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Abstract

This study aims to solve the overfitting problem caused by insufficient labeled images in the

automatic image annotation field. We propose a transfer learning model called CNN-2L that

incorporates the label localization strategy described in this study. The model consists of an

InceptionV3 network pretrained on the ImageNet dataset and a label localization algorithm.

First, the pretrained InceptionV3 network extracts features from the target dataset that are

used to train a specific classifier and fine-tune the entire network to obtain an optimal model.

Then, the obtained model is used to derive the probabilities of the predicted labels. For this

purpose, we introduce a squeeze and excitation (SE) module into the network architecture

that augments the useful feature information, inhibits useless feature information, and con-

ducts feature reweighting. Next, we perform label localization to obtain the label probabilities

and determine the final label set for each image. During this process, the number of labels

must be determined. The optimal K value is obtained experimentally and used to determine

the number of predicted labels, thereby solving the empty label set problem that occurs

when the predicted label values of images are below a fixed threshold. Experiments on the

Corel5k multilabel image dataset verify that CNN-2L improves the labeling precision by 18%

and 15% compared with the traditional multiple-Bernoulli relevance model (MBRM) and joint

equal contribution (JEC) algorithms, respectively, and it improves the recall by 6% com-

pared with JEC. Additionally, it improves the precision by 20% and 11% compared with the

deep learning methods Weight-KNN and adaptive hypergraph learning (AHL), respectively.

Although CNN-2L fails to improve the recall compared with the semantic extension model

(SEM), it improves the comprehensive index of the F1 value by 1%. The experimental

results reveal that the proposed transfer learning model based on a label localization strat-

egy is effective for automatic image annotation and substantially boosts the multilabel

image annotation performance.
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Introduction

The development of multimedia technology has increased the amounts of all types of multime-

dia data. As the main representative of multimedia data, images have been the primary focus

of many studies. At present, methods of classifying single objects in images have become

highly sophisticated. However, in real life, images often include multiple objects; thus, relying

on only a single keyword to represent image semantics is often insufficient. The multilabel

image annotation field has emerged to solve this problem. By assigning multiple labels to an

image, the labels more accurately capture the true image semantics and better match the real

world.

In recent years, traditional machine learning methods have been widely applied in auto-

matic image annotation models; for example, ML-KNN [1], developed from K-nearest neigh-

bors (KNN), is used in the multilabel annotation model. This method first finds the K

neighbors closest to the sample, counts the labels of those K neighbors, and then selects the

label set for the sample based on the maximum a posteriori probability (MAP) score. However,

this method is relatively complex. When the samples are imbalanced, KNN is poor at predict-

ing rare categories. Xiang et al. [2] studied a semantic context modeling and learning approach

for automatic image annotation based on multiple Markov random fields (MMRFs). This

approach performs annotation by estimating the joint probability distribution of cooccur-

rences of semantic concepts and images. However, although this joint distribution can provide

more information, it requires additional samples and computation, which may result in a

waste of computing resources during classification. Shi et al. [3] proposed a feature selection

framework with enhanced sparsity that uses the l2,1/2-matrix norm with shared subspace learn-

ing to select the sparsest and most discriminative features while taking the correlations

between different features into account. However, selecting only sparse features may cause

some relevant information to be removed, thereby undermining the image annotation effect.

Thus, based on an improved support vector machine (SVM) method [4], they established mul-

tiple classifiers and created an SVM multilabel classification model that uses distance as a dis-

criminative index. This method generates good results on small training sets. However, it

results in excessive machine memory and computational time when applied to large datasets.

Li et al. [5] proposed an improved image annotation method based on fuzzy C-means (FCM)

clustering that improved the distance measure and replaced the previous distance measure by

the differences in the distances between similar and heterogeneous samples. However, this

method does not guarantee that the optimal problem solution will be found and may converge

to a local optimum. Yuan et al. [6] proposed the multiple kernel learning with group sparsity

(MKLGS) method, which selects groups of discriminative features for image annotation based

on the relative importance of different high-level semantic features. The weakness of this

method is that it does not support selection between and within feature groups at the same

time. Although the above methods have achieved encouraging results in the image annotation

field, traditional machine learning methods still suffer from numerous shortcomings in

extracting image features: 1) manual feature extraction is time- and labor-intensive, making it

relatively expensive; 2) manual feature selection inevitably leads to information loss, which

results in reduced precision and recall in experimental results [7].

