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ABSTRACT 
 

The time series of groundwater depth has the characteristics of trend, abrupt, and non-stationary. 
Based on the advantages of wavelet decomposition and long short-term memory neural network 
(LSTM), a new coupling model (wavelet decomposition-LSTM) for groundwater depth prediction is 
proposed. Firstly, wavelet decomposition is applied to decompose the groundwater data into high-
frequency periodic signals and low-frequency trend signals, to reduce the complexity of the time 
series. Secondly, the decomposed high-frequency and low-frequency signals are taken as inputs to 
train the model respectively, and then the total prediction value is acquired. The improved model 
reduces the limitations of LSTM processing complex signals and improves prediction accuracy. 
Taking the No. 5 well of Lu Wangfen Town and the No. 3 well of Muye Town as the research object, 
the achieved results from the proposed model were compared with the results of the LSTM model 
and the back-propagation (BP) neural network model. This comparison shows that the performance 
of the new model is better than the others, and the average relative errors of the coupling model are 
2.11% and 2.49% respectively. The proposed method has high prediction accuracy and 
generalization ability and is a more effective method for groundwater depth prediction.  

Original Research Article 
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1. INTRODUCTION 
 
Groundwater depth is an important indicator 
reflecting the change of groundwater resources, 
affected by mining, recharge, evaporation, and 
other factors, groundwater depth sequence has 
the characteristics of randomness, uncertainty, 
and non-stability, which adds a certain degree of 
difficulty to scientifically and accurately predict 
groundwater depth [1]. When groundwater is 
overexploited, groundwater funnels and ground 
subsidence are formed. When the amount of 
recharge exceeds the amount mined, the 
groundwater depth becomes shallow. Therefore, 
predicting the change of groundwater depth is of 
great importance to regional water resources 
management and accurate prediction of 
groundwater depth change can provide a 
theoretical basis for groundwater protection, 
planting structure and mode adjustment, rational 
utilization of water and soil resources, and 
ecological environmental protection [2-5]. 
 
The research of groundwater depth prediction 
models is always one of the hot issues in the 
water conservancy field at home and abroad. 
Scholars at home and abroad have done a lot of 
research on the prediction of groundwater depth 
and achieved fruitful results. For example, 
Takafuji et al. [6] used the time series method of 
the Auto-Regressive Moving Average Model 
(ARMA) and the geostatistical method of 
Symmetric Gauss-Seidel (SGS) to predict the 
change of groundwater level in the Bauru region 
of Brazil. Fijani et al. [7] used fuzzy logic models 
to simulate the groundwater level in Iran's 
Maragheh-Bonab region. Shen et al. [8] used the 
grey memory model to predict the depth of 
groundwater in Hotan, Xinjiang. Nadiri et al. [9] 
use genetic algorithms to select the number of 
hidden layers and nodes, optimizing the Deep 
Neural Network (DNN) model of water level 
prediction. Aiming at the problem of low accuracy 
in groundwater depth prediction, Huang et  al. 
[10] proposed a nonlinear prediction model 
based on Particle Swarm Optimization (PSO) 
Support Vector Machine (SVM). They analyzed 
the essential characteristics of the development 
and evolution of the groundwater level system by 
establishing a PSO-SVM model. From the above, 
it can be seen that there are many methods for 
researchers at home and abroad to predict the 
depth of groundwater, mainly focusing on 
regression analysis, fuzzy logic, gray theory, 
neural networks, and genetic algorithms of 

