, and it is allowed to lose a little
precision to ensure efficient computation.
Figures 9(e) and (f) only exhibit sphere Aʼs energy and

angular momentum error evolution since sphere B is
constrained during the whole process. The relative error of
sphere Aʼs energy is computed as follows:

w w
=

+ + -v J
E

m mgh mgh

mgh
. 7err

1

2

2 1

2
T

0

0

∣
( )

Figure 8. Illustrative levels of the LBVH of a sphere.

Table 1
BV tree of Spherical Particles with Different Mesh Resolutions

Index Model 1 Model 2 Model 3 Model 4

Vertex number 162 642 2562 10,242
Facet number 320 1280 5120 20,480
BV tree depth 9 11 13 15
Node number 639 2559 10,239 40,959
Minimum memory con-

sumption (bytes)
31,950 127,950 511,950 2,047,950

9

The Astronomical Journal, 166:194 (15pp), 2023 November Wen & Zeng



The symbols m and J denote the mass and inertia matrix of the
sphere, v and ω denote the velocity and angular velocity, and g
is the gravitational acceleration. The symbols h and h0
represent the height of sphere A during its motion and the
height at the initial moment, respectively. Since the initial
radial velocity and angular velocity are set to zero, then the
initial angular momentum should also be zero. Therefore,
Figure 9(e) shows the evolution of angular momentum in the

form of absolute error. Before the two spheres interact with
each other, the error curves are approximately zero. Jump
points appear in the error curves after the two spheres interact
with each other, as shown in Figures 9(e) and (f). This
phenomenon indicates that the energy and angular momentum
are not strictly conserved. Numerical errors and mesh
discretization (discontinuous sphere surface) deduce this
phenomenon. However, the errors in energy and angular

Figure 9. Indicators to assess the computational accuracy of different mesh models.
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momentum are both at low levels. Furthermore, the errors in
energy and angular momentum both decrease as the mesh
resolutions improve, as shown in both Figures 9(e) and (f).

4.2. Simulation of Self-gravitating Aggregation

This section presents the gravitational accretion process of a
rubble-pile asteroid by using PolyDEM. The aggregation
process features both gravitational and collisional dynamics.
As presented in Section 2.1, the force-based contact model is
applied. Although the computational efficiency is lower than
that of the impulse-based model, the force-based simulation is
more suitable in regimes where the particles are in steady, long-
lasting contact. The brute force method computes the mutual
gravitational interactions between particle assemblies. The total
gravitational force on particle i due to its interaction with the
other N− 1 particles can be given by Barnes (2012)

å e
=

+ 
F

r

r
Gm

m
8g i

j N

j ij

ij1
2 2 3 2(∣ ∣ )

( )

in which G defines the gravitational constant, and mi and mj

define the masses of the particles i and j. The vector rij denotes
the relative position between i and j. Introducing the softening
factor ε2 has two benefits: on the one hand, the softening factor
can avoid singularity in computing Fg when i= j, since Fg= 0.
We do not need to exclude the self-gravity of individual
particles, which would reduce the branch divergence of GPU
and accelerate the computing speed. On the other hand, the
softening factor limits the magnitude of the gravitational force
between two very close particles and also avoids the singularity

of the numerical integration. While the computational complex-
ity of the brute force method reaches O(N2), the preponderance
of GPU is exact in handling simple intensive computing tasks.
Nyland et al. (2009) already gave the complete CUDA solution
of the brute force method. Therefore, we directly integrated this
routine into the PolyDEM.
In this numerical example, three sets of different numbers of

particle assemblies are considered to discuss the computational
efficiency of PolyDEM. The numbers of particles are 104,
1040, and 10400, respectively. To avoid undesirable effects
induced by anisotropic physical properties of particles, the
density of particles in these three groups are all 3.0 kg m−3, and
the shapes keep identical as well. The shape models of the
polyhedron particles have 162 vertices and 320 triangular
facets. The radii (i.e., the equivalent sphere of the polyhedron
particles) are 84.93, 39.42, and 18.30 m, respectively. Such a
parameter setting could guarantee the same total mass of the
particle assemblies. For all simulations presented in this paper,
Youngʼs modulus is set to 1.6 MPa, the restitution coefficients
are set to 0.2, and the friction coefficients are set to 0.5. The
time step is fixed to 0.1 s to guarantee the numerical stability of
the integrator.
Previous studies have shown that the results are heavily