Deep learning techniques have achieved impressive results in the field of computer vision;

among these, various convolutional neural network (CNN) models have demonstrated out-

standing performances in image classification. In recent years, CNN classification perfor-

mances have surpassed even those of humans in terms of precision. For example, GoogLeNet

[8], which was proposed in 2014, was the first to surpass manual recognition and classification

on the ImageNet dataset. Li et al. [9], Szegedy et al. [10] and He et al. [11] proposed a
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multilabel automatic image annotation method based on an improved AlexNet [12] model.

Based on the loss function of a single-label CNN, Li et al. [9] designed a new multilabel loss

function based on softmax regression. Ke et al. [13] proposed an automatic image annotation

method that combined semantic neighbors and deep features and used a CNN to extract fea-

tures and construct neighborhood image sets that were similar in terms of both vision and

semantics; then, they used the distances between sets to sort the labels before annotation.

Salma et al. [14] proposed HierarchyNet, which is also based on a CNN and is similar to the

branch convolutional neural network (B-CNN) proposed by Zhu & Bain [15], which intro-

duced a nonoverlapping hierarchical coarse-to-fine tree to improve the target classification.

This method uses multiple branch classifiers so that classification corresponds to different lay-

ers in the tree, arranging the prediction results in coarse-to-fine order. Chen et al. [16] pro-

posed a dense residual three-dimensional convolutional neural network (DR3D-CNN).

Hyperspectral images use three-dimensional convolution in place of the traditional two-

dimensional convolution to effectively extract spectral features. The DR3D-CNN model fur-

ther refines the initial network classification using multilabel conditional random field optimi-

zation. Markatopoulou et al. [17] proposed an end-to-end deep convolutional neural network

(DCNN) architecture in which a CNN was used as a feature generator, and an SVM classifier

was trained on the DCNN-generated features. Xu et al. [18] proposed an atrous convolutional

feature network (ACFN) composed of a cascaded atrous convolution module and a pyramidal

atrous convolution module. This network improved the target attention graph by enhancing

the contextual representation ability of the image classification network. In addition, they pro-

posed an attentive fusion strategy that adaptively fused multiscale features. Although deep

learning has a remarkable performance advantage for image classification, in real life, the

scales of existing multilabel image datasets are too small, which easily results in overfitting dur-

ing the deep learning process, making it difficult to take full advantage of the capabilities of

deep learning networks.

To address problems such as information loss caused by using manual features in tradi-

tional machine learning, insufficient datasets in deep learning, and empty prediction label sets

caused by a fixed threshold, we propose a transfer learning model based on a label localization

strategy. First, we construct a CNN for multilabel labeling based on transfer learning. Using a

network weight file trained on large datasets and fine-tuned on smaller target datasets, we

extract the feature information from the target datasets, which prevents both the feature loss

caused by setting features manually and the overfitting caused by datasets that are too small in

deep learning. Second, we introduce the squeeze and excitation (SE) module [19] into the net-

work architecture to achieve feature reweighting through a three-step operation (namely,

squeeze, excitation and reweighting) that further improves the network performance. Third,

the model predicts all the labels to obtain the prediction probability for all the labels of the cur-

rent image. Finally, the label set of the current image is determined using a label localization

strategy, which solves the empty label set problem caused by a fixed threshold.

The main innovations of this study are summarized as follows:

1. We introduce transfer learning to solve the overfitting problem caused by applying insuffi-

cient datasets to the deep learning process. We use a weight file obtained by training an

InceptionV3 network on the large ImageNet dataset to extract the features of target data-

sets, and we adjust the model parameters via the target datasets. Then, we use the binary

cross-entropy loss function in place of the previous loss function to adapt the model to the

multilabel annotation task and solve the overfitting problem.

2. We introduce the SE module to inhibit useless features and enhance the effective features.

In this study, we assign different weights to different features extracted by the convolutional
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layers using three-step operations (i.e., squeeze, excitation and reweighting) to achieve fea-

ture reweighting and further improve network performance.

3. When using a fixed-threshold method, we propose a label localization strategy to avoid

empty label sets when the prediction probability of some images is below the fixed thresh-

old. The label localization strategy locates the label probability predicted by the model. By

determining the label probability prior to the K value, we can locate and determine the label

set for each image. This strategy solves the problem of using a fixed threshold and boosts

the annotation accuracy.