groundwater time series. The above method has 
significant advantages in predicting groundwater, 
but its problems cannot be ignored. In the 
regression analysis prediction groundwater depth 
sequence, which factor to use and what 
expression to use is only a speculation, which in 
turn affects the unpredictability of some                    
factors, making regression analysis limited in 
predicting groundwater. When fuzzy logic 
predicts groundwater, predictors and their 
weights are difficult to determine and can lead to 
useful information being ignored. The grey theory 
predicts the depth of groundwater and obtains a 
monotonic sequence, and the calculated results 
are difficult to reflect the change in the time 
series of the original groundwater depth. 
Common algorithms such as recurrent                  
neural networks (RNN) have problems with 
gradient disappearance or gradient explosion. 
Long short-term memory neural networks (LSTM) 
have been designed from the beginning to solve 
long-term dependency problems common in 
general recurrent neural networks [11-13]. Using 
LSTM to efficiently transfer and express long-
term sequences without causing useful 
information from long ago to be ignored. At the 
same time, LSTM can also solve the problem of 
gradient disappearance/encoding in RNN. LSTM 
neural networks have strong adaptability and 
generalization ability of self-learning and are 
widely used in nonlinear time series prediction. 
Wavelet decomposition can decompose the 
groundwater sequence into high-frequency 
signals and low-frequency signals, the high-
frequency component represents the periodic 
fluctuation water level of the groundwater                 
level, and the low-frequency component 
represents the trend item water level of the 
groundwater level, to realize the smoothing 
treatment of the non-stationary sequence. [14-
16]. By predicting the high-frequency 
components and low-frequency components 
separately, the prediction accuracy of non-
stationary signals can be effectively improved. 
Therefore, this paper combines the advantages 
of wavelet decomposition and the LSTM neural 
network to establish a groundwater depth 
prediction coupling model (wavelet 
decomposition-LSTM) based on the wavelet 
decomposition LSTM neural network. The use of 
wavelet decomposition can decompose the 
information in different frequency bands of the 
original data, greatly reducing the complexity of 
the data, combined with the LSTM neural 
network has a strong advantage in predicting 
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time series data and realizing high-precision 
prediction of groundwater level. 
 

In this paper, 15 sets of training data and two 
sets of prediction data are used to decompose 
the measured data into 7 high-frequency 
components and 1 low-frequency component by 
wavelet decomposition, and then 7 high-
frequency components and 1 low-frequency 
component are used as input data of the LSTM 
model for prediction. The training group data is 
used as the training, the prediction group data is 
used as the verification, and the predicted data is 
added to obtain the prediction value and the 
measured data to verify the prediction accuracy 
of the wavelet decomposition-LSTM model. At 
the same time, the prediction results of the 
wavelet decomposition-LSTM model are 
compared with those of a single LSTM neural 
network and BP neural network to further 
demonstrate the superiority of the wavelet 
decomposition-LSTM model. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area 
 

The study included groundwater depth data in Lu 
Wangfen Town, Xinxiang City, Henan Province, 
and groundwater depth data in Muye Town. Lu 
Wangfen Town, has a warm temperate 
continental monsoon climate, with an annual 
average temperature of 14 °C, an average 

temperature of 0.1 °C in January, an average 
temperature of 27.2 °C in July, average annual 
precipitation of 586.32 mm, annual evaporation 
of 1748.4 mm, and rainfall concentrated in June 
to September every year. Muye Town has a 
warm temperate continental monsoon climate 
with four distinct seasons and an average annual 
precipitation of 600.5 mm. Through the 
comprehensive and scientific monitoring of the 
groundwater in Lu Wangfen Town and Muye 
Town, the dynamic characteristics of groundwater, 
the understanding of the Spatiotemporal 
evolution of groundwater, and the grasp of its 
dynamic change characteristics. On this basis, 
the groundwater depth is predicted, and the 
variation trend of groundwater level is analyzed, 
to provide a theoretical basis for the sustainable 
utilization of groundwater resources, the 
ecological environment security, and the 
sustainable and healthy development of the 
social economy. The data in this paper are 
derived from the monitoring data of the No. 5 
Professional Observation Well in Lu Wangfen 
Town and No. 3 Professional Observation Well in 
Muye Town, Xinxiang City from 2005 to 2021, 
which can fully reflect the real dynamic changes 
of groundwater, and the monitoring data is well 
represented, meeting the technical requirements 
of groundwater monitoring specifications. The 
location of the two wells is shown in Fig.1. The 
yearly variation curve of groundwater depth is 
shown in Fig. 2 and Fig. 3. 

