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Abstract 
Considering the influence of quadratic gradient term and medium deforma-
tion on the seepage equation, a well testing interpretation model for low per-
meability and deformation dual medium reservoirs was derived and estab-
lished. The difference method was used to solve the problem, and pressure 
and pressure derivative double logarithmic curves were drawn to analyze the 
seepage law. The research results indicate that the influence of starting pres-
sure gradient and medium deformation on the pressure characteristic curve is 
mainly manifested in the middle and late stages. The larger the value, the 
more obvious the upward warping of the pressure and pressure derivative 
curve; the parameter characterizing the dual medium is the crossflow coeffi-
cient. The channeling coefficient determines the time and location of the ap-
pearance of the “concave”. The smaller the value, the later the appearance of 
the “concave”, and the more to the right of the “concave”.  
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1. Introduction 

The development of low permeability oil fields is closely related to fractures. 
Compared with conventional oil reservoirs, the flow patterns in fractures and 
matrices in low permeability fractured oil reservoirs are complex and variable. 
How to calculate, predict, and analyze the productivity dynamics of fractures 
and matrices is an important task in the development of low permeability oil 
fields [1] [2] [3] [4] [5]. A large number of indoor experiments and field devel-
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opment have shown [6] [7] [8] [9] [10] that, the flow of low permeability reser-
voirs must overcome a certain threshold pressure gradient in order to flow. Se-
condly, in the development of low permeability reservoirs, it is necessary to con-
sider the impact of medium deformation on permeability. Low permeability de-
formation dual medium reservoirs have dual pore characteristics, and there is a 
phenomenon of crossflow between pores and matrix [11] [12] [13] [14] [15]. In 
order to effectively characterize the percolation characteristics of low permeabil-
ity deformation dual media and improve the interpretation level of well testing 
in such reservoirs, this article comprehensively considers the effects of starting 
pressure gradient, quadratic gradient term, dual pore characteristics of fractured 
reservoirs, and medium deformation, and deduces a well testing interpretation 
model for low permeability dual medium reservoirs, analyzing the seepage law of 
fractured low permeability reservoirs. 

2. Establishment and Solution of Well Testing Interpretation  
Model for Low Permeability Deformed Dual Medium  
Reservoir 

Assumption: 1) The fluid is slightly compressible. 2) Neglecting the influence of 
gravity and capillary force. 3) Oil wells are produced at a constant production 
rate q, with consistent reservoir thickness. 4) The flow through the wellbore is 
through cracks, with rock blocks as the source. 5) The porosity of each medium 
is independent of the pressure change of another medium. 6) The fluid flow is a 
single-phase laminar flow. 7) The oil reservoir is homogeneous and isotropic, 
and extends infinitely horizontally, with the top and bottom boundaries closed. 
8) The medium is slightly compressible and the compression coefficient is con-
stant, but its compression can cause significant changes in formation permeabil-
ity. 9) Using a fracture system and a bedrock system to simulate the dual me-
dium of a fractured reservoir, it is assumed that fluid flows from the bedrock 
towards the fracture and ultimately into the wellbore. 

Considering the flow of single-phase fluid in porous media, the continuity 
equation for radial flow can be obtained from the principle of mass conserva-
tion. 

Continuity equation of crack system: 

( ) ( )*
r f

1 rv q
r r t

ρ ϕ ρ∂ ∂
− ⋅ + =

∂ ∂
                   (1) 

Continuity equation of bedrock system: 

( )*
mq

t
ϕ ρ∂

− =
∂

                        (2) 

Cross flow equation: 

( )* m
m f

Kq p pαρ
µ

= −                       (3) 

For low permeability reservoirs, fluid flow needs to overcome the starting 
pressure gradient. Therefore, in order to fully reflect the role of starting pressure, 
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the following method is selected to describe the fluid flow process: 

0,

,

pv G
r
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r rµ
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 ∂ ∂  = − >  ∂ ∂ 

                    (4) 

Substitute the motion equation and the flow equation into the continuity equ-
ations of the fracture system and the bedrock system respectively, and assume 
that LfCγ   obtains the flow equation: 
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The dimensionless mathematical model obtains the dimensionless flow equa-
tion: 
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22

Df Df Df Df Dm
2

D D D D D D D

1 1p p p B p pB
r r r t r t t

β β ω ω
   ∂ ∂ ∂ ∂ ∂

− + − + = + −   ∂ ∂ ∂ ∂ ∂   
    (7) 

( ) ( )Dm
Df Dm

D

1 pw p p
t

λ∂
− = −

∂
                   (8) 

( )0
Df 0 f

2 hKp p p
qµ

π
= − , ( )0

Dm 0 m
2 hKp p p

qµ
π

= − ,  

D
w

rr
r

= , 
2

m w

f

K r
K

λ α= , 
( )

0
D 2

f t1 m t2 w

tKt
C C rµ ϕ ϕ

=
+

,  

( )i wC p pρβ = − , D
02

q
hK

µ γγ
π

= , 02 hKB G
qµ

π
= , f t1

f t1 m t2

C
C C
ϕω

ϕ φ
=

+
 

The obtained model contains a quadratic gradient term, which can be ad-
dressed using Laplace transform. 