Methods

Transfer learning model based on the label localization strategy

The algorithm framework of the transfer learning model based on the label localization strat-

egy is shown in Fig 1. The main steps in this model include training the input layer, feature

extraction, classification, fine-tuning, and optimizing both the entire model and the annota-

tion stages. The multilabel images input to the input layer are RGB images uniformly resized

to 299 × 299. We adopt an InceptionV3 [20] model pretrained on ImageNet as the feature

extractor for multilabel images. During classifier training, we first establish a classifier suitable

for the dataset and add a fully connected layer (FCL) with 260 neurons to replace the original

FCL. Then, the features saved in the feature extraction stage are used to train the classifier and

optimize its weight parameters. During the fine-tuning and optimization stage for the entire

model, the weights of the highest convolutional layers of the InceptionV3 network are adjusted

to make the weight parameters of the model more suitable for the target dataset.

To explore the relationships between feature channels and further improve the model’s

expressive ability, we introduce the SE module, which uses a “feature reweighting” strategy to

enhance the useful feature information while suppressing features that are less relevant to the

current task. Simultaneously, to make the network model adapt to the multilabel classification

task, we use the binary cross-entropy loss function to measure the difference between the pre-

dicted value output and the real value. We replace the softmax function of the last layer with a

sigmoid activation function to estimate the relevant a posteriori probability of each label. The

Fig 1. Framework of the multilabel classification algorithm.

https://doi.org/10.1371/journal.pone.0260758.g001
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sigmoid activation function is expressed by Eq (1):

Sigmoid ðxÞ ¼
1

1þ expð� xÞ
; ð1Þ

where x represents the activation values of the neurons in the hidden layer prior to the trans-

formation. We adopt stochastic gradient descent (SGD) to optimize the model. To improve

the convergence speed during training, the learning rate is set to a large initial value (i.e., 0.1)

and then automatically reduced periodically. When classifier training reaches a predetermined

number of iterations, the weight file of the classifier is saved, at which point classifier training

is complete. The fine-tuning and optimization step for the entire model uses a small learning

rate, i.e., 0.0001, to achieve optimal performance.

Improvements

Transfer learning. Transfer learning is the application of knowledge or patterns learned

from a certain field or task to a different but related field or problem. Transfer learning can be

defined as follows [21]: given a source domain (DS), a source task (TS), a target domain (DT)

and a target task (TT), knowledge learned from the DS and TS is utilized to help improve the

learning of the DT and performance of the TT.

Deep learning requires many training samples. However, there are few datasets containing

labeled multilabel images. Given this circumstance, transfer learning uses a model pretrained

on a large dataset and then adjusts the models by quickly learning a target domain dataset to

complete the target task [22]. First, a network model M1 is pretrained on the DS and TT of a

large dataset. Because the source domain dataset is large, the deep learning model can learn its

characteristics well. Then, a new model (M2) is obtained by fine-tuning the M1 model on the

DT and TT, resulting in an adjusted M2 model that is more suitable for the DT and TT.

In image processing, the underlying features of images are basically similar, such as color

features [23], shape features [24], and texture features [25]. Therefore, a network model pre-

trained on large datasets can be used as the feature extractor. In this study, we use an Incep-

tionV3 model pretrained on ImageNet as the image feature extractor. The InceptionV3 model

introduces the idea of “decomposition”, and it decomposes the larger convolution kernel into

two smaller convolution kernels. For example, a 7 × 7 convolution is split into a 1 × 7 convolu-

tion and a 7 × 1 convolution. On the one hand, this split reduces the number of network

parameters, while on the other hand, it increases the expressive ability of the model. The result-

ing asymmetric convolution structure after splitting increases feature diversity.

SE module. To further improve network performance, we focus on the relationships

between the feature channels and introduce the SE module into the model to improve the

expressive ability of the network model by accurately modeling the interactions among the

various feature channels of the convolution layers. The importance of each feature channel is

automatically acquired during the learning process. Based on this importance value, the useful

features are enhanced, while the features that are less relevant to the current task are sup-

pressed. As shown in Fig 2, the SE module includes three main operations: squeeze, excitation,

and reweighting.