 

 
 

Fig. 1.  Location map of the two wells 



 
 
 
 

Zhang et al.; Int. J. Environ. Clim. Change, vol. 13, no. 11, pp. 3823-3837, 2023; Article no.IJECC.109570 
 
 

 
3826 

 

0 24 48 72 96 120 144 168 192 216
0

2

4

6

8

10

12

14

G
ro

u
n

d
w

at
er

 d
ep

th
(m

)

Month

 Lu Wangfen Town

 
 
Fig. 2. Groundwater depth curve of Well No. 5 in Lu Wangfen Town, Xinxiang City from 2005 to 

2021 
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Fig. 3. Groundwater depth curve of Well No. 3 in Muye Town, Xinxiang City from 2005 to 2021 
 

2.2 Wavelet Transform 
 
Fourier transform is a widely used analytical 
method in signal processing, which can convert 
time-domain signals into frequency-domain 
signals, but Fourier transform has no 
discrimination ability in the time domain 
[17,18,19]. The wavelet transform is developed 
given the shortcomings of the Fourier transform, 
and the original time-domain functions are 
decomposed by using wavelets and family band-
pass filters, and the signal is decomposed into 
two-dimensional time-frequency information, 
which greatly enhances the performance ability 
of local signals and improves the noise immunity 
of the model. The wavelet transform is a data 

decomposition and reconstruction method, which 
first uses a low-pass filter and a high-pass filter 
to decompose the original data into low-

frequency wavelet coefficient ncA  and high-

frequency wavelet coefficient 1, , ncD cD , 

respectively. The low-frequency wavelet 
coefficient can be further decomposed, and               
the process can be iterated several times until 
the maximum number of decompositions is 

reached. ( )t  wavelet transform can be divided 

into continuous wavelet transform (CWT) and 
discrete wavelet transform (DWT). In                  
order to improve the ability of continuous wavelet 
transforms to deal with complex problems,                
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CWT transforms the fundamental wavelets as 
follows: 
 

1

2( )ab

t b
t a

a
 

− − 
=  

 
                             (1) 

 

Where, a  is the scaling factor ( )0a   and b  is 

the translation factor ( )b R . By adjusting the 

values of a  and b  to control the scale of the 

wavelet transform, the time subdivision at high 
frequency and frequency subdivision at low 
frequency can be achieved, and the 
requirements of adaptive time-frequency signal 
analysis can be realized. 
 
The formula for the continuous wavelet transform 
is as follows: 
 

  

                   (2) 

 

Where, ( ),fW a b  represents the continuous 

wavelet coefficient. ( )f t  represents the raw 

data. ( )ab t  represents the conjugate function 

of ( )ab t . However, continuous wavelet 

transforms calculate wavelet coefficients on all 
scales, and this time-consuming process also 
produces a lot of redundant data. Therefore, 
discrete wavelet transforms are usually used in 
practical processes. The discrete wavelet 
transform is obtained by discretizing the 
continuous wavelet transform at scales and 
displacements at a power of 2. The calculation 

method of a  and b  in the ( )ab t  function is 

shown in Equation (3): 
 

   

                                (3) 

 

Where, 0 00, , , 0,1,2, ,a b R j k m Z   =  . 

Then the calculation method of function ( )jk t  

is shown in Equation (4): 
 

                     (4) 

 
The formula for the discrete wavelet transform is 
as follows: 

                    (5) 

 

Where, ( , )Wf j k  represents the discrete wavelet 

coefficient. ( )f t  represents the raw data. 

( )jk t  represents the conjugate function of 

( )jk t . 

 

2.3 LSTM Neural Network 
 
LSTM is a special type of RNN that effectively 
avoids the problem of gradient diffusion of RNN 
in long-dependent sequence models. The               
LSTM model includes four parts: input gate, 
forgetting gate, output gate, and cell state. The 
input gate determines how much input 
information is passed to the cell state. The 
forgetting gate mainly controls how much 
information in the cell state in the previous period 
is forgotten and how much is transmitted to the 
current moment. The output gate is based on the 
cell state of the forgetting gate and the input gate 
outputs the calculation results. The cell state is 
used to record information in the current input, 
the state of the hidden layer at the previous 
moment, the state of the cell at the previous 
moment, and the gate structure. Fig. 4 shows the 
internal structure of the LSTM hidden layer, 

where tf , ti , and to  represent the values of the 

t  moment forgetting gate, the input gate, and the 

output gate, respectively, and ta  represents the 

preliminary feature extraction of ( 1)h t −  and tx  

at the t  time. 