dependent on the initial conditions of particles. To foster the
formation of aggregates, the initial radial velocities of the
particles are set to zero, and the initial angular velocities range
from 0.0 to 1.732× 10−3 rad s−1. The accretion process for the
10400-particle assembly is exhibited in Figure 11(a). We
obtain a similar pattern as presented by Sánchez et al. (2021).
Particles accrete together relying on purely self-gravitational
interactions. During evolution, particles come into contact with
each other as they approach each other. Particles constantly
configure their positions and attitude under the combined
influence of gravitational and contact interactions. The shape of
the aggregation gradually evolves from a cube into a sphere.
Part of the energy is dissipated through interactions of particles.
Finally, the particle system reaches a steady-state equilibrium
in the form of a spherical cluster. In Figures 11(b) and (c), the
104 and 1040 particle assemblies also accrete into spherical
clusters at 150 minutes.
Figure 12 presents the contact force chain of 10400-particle

packing. It can be seen that the interparticle contact is dense.
The interlocking particles jointly constitute dense chains of
contact force. The magnitude and orientations of the contact
force of the particle aggregates formed by self-gravity influence
are evenly distributed. Figure 13 presents the statistics of the
contact force magnitude for three particle assemblies. The
variable Fc denotes the normalized contact force, which is
calculated by using = á ñF F Fc c c . The variable á ñFc indicates the
average magnitude of contact force. In Figure 13, the
magnitude of contact force is classified into three categories,
which correspond to weak, medium, and strong force chains.
Although the numbers of the three particle assemblies are
different, the distribution law of force chain magnitude is quite
similar. Almost 90% of force chains fall into the range of
medium force chains. Few force chains belong to weak or
strong force chains.
Figure 14 presents distributions of contact force orientations

in the form of polar diagrams. The angular coordinate
represents the orientation of the contact force, and the radial
coordinate represents the probability distribution of the contact
force. In Figure 14, the contact force orientations present

Figure 10. Motion trajectory of sphere A when Model 1 is adopted.
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homogenous properties when the particle number is large. The
10400-particle assembly has the most uniform distributions of
contact force orientations. For 104-particle assembly, the polar
diagram presents nonuniform characteristics in radial coordi-
nates. Despite the radial coordinates being different for 104-
particle assembly, the angular coordinates almost cover 360°.
Since the particle number is limited, the statistical characters of
the 104-particle assembly are not representative enough.

Figure 15(a) illustrates the total momentum evolution of
10400-particle aggregate during the accretion process.
Figure 15(b) corresponds to the relative error of angular
momentum. The initial velocities of all particles are set to zero.
Theoretically, the momentum of particle assemblies should
keep zero during the whole process. The angular momentum
should keep constant as well. Nevertheless, momentum
fluctuates around zero; the angular momentum errors also drift
over time. These errors result from three sources: The first is

the discretized mesh description of irregular-shaped particles.
Such approximation would lead to an error in contact position
and penetration calculations, bringing additional angular
velocity for the particles, as shown in Section 4.1. Second,
the integration method for the angular velocity (see
Equation (5)) is not momentum-conserved, which also
contributes to the drift of the angular momentum. Lastly, the
floating-point number is used to store and operate decimals in
computers. Although we use the double-precision floating
number in PolyDEM to decrease the numerical errors as much
as possible, the effective number of bits is only 15 or 16.
Since the total mass of the particle assembly is great
(∼8.0052× 1011 kg), the tiny errors in decimals are also
magnified. The double-precision floating number arithmetic
still produces the significant error. We attempted to decrease
the integration step, but still, the error in the momentum and
angular momentum cannot be eliminated entirely. Although

Figure 11. Shapes of aggregates of three numerical simulations.
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errors in numerical calculations are inevitable, they are
controlled at a low level and are acceptable for current research.