In Fig 2, U represents the output of each convolution layer in the backbone network, and X

is the output of the feature map after weight fusion. H and W are the height and width dimen-

sions of the feature map, respectively, and C represents the number of channels, that is, the

number of feature maps. Fsq(�), Fex(�) and Fscale(�) represent the three operations, namely,

squeeze, excitation and reweighting.
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The squeeze operation compresses the spatial feature dimensions and compresses the global

spatial information into a channel descriptor using global average pooling. Each two-dimen-

sional feature channel becomes a real number. At this time, the C-th feature map of U is calcu-

lated as shown in Eq (2):

zc ¼ FsqðucÞ ¼
1

H �W

XH

i¼1

XW

j¼1

ucði; jÞ: ð2Þ

The excitation generates the weights for each feature channel by means of learnable param-

eters to comprehensively obtain the dependencies between channels. The operation is com-

posed of two FCLs and a sigmoid activation function. The first FCL reduces the feature

dimension and the parameters and then adds a ReLU activation layer to increase the nonline-

arity. Then, a second FCL is added to restore the dimension. Finally, the input is mapped to

the 0~1 interval using the sigmoid function. The excitation calculation is shown in Eq (3):

s ¼ Fexðz;WÞ ¼ sðgðz;WÞÞ ¼ sðW2dðW1zÞÞ ð3Þ

The dimension of s is 1×1×C, and it represents the weights of the C feature maps in U. W1

and W2 are the learnable parameters of the two FCLs. Through these parameters, weights are

generated for each channel. z represents the result after squeezing, δ represents the ReLU func-

tion after the first FCL, and σ represents the sigmoid activation function after the second FCL.

Reweighting reweights the original features in the channel dimensions and then sets the

output weight of the excitation operation for the original feature by multiplying the channels.

The excitation operation is calculated as shown in Formula (4):

Xc ¼ Fscaleðuc; scÞ ¼ sc � uc ð4Þ

where Xc is the C-th feature map after feature reweighting, uc is the C-th feature map of the

original feature channel, and sc is the weight of the C-th feature map.

Fig 2. SE module.

https://doi.org/10.1371/journal.pone.0260758.g002
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Label localization strategy. The use of a fixed label threshold (for example, 0.5) may

result in an empty label set for samples whose posterior probabilities are below the fixed

threshold. The posterior probability refers to the probability of recorrection after obtaining

the "result" information. In this study, it refers to the prediction probability of the test set after

the model is optimized. Therefore, in this study, we propose a label localization strategy based

on the actual posterior probability. The pretrained classifier is used to output a posterior prob-

ability array P = {pij | pij 2 (0,1), 1< j< n} for the test set sample xi(1 < i<m), and the pre-

dicted label set Yi = {y | y = 1or0} of the sample is obtained through the label localization

algorithm.

When annotating a sample, according to the a posteriori probability output by the optimal

model for the sample, several maximum probabilities are selected, and the labels represented

by these probabilities are used as the sample labels. Note that the number of labels to be

selected depends on the dataset and multiple experimental comparisons. The selection process

takes the optimal experimental effect into consideration.

Algorithm flow

First, the pretrained InceptionV3 network is trained on the target dataset based on transfer

learning to obtain an optimal model. Next, the optimal model is used to obtain the prediction

probability of the test set. Finally, the label localization strategy is employed to select the

labels predicted by the model and determine the sample label set. The complete process is as

follows:

Input: The processed dataset file

Output: The predicted label set Yi of the sample

Step 1: Load the weight file (excluding the classifier part) for the InceptionV3 network pre-

trained on ImageNet.

Step 2: Extract the target dataset features using the pretrained InceptionV3 to obtain an opti-

mal model.

Step 3: Construct the SE module.

Step 4: Define and train the connection classifier.

Step 5: Freeze the bottom-layer convolution operation, and fine-tune and optimize all model

parameters.

Step 6: Save the optimal model.

Step 7: Use the optimal model to predict the test set and obtain the predicted probability P.

Step 8: Read out the elements in the i-th row in P, which represent the i-th sample in the test

sample and are denoted as pi.

Step 9: Select several numbers (the specific number depends on the dataset) with the maxi-

mum a posteriori probability in pi and replace them with 1; the other numbers are replaced

with 0.

Step 10: Repeat Steps 8 and 9 until all the sample probabilities have been traversed.

Step 11: The predicted label Yi of the sample is obtained at this time.