 

                  (6) 

 

                     (7) 

 

             (8) 

 

                   (9) 

 

Where, tx  represents the input at moment t . 1th −

represents the hidden state value at moment 

1t − .
fW , iW , oW  and aW  represent the weight 

coefficients of the forgetting gate, the input gate, 

the output gate, and 1th − during feature extraction, 

( , ) ( ) ( )dabWf a b f t t t+

−= 

0 0 0,j ja a b ka b= =

( )2
0 0 0( )

j

j

jk t a a t kb 
−

−= −

( , ) ( ) ( )djkWf j k f t t t+

−= 

( )1( ) t t ff t Wfh Ufx b −= + +

( )1( ) i t i t ii t Wh U x b −= + +

( )1( ) tanh a t a t aa t W h U x b−= + +

( )1( ) o t o t oo t W h U x b −= + +



 
 
 
 

Zhang et al.; Int. J. Environ. Clim. Change, vol. 13, no. 11, pp. 3823-3837, 2023; Article no.IJECC.109570 
 
 

 
3828 

 

respectively. fU , iU , oU  and aU  represent the 

weight coefficients of tx  during the forgetting 

gate, input gate, output gate, and feature 

extraction, respectively. fb , ib , ob  and ab  

represent the forgetting gate, input gate, output 
gate, and bias values during feature extraction, 

respectively. tanh  represents the tangent 

hyperbolic function and   represents the 

activation function. 
 

                                (10) 

 

                                      (11) 

 
The results of the forgetting gate and input gate 

calculations act on ( )1c t − , constituting the cell 

state ( )c t  at the t  moment. 

 

            (12) 

 

Where,  is the Hadamard product.  
 

Finally, the hidden layer state ( )h t  at                

moment t  is solved by the output gate ( )o t          

and the cell state ( )c t  at the current                

moment. 
 

                        (13) 

 

2.4 Data Analysis  
 
Based on the wavelet decomposition principle, 
the contribution of each frequency domain 
component after decomposition to the original 
sequence is different. For the groundwater depth 
sequence, the component with a large 
contribution rate determines the change of the 
sequence to a certain extent, which can be 
understood as the driving factor of its change. 
Thus, predictions of groundwater depths can be 
broken down into predictions of their composition. 
The calculation steps for wavelet decomposition 
and the LSTM network prediction model are as 
follows: 
 

1. The original sequence of groundwater 
depth is divided into high-frequency 
components and low-frequency 
components by wavelet decomposition. 

2. The high and low-frequency components 
of groundwater depth in 2005-2019 are 
used as the training data of the LSTM 
network, and the high and low-frequency 
components of 2020-2021 are used as the 
prediction data of the LSTM network. 

3. Use the LSTM neural network to predict 
the high and low-frequency components of 
groundwater depth in 2020-2021. 

4. The predicted high and low-frequency 
components of groundwater depth are 
added to obtain the predicted value, and 
then the predicted value is subtracted from 
the true value to obtain the absolute error, 
and the absolute error is divided by the 
real value to obtain the relative error.  

 
The specific process is shown in Fig. 5. 

 
 

Fig. 4.  LSTM neural network internal structure diagram 
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Fig. 5. Wavelet decomposition-LSTM model prediction flowchart 
 

3. RESULTS AND DISCUSSION 
 

As can be seen from Fig. 2 and Fig. 3, from 2005 
to 2021, the groundwater depth of Lu                
Wangfen Town and Muye Town showed a 
general downward trend, accompanied by certain 
fluctuations in the decline process, and the 
fluctuation amplitude was inconsistent, which 
also verified that the groundwater depth was 
uncertain and non-stable, which also                 
reflected the rationality of the method of                 
using wavelet decomposition from the                    
side. 
 

3.1 Wavelet Decomposition 
 

According to the steps of wavelet decomposition 
earlier, wavelet decomposition of groundwater 
depth data from 2005 to 2021 in Lu Wangfen 

Town was performed. The decomposition results 
are shown in Fig. 6. 
 
As can be seen from Fig. 6, the groundwater 
depth sequence is decomposed into 7                     
high-frequency components D1, D2, D3, D4, D5, 
D6, D7, and a low-frequency component A7. 
From D1 to D7, the frequency of each 
component gradually decreases, the wavelength 
becomes shorter, the volatility decreases, and 
the values of the seven high-frequency 
components are small, while the values of the 
low-frequency components are larger. Xinxiang 
City Lu Wangfen Town No. 5 professional 
observation well groundwater depth sequence, 
after wavelet decomposition, the volatility and 
non-stationarity of the sequence are greatly 
reduced. 