Finally, numerical details of the time spent on PolyDEM are
discussed. Results presented in this paper were obtained using a
GPU server, and the hardware configuration of our computing
platform is shown as follows:

(i) Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz;
(ii) NVIDIA Tesla P100-PCIE-16GB.

The computational time is 13 minutes 53 s, 23 minutes 32 s,
and 3 hr 4 minutes for 104-particle, 1040-particle, and 10400-
particle assemblies. The computing time based on GPU is
proportional to the square of the particle numbers. To further
check the acceleration of PolyDEM, the single-core CPU-based
code is used to simulate the accretion of the 10400-particle
assembly. The implementation of the CPU-based code follows
the same algorithms described in Zeng et al. (2022). The CPU
simulations are performed using Intel(R) Xeon(R) Gold 6138
CPU @2.0 GHz. We only execute the first 100 computational
steps since the single-core CPU-based code is very slow with
such a large number of particles. It shows that the computing
speed of PolyDEM is about 688 times faster than that of CPU-

based code, which is improved quite remarkably. We also use
the command-line tool nvprof to analyze GPU resource
consumption, and the consumption of each module is
summarized in Figure 16. In terms of calculation time, the
kernel function for calculating the contact force between
contact pairs takes up the most resources. This is in line with
expectations since the contact detection between polyhedral
particles is a very complicated problem. The numerical
examples presented here lie in the dense contact regime,
leading to high computational cost on contact detection.
Furthermore, we notice that the kernel function for calculating
the mutual gravity only occupies 2.61% of the total time,
indicating that the brute force method is still very efficient on
the GPU platform.

5. Conclusions

This paper designs a GPU parallel method to accelerate the
PolyDEM. Two strategies are proposed to enhance the
computational efficiency: (1) Parallel contact detection and
contact force calculation at the contact pair level rather than the
particle level. The contact detection and contact force
calculation of each particle is decomposed into several kernel
functions to avoid deep nesting of the program. (2) Reduce the
loop numbers in kernel functions by organizing the thread
blocks reasonably. Both two strategies transform complicated
tasks into simple tasks, which can implement fine-grain
parallelism effectively and help hide communication latency.
The LBVH technique is introduced in the PolyDEM for the
most time-consuming, complex, and essential contact detection
process. The construction, update, and query of the BVs can be
realized by using traversal. In the CPU-based code, the
traditional BVH uses an iterative way to accomplish the above
tasks. It is unsuitable for GPU architecture since it would cause
severe branch divergence and slow down the computing speed
of the program. Nevertheless, the traversal of LBVH is able to
minimize the branch divergence and enable the best perfor-
mance of the GPU.
Two benchmarks are used for the verification of the

PolyDEM. The influence of mesh resolution on computational
efficiency and accuracy is discussed in the first scenario by
simulating the collision between two rigid spheres. The results
show that the fine mesh resolution will increase the precision
but decrease the computing speed. One should make a trade-off
between the computational efficiency and accuracy. The self-
gravitating aggregation scenario of a rubble-pile asteroid is
carried out as the second test by varying the number of
particles. Numerical results show that the accretion process of
particles is in agreement with previously published research.
The particles aggregate into sphere clusters due to the pressure
gradient of self-gravity. The internal force chains are interlaced
and evenly distributed in the aggregation. In summary,
PolyDEM can easily achieve hundreds of times more
acceleration than that of a single-core CPU-based code. Even
though the force-based contact model is employed, PolyDEM
can achieve high computational efficiency and numerical
stability as well. The promotion of computing speed makes it
possible for large-scale numerical simulations by expanding its
potential applications of PolyDEM. In the future, the PolyDEM
is expected to be applied to the high-fidelity simulation of the
planetary granular system and provide new insight into
irregular-shaped granular matters.

Figure 12. Force chain of 10400-particle aggregates.

Figure 13. Statistics of contact force magnitude.
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