The algorithm flow is illustrated in Fig 3.
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Fig 3. Algorithm flow chart.

https://doi.org/10.1371/journal.pone.0260758.g003
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Results and discussion

Experimental data

To verify the effectiveness of the transfer learning model for automatic image annotation

based on the label localization strategy, we use the benchmark Corel5k [26] dataset collected

by Corel and the image dataset of natural scenes MIML provided by the Institute of Machine

Learning and Data Mining of Nanjing University. The Corel5k dataset has been widely applied

for performance comparisons of annotation algorithms. Corel5k contains 4,999 images with

sizes of 192×128 or 128×192. Of these, 4,500 are used as the training set and 499 as the test set.

When loading the dataset, we uniformly resize all the images to 299×299. There are a total of

260 annotation terms in the dataset; each image is labeled with 1~5 label terms (3.4 labels on

average), and each label appears 65.4 times on average. Some of the high-frequency labels in

the training set can appear as many as 1,004 times, with a mean of 58.5 times for each label.

However, the frequencies of some low-frequency labels are far below the mean. For example,

the label for ‘sails’ appears only once in the training set. To intuitively understand the dataset,

we compiled the label frequency statistics for the Corel5k training set, as shown in Fig 4.

Fig 4 clearly shows that the frequency of most labels is well below the mean. Some labels

appear fewer than 10 times, and only a few labels appear more often. The model learning effect

is good for the high-frequency labels, and the prediction precision can be very high. For some

low-frequency labels (0~10), we enhance the images involved to increase their label frequen-

cies to within a range of 11~60, thereby solving the data imbalance issue. Through the

Fig 4. Corel5k dataset label statistics.

https://doi.org/10.1371/journal.pone.0260758.g004
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statistical analysis, a total of 414 images are associated with 68 low-frequency labels, some of

which reappear in the dataset. After removing the repeated images, the number of images that

need enhancement is 381, of which the number of images that involve only one label is 3. In

this study, those three images are enhanced 12 times, and the remaining 378 images are

enhanced 6 times. Finally, the number of images in the Corel5k dataset used for this experi-

ment is 6,922, of which 6,423 are included in the training set and 499 in the test set. The label

frequency of the test set is shown in Fig 5.

As shown in Fig 5, among the 260 labels involved in the test set, 219 fall into the low-fre-

quency range of 0~10, 37 fall into the medium frequency range of 11~60, and only 4 labels

have a frequency greater than 60.

The MIML dataset contains a total of 2000 images. Among these images, 1600 constitute

the training set, and the remaining 400 constitute the test set. For this dataset, five label catego-

ries are involved, and the average label number for each image is 1.2.

Experimental design

We conducted an image annotation simulation experiment based on the Keras deep learning

library. To objectively evaluate the effectiveness of the experiment, we selected the precision

(P), recall (R) and F1 value (F1) as the evaluation indexes, whose calculation formulas are as

Fig 5. Corel5k test set label frequencies.

https://doi.org/10.1371/journal.pone.0260758.g005
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follows:

Average precision : P ¼
1

n

Xn

i¼1

CorðiÞ
PreðiÞ

;

Average recall : R ¼
1

n

Xn

i¼1

CorðiÞ
GTðiÞ

;

Average F1 : F1 ¼ 2PR=ðP þ RÞ;

where Cor(i) is the number of correctly predicted samples for the ith category labels, Pre(i) is

the number of predicted samples for the ith category labels, and GT(i) is the actual number of

samples for the ith category labels.

Analysis of the experimental results

Ablation experiment: SE module verification. To verify that the SE module effectively

promotes network performance, we performed an ablation experiment, where we compared

the annotation performance of the model with the SE module to that of the same model with-

out the SE module on the Corel5k dataset. The experimental results are shown in Fig 6.

We show only selected labels because there are too many labels in the dataset in this study

to display them all. Here, 23 labels are randomly selected according to their proportions to

illustrate the effectiveness of the SE module. In Fig 6, the abscissa is the label category; we ran-

domly selected 15 labels from the frequency range of 0–10, 5 labels from the frequency range

of 11–60, 2 labels from the frequency range of 61–110, and 1 label from the remaining ranges.

The ordinate represents the model precision for each label. As shown in Fig 6, for most labels,

the precision of the model with the SE module improves by an average of 1% compared with

the model without the SE module. For some labels, such as branches and windows, the preci-

sion was not improved; this occurs mainly because the images associated with those labels are

not perfectly annotated, and some features that include these labels are not labeled as such. As

a result, the label features are treated as useless during channel modeling, which inhibits those

features.