 
 
 
 

Zhang et al.; Int. J. Environ. Clim. Change, vol. 13, no. 11, pp. 3823-3837, 2023; Article no.IJECC.109570 
 
 

 
3830 

 

 
 
Fig. 6.  Wavelet decomposition diagram of groundwater depth in Lu Wangfen Town, 2005-2021 

 

3.2 Groundwater Depth Prediction 
 

From the perspective of wavelet decomposition, 
the contribution rate of each high and low-
frequency component to the groundwater depth 
sequence is not the same, and it can be 
approximated that the high and low-frequency 
components are regarded as the driving factors 
of groundwater depth, and the groundwater 
depth prediction is equivalent to the prediction of 
high and low-frequency components. 
 

When using the LSTM network to predict the 
groundwater depth of the No. 5 professional 
observation well in Lu Wangfen Town, Xinxiang 
City, it is necessary to divide the training samples 
and test samples. The D1 to D7 component data 
from 2005 to 2019 were used as training 
samples, and the D1 to D7 components and A7 

component data from 2020 to 2021 were used as 
test samples. 
 
Through a large number of experiments, it is best 
to find that LSTM has 200 hidden units. To 
prevent the gradient from exploding, set the 
gradient threshold to 1, specify an initial learning 
rate of 0.005, and reduce the learning rate by a 
multiplicative coefficient of 0.2 after 125 rounds 
of training. 
 
According to the previous steps, the D1 to D7 
components and A7 components in the 
groundwater depth of Lu Wangfen Town No. 5 in 
Xinxiang City were predicted by using the LSTM 
network. The prediction results are shown in Fig. 
7, and the error analysis results are shown in 
Table 1. 
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Fig. 7.  Prediction results of D1~D7 and A7 in Lu Wangfen Town 
 
As can be seen from Table 1: the maximum 
relative errors of high-frequency components D1 
to D7 are relatively large, which are 461.35%, 
248.30%, 186.64%, 153.95%, 139.04%, 73.11%, 
69.94%, and 0.59%, respectively. The minimum 
relative error and average relative error of D1 are 

also very large, which are 19.49% and 107.22% 
respectively. The minimum relative errors of D2 
to A7 are very small, which are 1.33%, 1.26%, 
0.30%, 0.25%, 022%, 0.12%, and 0.01%, 
respectively. The average relative errors of D2 
and D3 are also relatively large, which are           
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37.72% and 26.23%, respectively. The low-
frequency component A7 has the best prediction 
effect, and the maximum relative error, minimum 
relative error, and average relative error are 
0.59%, 0.01%, and 0.21%, respectively. As can 
be seen from Table 1, after the wavelet 
decomposition of the groundwater depth series, 
the high-frequency components become more 
stable, and the average relative errors from D1 to 
A7 show a downward trend on the whole. 
Although some points in D1 to D7 have large 
errors, the proportion of individual points in the 
groundwater depth series is small and will not 
affect the overall error of groundwater depth. 
 

To visually see the prediction effect of the model, 
the predicted value of groundwater depth 
obtained month by month from 2020 to 2021 is 
compared with the real value (Fig. 8), and the 
prediction error is shown in Table 2. 
 

In order to compare and verify the accuracy of 
the models, separate LSTM neural network 
model and back-propagation (BP) neural network 
model were used to predict the monthly 
groundwater depth sequence of the No. 5 well in 
Lu Wangfen Town from 2020 to 2021, and the 
prediction error was shown in Table 3, and the 
comparison was shown in Fig. 9. 