( )Df D D
1 In 1 ,p r tβη
β

= − −   , ( )Dm D D,p r tξ= , DInx r=        (9) 

The transformed flow equation is: 
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After transformation, the quadratic gradient term is absorbed into the equa-
tion without any approximation, and the coefficients of the nonlinear term of 
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the equation are only limited to the right side of the equation. 
Using an implicit difference scheme to obtain the numerical solution of the 

model, i.e. using η(x, tD) and ξ(x, tD) Write the difference schemes for Equations 
(10) and (11) regarding the first-order backward difference quotient of tD and 
the second-order difference quotient of x: 
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Organize and simplify: 
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Substituting the initial value conditions of the difference scheme into the dif-
ference scheme of the flow equation results in an N-order system of tridiagonal 
equations. At each moment, we can list this coefficient matrix, and then we can 
use the Thomas algorithm to solve the pressure distribution at the next moment, 
n + 1, based on the pressure value of each grid at time n, and so on. 

3. Research on Well Testing Interpretation of Low  
Permeability Dual Deformation Medium Reservoir 

Applying the well testing interpretation model established in this article for low 
permeability dual deformable medium reservoirs, the seepage law under fixed 
production conditions with closed outer and inner boundaries was studied. The 
pressure dynamic curve of the deformable medium reservoir system was drawn, 
and the influence of various parameter changes on the pressure dynamic curve 
was analyzed. 

Figure 1 shows the effect of medium deformation on the pressure dynamic 
curve. The medium change has little effect on the early stage of the pressure dy-
namic curve, but has a greater impact on the pressure curve in the middle and 
later stages. In the middle and later stages of the pressure dynamic curve, the 
pressure wave gradually propagates towards the boundary, and the larger the 
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permeability modulus, the more affected the reservoir permeability is by pres-
sure. The lower the permeability, the more obvious the upward warping of the 
pressure and pressure derivative curve. The appearance of “concave” particles 
that characterize the characteristics of dual media is not significantly related to 
the deformation of the medium. The double logarithmic curve in the middle and 
later stages is significantly upward, showing a characteristic reflected by bounded 
stratigraphic boundaries. 

Figure 2 shows the effect of starting pressure gradient on the pressure dy-
namic curve. The start-up pressure gradient affects the entire flow process, with 
a relatively small impact in the initial stage. As time increases, the pressure 
curves diverge from each other, and the impact of the start-up pressure gradient 
on the pressure becomes increasingly significant. The larger the starting pressure 
gradient, the greater the resistance that fluid flow needs to overcome, and the 
more obvious the upward warping of the pressure and pressure derivative curve. 
The appearance of “concave particles” characterizing the characteristics of dual 
media is not significantly related to the starting pressure gradient. 

Figure 3 shows the effect of the crossflow coefficient on the pressure dynamic 
curve. From the figure, it can be seen that the channeling coefficient determines 
the time and location of the appearance of the “concave”. The larger the channe-
ling coefficient, the more fluid flows from the matrix to the crack, the more ob-
vious the channeling phenomenon, and the earlier the “concave” appears. 
 

 

Figure 1. Effect of medium deformation on pressure curve. 
 

 

Figure 2. Effect of starting pressure gradient on pressure curve. 
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Figure 3. Effect of crossflow coefficient on pressure curve. 

4. Conclusions 

1) Established a well testing interpretation model for low permeability dual 
deformation medium reservoirs; taking into account factors such as medium 
deformation, starting pressure gradient, and quadratic gradient term, a finite 
difference solution is adopted. 

2) The well testing interpretation of low permeability dual deformation me-
dium reservoirs was conducted, and the results showed that the impact of start-
ing pressure gradient and medium deformation on the pressure characteristic 
curve is mainly manifested in the middle and late stages. The smaller the value, 
the greater the dimensionless pressure in the later stage, and the faster the pres-
sure in the formation decreases. When both exist simultaneously, the impact will 
be more significant. The channeling coefficient determines the time and location 
of the appearance of the “concave”. The smaller the value, the later the appear-
ance of the “concave”, and the more to the right of the “concave”. 
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Sign Annotation 

r—distance from the well, m;  
ρ—density, g/cm3;  
v—Seepage velocity, cm/s;  
φf— fracture porosity, %;  
φm—matrix porosity, %;  
Kf—fracture Permeability, 10−3 μm2;  
Km—matrix Permeability, 10−3 μm2;  
q*—channeling flow, 10−3 μm2;  
pf—fracture pressure, MPa;  
pf—matrix pressure, MPa;  
α—channeling coefficient, f;  
Cρ—liquid compressibility, MPa−1;  
CΦ—rock compressibility, MPa−1;  
Ct —total compressibility, MPa−1;  
G—Starting pressure gradient, MPa/m;  
γ—permeability modulus, MPa−1;  
h—reservoir thickness, m;  
rw—radius of the well, m;  
re—drainage radius, m;  
L—Length of model, cm;  
Δp—Pressure difference, MPa;  
η—pseudo pressure, f;.  
PDf, PDm —dimensionless pressure, dimensionless;  
rD—dimensionless radius, dimensionless;  
λ—dimensionless channeling coefficient, dimensionless;  
tD—dimensionless time, dimensionless;  
β—dimensionless fluid compressibility, dimensionless;  
γD—dimensionless permeability modulus, dimensionless;  
B—dimensionless starting pressure gradient, dimensionless;  
ω—dimensionless elastic storage ratio, dimensionless;  
ζ—Laplace variable, dimensionless.  
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