Label localization strategy verification. To determine the optimal number of label words

for the target dataset, we conducted an experiment to compare the output under different

numbers of annotation terms (K values). Each K value in Table 1 is selected by the sorting

algorithm under the optimal model. By analyzing the experimental results of different K val-

ues, we found the optimal K value suitable for the target dataset. Because the mean number of

labels for each image in the Corel5k dataset is 3.4, we chose K = 3, 4 and 5 for the experiments

in this study given that most previous researchers adopted five labels in their studies. For the

MIML dataset, based on full consideration of the average number of labels, 1, 2 and 3 are

selected to determine the optimal K value. The results are shown in Table 1.

First, it is clear from Table 1 that the experimental results of using the various K values

shown in each row are good, indicating that the optimal model obtained in the training is rea-

sonable. Next, as the number of labels (K) increases, P decreases while R increases. This result

occurs primarily because the average number of labels in the Corel5k dataset is 3.4, while that

in the MIML dataset is 1.2. When the number of predicted labels is greater than the actual

number of labels, that is, the number of predicted samples Pre(i) of a certain category of labels

increases, it is known according to the precision formula that the corresponding P declines. In

contrast, as the predicted label categories grow, R increases accordingly. According to the
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different purposes of the experiment, appropriate K values can be chosen. When the experi-

ment needs to recall more label words, K = 5 and K = 3 can be selected as the number of pre-

dicted labels when the requirement for precision is not high. The main objective in this study

is to improve precision; therefore, we adopted K = 3 and K = 1 as the number of predicted

labels.

Comparisons with other image annotation methods. When the number of label catego-

ries involved in the Corel5k dataset reaches 260, it is not convenient to display them all.

Table 1. Experimental results for different K values.

K P R F1
Corel5k 3� 0.42 0.38 0.40

4 0.41 0.43 0.42

5 0.39 0.50 0.44

MIML 1� 0.826 0.759 0.791

2 0.803 0.785 0.794

3 0.786 0.810 0.798

�Indicates the optimal K value for the dataset.

https://doi.org/10.1371/journal.pone.0260758.t001

Fig 6. Comparison of the annotation performance with and without the SE module.

https://doi.org/10.1371/journal.pone.0260758.g006
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Therefore, in this study, we randomly extracted some labels from the low-frequency range of

0~10, some from the medium-frequency range of 11~60, and some from the high-frequency

range (above 60). The number of label categories involved in the MIML dataset is small (only

five), and the frequency of each category is approximately 500. Therefore, we display all of the

annotation outcomes based on the five categories. We make comparisons between our learn-

ing transfer model based on the label localization strategy and the traditional image annotation

method based on multifeature fusion and semantic similarity in [27] and the Gaussian mixture

model that considers cross-modal correlations in [28] (GMM-MB). We also conducted experi-

mental comparisons in terms of precision between the feature fusion model proposed in [29]

and the semantic extension model (SEM) proposed in [30], which use a CNN to extract fea-

tures. The results are shown in Table 2.

In addition, we randomly selected some labels from the test results of Corel5k and com-

pared them in an experiment with the traditional method GMM-MB [28] and the deep learn-

ing method SEM [30] in terms of the P, R and F1 measures, as shown in Fig 7.

As shown in Table 2, for the Corel5k dataset, the CNN-2L model proposed in this study is

significantly more accurate than the other methods in terms of annotation precision for single

category labels. For categories with distinct features, such as tulip, polar and ground, the anno-

tation precision of all models can reach 100%, while for other labels, such as flight and plane,

the annotation precision is low for two reasons: on the one hand, the number of images

involved in these categories is limited, which causes imperfect feature learning; on the other

hand, the features of these label categories are relatively similar, which introduces some

semantic errors. As Fig 7(a) and 7(c) show, compared with the other two methods, the CNN-

2L model proposed in this study greatly improves the P and F1 scores for most labels in the

dataset for the following reasons: first, by enhancing the number of images involved in low-fre-

quency labels, the model can fully learn the features of each label. Second, the introduced SE

module inhibits irrelevant features and enhances the effective features. From Fig 7(b), com-

pared with the other two methods, the R of CNN-2L in this study is not improved mainly

because CNN-2L adopts a smaller K value during label determination. The experiment shows

that although the experimental result obtained by adopting a K value of 3 does not result in an

improvement in R, it greatly improves the P and F1 scores. Therefore, in contrast to the K = 5

setting adopted by the other models, we adopt K = 3 in this study. For MIML, the number of

label categories is small, and the image features are relatively simple. The model can learn the

features of each label well. Therefore, the labeling performance of the five labels is excellent.