Table 1. The relative error index of D1～A7 

 

Prediction 
object 

Maximum 
relative error(%) 

Minimum 
relative error(%) 

Average 
relative error(%) 

D1 461.35 19.49 107.22 
D2 248.30 1.33 37.72 
D3 186.64 1.26 26.23 
D4 153.95 0.30 18.96 
D5 139.04 0.25 13.15 
D6 73.11 0.22 9.28 
D7 69.94 0.12 7.02 
A7 0.59 0.01 0.21 

 

Table 2. Groundwater depth prediction error in Lu Wangfen Town from 2020 to 2021 
 

Year Month True value(m) Predicted 
value(m) 

Absolute error(m) Relative error 
(%) 

2020 1 8.63 8.71 0.08 0.93 
2 8.87 8.86 -0.01 0.11 
3 8.96 9.05 0.09 1.00 
4 8.99 9.12 0.13 1.45 
5 8.91 9.01 0.10 1.12 
6 9.30 9.08 -0.22 2.37 
7 8.28 8.12 -0.16 1.93 
8 7.26 7.07 -0.19 2.62 
9 7.51 7.63 0.12 1.60 
10 7.75 7.69 -0.06 0.77 
11 8.16 7.97 -0.19 2.33 
12 8.04 7.82 -0.22 2.74 

2021 1 6.84 7.03 0.19 2.78 
2 7.32 7.17 -0.15 2.05 
3 6.82 7.01 0.19 2.79 
4 6.92 7.12 0.20 2.89 
5 7.71 8.00 0.29 3.76 
6 8.57 8.85 0.28 3.27 
7 6.51 6.35 -0.16 2.46 
8 1.01 0.99 -0.02 1.98 
9 0.46 0.45 -0.01 2.17 
10 0.47 0.46 0.01 2.13 
11 1.40 1.45 0.05 3.57 
12 1.59 1.55 -0.03 1.90 

The average relative error(%)                  2.11 
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Fig. 8.  Prediction curve of groundwater depth in Lu Wangfen Town from 2020 to 2021 
 

Table 3  Comparison of wavelet decomposition-LSTM model in Lu Wangfen Town with other 
models 

 

Year Month Wavelet decomposition-LSTM  

model relative error(%)  

LSTM model  

relative error(%)  

BP model 

relative error(%) 

2020 1 0.93 2.79 3.54 

2 0.11 0.66 2.59 

3 1.00 3.69 3.83 

4 1.45 0.69 14.28 

5 1.12 2.70 6.78 

6 2.37 3.34 4.32 

7 1.93 11.91 7.85 

8 2.62 8.78 5.43 

9 1.60 4.63 3.21 

10 0.77 10.98 2.58 

11 2.33 6.56 8.33 

12 2.74 9.87 3.85 

2021 1 2.78 18.89 6.68 

2 2.05 1.24 5.34 

3 2.79 3.61 3.29 

4 2.89 6.67 1.58 

5 3.76 9.58 2.27 

6 3.27 1.85 4.33 

7 2.46 1.58 6.53 

8 1.98 14.31 5.43 

9 2.17 13.62 8.86 

10 2.13 17.98 7.54 

11 3.57 15.28 3.32 

12 1.90 10.6 5.89 
 

The specific prediction steps of Muye Town are 
the same as Lu Wangfen Town, and the 
prediction error of the groundwater depth 
prediction is shown in Table 4, and the separate 
LSTM neural network model and the BP neural 

network model are used to predict the monthly 
groundwater depth sequence of Muye Town No. 
3 well from 2020 to 2021, and the prediction error 
is shown in Table 5. The comparison is shown in 
Fig. 10. 
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Fig. 9.  Comparison of the prediction results of the Lu Wangfen Town wavelet decomposition-

LSTM model with other models 
 

Table 4.  Groundwater depth prediction error in Muye Town from 2020 to 2021 
 

Year Month True value(m) Predicted 
value(m) 

Absolute 
error(m) 

Relative error (%) 

2020 1 6.63 6.51 -0.12 1.81 

2 6.11 6.06 -0.05 0.82 

3 5.91 5.92 0.01 0.17 

4 6.22 6.21 -0.01 0.16 

5 6.31 6.49 0.18 2.85 

6 6.30 6.41 0.11 1.75 

7 5.96 5.73 -0.23 3.86 

8 4.15 4.29 0.14 3.37 

9 4.38 4.22 -0.16 3.65 

10 4.79 4.68 -0.11 2.30 

11 4.92 5.03 0.11 2.24 

12 5.42 5.34 -0.08 1.48 

2021 1 5.32 5.21 -0.11 2.07 

2 5.54 5.33 -0.21 3.79 

3 5.07 4.89 -0.18 3.55 

4 5.34 5.15 -0.19 3.56 

5 5.62 5.84 0.22 3.91 

6 6.17 6.28 0.11 1.78 

7 6.48 6.26 -0.22 3.40 

8 1.28 1.23 -0.05 3.91 

9 0.51 0.49 -0.02 3.92 

10 0.95 0.97 0.02 2.11 

11 1.22 1.24 0.02 1.64 

12 1.72 1.75 0.03 1.74 

The average relative error(%)                  2.49 
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Table 5.  Comparison of wavelet decomposition-LSTM model in Muye town with other models 
 