To verify the effectiveness of the transfer learning model based on the label localization

strategy in automatic image annotation, we also compared it with both classical and new mod-

els proposed in recent years, such as the multiple-Bernoulli relevance model (MBRM) pro-

posed by Feng et al. [31], the joint equal contribution (JEC) model proposed by Makadia et al.

[32], the multifeature fusion and semantic similarity method proposed in [27], the SEM

method proposed by Ma et al. [30], the Weight-KNN method proposed in [33], and the adap-

tive hypergraph learning (AHL) method proposed by Tang et al. [34]. Among these SEMs

[30], Weight-KNN [33] and AHL [34] were proposed in the past two years. The experimental

results are shown in Table 3.

As Table 3 shows, for the Corel5k dataset, the P score of the CNN-2L method proposed in

this study is improved by 18% and 15% compared with those of the classical model MBRM

[31] and the multifeature fusion and semantic similarity method in [27], respectively. The R
score is improved by 13% and 6% compared with those of the MBRM [31] and JEC [32] mod-

els, respectively. Compared with those of the Weight-KNN [33] and SEM [30] models pro-

posed in the past two years, the P score in this study is improved by 20% and 5%, respectively.

From the table, it is clear that the P score of CNN-2L is higher than those of the other methods,
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but compared with SEM [30], the R of CNN-2L is not improved. This result occurs primarily

because the number of predicted labels annotated in this study is relatively small, and some

labels with less obvious features are not correctly annotated. However, the F1 measure of

CNN-2L is 1% higher than that of SEM [30]. Over the MIML dataset, the method proposed in

Table 2. Comparison of annotation precision for single category labels using different algorithms.

Dataset Frequency Label category Annotation precision

Literature [27] GMM-MB [28] Literature [29] SEM [30] CNN-2 L

Corel5k Low-frequency labels tulip 0.875 0.896 0.962 0.963 1.000

sun 0.597 0.632 0.666 0.654 0.684

sea 0.786 0.775 0.769 0.792 0.800

palm 0.729 0.730 0.764 0.835 1.000

fence 0.928 0.922 0.950 0.926 1.000

runway 0.762 0.769 0.823 0.871 1.000

flight 0.369 0.413 0.463 0.467 0.500

head 0.425 0.467 0.521 0.538 0.600

black 0.551 0.568 0.600 0.619 0.625

ground 0.913 0.909 0.948 0.949 1.000

coral 0.612 0.626 0.641 0.653 0.650

ocean 0.655 0.673 0.687 0.708 0.737

tiger 0.926 0.941 0.962 0.961 0.950

fox 0.779 0.776 0.777 0.783 0.800

arctic 0.906 0.914 0.925 0.990 1.000

arch 0.527 0.538 0.562 0.605 0.667

pillar 0.728 0.753 0.768 0.792 0.833

Medium-frequency labels mountain 0.564 0.671 0.608 0.612 0.636

boats 0.589 0.597 0.607 0.643 0.692

leaf 0.628 0.615 0.644 0.659 0.714

birds 0.763 0.779 0.778 0.791 0.852

bridge 0.772 0.792 0.808 0.828 0.875

plane 0.695 0.716 0.740 0.754 0.789

bear 0.624 0.710 0.685 0.667 0.719

polar 0.891 0.926 0.923 0.904 1.000

flowers 0.652 0.679 0.692 0.735 0.721

field 0.593 0.605 0.654 0.637 0.680

plants 0.561 0.629 0.641 0.668 0.643

pool 0.735 0.731 0.769 0.729 0.786

cat 0.816 0.847 0.866 0.887 0.900

ruins 0.682 0.735 0.753 0.815 0.789

cars 0.694 0.756 0.739 0.742 0.777

horses 0.847 0.793 0.843 0.896 0.933

high-frequency labels sky 0.353 0.351 0.394 0.456 0.475

tree 0.475 0.472 0.491 0.529 0.618

people 0.389 0.468 0.524 0.537 0.550

MIML all labels desert 0.725 0.769 0.807 0.813 0.826

mountains 0.766 0.801 0.824 0.816 0.832

sea 0.713 0.796 0.792 0.835 0.823

sunset 0.812 0.835 0.843 0.856 0.852

trees 0.801 0.823 0.822 0.815 0.819

https://doi.org/10.1371/journal.pone.0260758.t002
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this study increases the precision by 29% and 16% compared with the methods used in MBRM

[31] and Weight-KNN [33], respectively; it also increases the comprehensive index F1 by 24%

compared with JEC [32]. These results indicate the effectiveness of the method proposed in

this study.

Annotation effect of the proposed model. Table 4 shows the label output for each image

by the automatic annotation method. All images involved in these analyses are from the public

datasets corel5k and miml-image-data (https://github.com/watersink/Corel5K and http://

lamda.nju.edu.cn/files/miml-image-data.rar, respectively). However, due to copyright consid-

eration, we cannot provide the images that are actually analyzed. The method in [27] and the

newly proposed AHL [34] are included for comparison with the proposed method.

As shown in Table 4, the method proposed in this study is effective at automatic image

annotation, as it predicts most of the annotated words in the ground-truth annotations. Some

labels are not predicted successfully because 1) the data volume for those labels is relatively

small; thus, the model fails to learn these features well; and 2) the selected K value is relatively

small, and therefore, the annotation performance for images containing abundant semantics

cannot be perfect. A few labels are incorrectly predicted; although these images do contain the

label features, they are not perfectly annotated, and the ground-truth labels do not contain

matching annotations. Compared with the other two methods, the method proposed in this

study chooses annotations more in accordance with the ground-truth situation for most of the

images.

Fig 7. Experimental comparisons of single category indexes under different algorithms.

https://doi.org/10.1371/journal.pone.0260758.g007

Table 3. Experimental comparison of various automatic image-labeling methods.

Method Corel5k MIML

P R F1 P R F1

MBRM [31] 0.24 0.25 0.24 0.53 0.55 0.54

JEC [32] 0.27 0.32 0.29 0.54 0.54 0.54

Literature [27] 0.27 0.33 0.28 0.550 0.56 0.56

Weight-KNN [33] 0.22 0.15 0.18 0.66 0.69 0.67

AHL [34] 0.31 0.38 0.34 0.71 0.73 0.72

SEM [30] 0.37 0.52 0.43 0.77 0.79 0.78

CNN-2L 0.42 0.38 0.44 0.82 0.75 0.78

https://doi.org/10.1371/journal.pone.0260758.t003
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Conclusions

To address problems such as the insufficiency of available datasets in the multilabel image

annotation field and empty label sets caused by a fixed threshold (e.g., 0.5), we propose a trans-

fer learning model based on a label localization strategy for multilabel image annotation. First,

using a pretrained CNN model and transfer learning, the features of the target training set are

learned well, which solves the issue of insufficient datasets. Moreover, we introduce the SE

module into the network architecture, which assigns different weights to the channels during

transfer learning. This reweighting process inhibits irrelevant features and enhances useful fea-

tures. Next, the label localization strategy allocates a fixed number of labels to the image based

on the final prediction probabilities of the model, which solves the issue of empty datasets

caused when the label probability of an image is smaller than a fixed threshold. The experi-

mental results on the Corel5k dataset show that the proposed CNN-2L model substantially

improves the precision, recall and F1 measure results—by 42%, 38% and 44% compared with

other methods. The CNN-2L model also improves the precision by 5% compared with the

recently proposed SEM [30]. On the MIML dataset, the model proposed in this study achieves

a precision of 82%, a recall rate of 75% and an F1 value of 78%; compared with AHL [34], it

increases the precision by 11%. These results demonstrate that the proposed method is effec-

tive for image annotation applications. The deficiencies of this study are as follows: the overall

experiment was divided into two parts: one part involved training an optimal model, and the

other involved decision-making regarding the label localization strategy. Overall, these two

parts are not well connected. We plan to conduct future studies from two perspectives: 1)

improving the loss function and combining the label localization strategy (the second part

described in this paper) with the loss function to ensure model integrity; 2) improving the

labels for the images in the target datasets by complementing the annotations of unlabeled fea-

tures to improve the precision in follow-up experiments.
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