Year Month Wavelet decomposition-LSTM  
model relative error(%) 

LSTM model  
relative error(%) 

BP model 
relative error(%) 

2020 1 1.81 3.42 3.14 
2 0.82 7.14 5.08 
3 0.17 0.34 7.73 
4 0.16 0.17 11.15 
5 2.85 9.07 5.38 
6 1.75 12.99 6.82 
7 3.86 2.90 4.66 
8 3.37 17.06 7.87 
9 3.65 14.19 10.25 
10 2.30 2.43 6.27 
11 2.24 15.38 3.58 
12 1.48 3.68 4.77 

2021 1 2.07 1.46 6.73 
2 3.79 5.64 1.65 
3 3.55 17.94 2.87 
4 3.56 1.22 10.45 
5 3.91 4.14 3.58 
6 1.78 8.86 4.21 
7 3.40 9.23 6.44 
8 3.91 13.04 2.89 
9 3.92 19.57 1.08 
10 2.11 10.73 7.85 
11 1.64 14.56 5.21 
12 1.74 12.48 4.33 
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Fig. 10.  Comparison of the prediction results of the Muye Town wavelet decomposition-LSTM  
model with other models 

 
By comparing the results with the results of the 
LSTM neural network model and the BP neural 
network model alone, it can be seen that the 
average relative error predicted by the LSTM 

neural network model alone in Lu Wangfen Town 
and Muye Town is 7.58% and 8.65%. The 
average relative error of the prediction of the BP 
neural network model was 5.32% and 5.58%, 
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while the average relative error of the wavelet 
decomposition-LSTM neural network model was 
2.11% and 2.49%, indicating that the wavelet 
decomposition-LSTM neural network model 
predicted the groundwater depth with good effect. 
 

4. CONCLUSION 
 
In this paper, wavelet decomposition is combined 
with the LSTM neural network model, the wavelet 
decomposition-LSTM neural network model is 
established, and it is applied to the groundwater 
depth prediction of No. 5 well in Lu Wangfen 
Town and No. 3 well in Muye Town, to verify the 
reliability of the model, the results are compared 
with the results of separate LSTM neural network 
model and BP neural network model, and the 
following conclusions are drawn: 
 

1. The groundwater depth time series is 
decomposed by wavelets, and the signal is 
decomposed into several high-frequency 
components and low-frequency 
components, and the predicted value is 
equal to the predicted value of several 
high-frequency components and low-
frequency components. Although some 
high-frequency components have relatively 
large prediction errors, these high-
frequency components account for less of 
the entire signal, and the overall error will 
be reduced when the predicted values of 
the high-frequency components and low-
frequency components are converted into 
overall predictions. 

2. The groundwater results predicted by the 
separate LSTM neural network model and 
the BP neural network model were 
compared with the prediction results of the 
wavelet decomposition-LSTM neural 
network model, and the average relative 
error predicted by the LSTM neural 
network model alone was 7.58% and 
8.65%, the average relative error predicted 
by the BP neural network model was 5.32% 
and 5.58%, and the average relative error 
predicted by the wavelet decomposition-
LSTM neural network model was 2.11% 
and 2.49%. It shows that the wavelet 
decomposition-LSTM neural network 
model can better predict groundwater 
depth. 

3. The wavelet decomposition-LSTM coupling 
model proposed in this paper predicts 
LSTM after the original information is 
processed by wavelet decomposition, 
which reduces the non-stationarity of the 

original groundwater buried depth time 
series, enhances the prediction accuracy 
of LSTM for nonstationary signals, and 
predicts the distribution of groundwater 
more scientifically and accurately. This 
method provides another technical means 
for the research of shallow groundwater 
exploration, which is of practical 
significance to engineering practice. 
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