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Abstract: A space in-orbit service simulation experiment platform is a type of equipment platform
that allows spacecraft such as satellites and deep-space explorers to be adequately ground tested
before launch. The function of the crane system is to drive the target spacecraft to perform a large-
scale movement. This study focuses on the dynamics of a space in-orbit service simulation experiment
platform with suspension rope and column quadrilateral truss structure as connecting devices. A
space in-orbit service simulation experiment platform with a column quadrilateral truss structure as a
connecting device is studied, modeled as a crane system–column quadrilateral truss structure–target
spacecraft system. For the column quadrilateral truss structure, the equivalent beam model is used
to make it equivalent based on the Timoshenko beam theory. The required equivalent stiffness
parameters are determined and adjusted. The relative error between the finite element model and
the corrected equivalent beam model of the column quadrilateral truss structure is no more than
4.7%. The results indicate that the accuracy of the modified equivalent beam model is sufficient. The
improved equivalent beam model has excellent precision according to numerical calculations, and
the derived equivalent stiffness parameters may be employed directly in dynamic modeling.

Keywords: truss structures; equivalent continuum modeling; dynamics; strain energy; modal analysis

1. Introduction

In the complex space environment, determining how to ensure the stable in-orbit
operation and attitude control of spacecraft has become a major technical problem to be
solved. A variety of large space in-orbit servicing platforms and large ground simulation
test equipment can effectively simulate the attitude and motion of spacecraft on the ground
and verify the feasibility of the control system and related schemes. Due to the large scale
and complicated structure of various spacecraft, launch costs are becoming increasingly
expensive. To save cost on space missions, ground in-orbit service test platforms have
become widely used in the space field. The requirements for the control precision and
vibration analysis of space test equipment are growing stricter [1]. Therefore, before and
during the design of a ground in-orbit service test platform, simulation tests and compar-
isons are needed to verify the feasibility of the design. Considering various safety factors,
error analysis must be performed to determine the most important reasons whenever the
test results cannot meet the requirements so that the conceptual and the mission design
objectives can be modified. At present, the mainstream processing methods are micropolar
beam theory, the finite element (FE) method, and the equivalent beam principle. In a space
in-orbit service simulation test platform the equivalent beam principle is typically used
for the rigid connected large-space flexible four-prismatic truss–column structure. The
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column quadrilateral truss structure (QTS) is the connecting device. The truss flexible body
dynamic model method often uses the FE method. Substantial elements and high order
are needed for a refined structure model. However, the order of the FE model needs to
be lowered.

Arndt [2] first applied the adaptive generalized FE method to free vibration analysis
of a slender truss. Chung [3] established the dynamic model of a rigid–flexible coupling
system of a spacecraft with flexible attachment and discretized the system. The relationship
between rotation and vibration deformation of a slender truss structure equivalent beam
was studied. Hu [4] analyzed the dynamic model of a large-scale space truss structure in
the development process as well as after expansion and locking. The nonlinear ring truss
structure after expansion was a complex high-dimensional system. The homogenization
method was used to model the flexible truss structure, which was transformed into the
equivalent continuum beam model based on the energy equivalent principle. Micropolar
beam theory was first proposed by Noor [5–7]. This theory considers the in-plane bending
of a rigid truss structure and uses the micropolar beam continuum to accurately simulate
the vibration response of the truss element. The eigenvector and principal vector of the
state transition matrix were used to homogenize the truss element, and a direct method
was proposed for the beam structure [8,9]. Liu [10] studied the method of a repeating
truss structure equivalent beam continuum model considering the flexibility of nodes.
Liu [11] further proposed an equivalent beam model that considered the warping of the
repeated element cross section. Cao [12] proposed a method for extending the continuum
model to an elongated truss structure with geometric nonlinearity. Zhang [13] analyzed
the truss structure vibration of a large deployable ring mesh antenna held by a busbar.
A simplified method was proposed to reduce the three-dimensional element structure
to a two-dimensional flat element structure with a ring truss. Bai [14] studied the large
articulated truss structure dynamics, analyzed the influence of three nonlinear nodes on the
dynamic behavior of an articulated truss, and established the equivalent dynamic model
of the truss element. Based on the idea of continuum equivalence, Liu [15] considered
shear isotropic elastic rings as equivalent to a flexible ring truss. The dynamic response
was solved using an analytic equation equivalent to a ring, and the truss FE model was
compared. Based on the principle of energy reciprocity and classical Timoshenko beam
theory, Cao [16] analyzed the truss structure equivalent model and dynamics of a large
space triangular prism. Equivalent beam theory was proven to be more accurate than
micropolar beam theory. Song [17] proposed a correction method to deal with the nonlinear
stiffness in the truss structure using the pattern search method. The results showed that this
method has high accuracy. Many scholars [18–20] have conducted considerable research
on the deflection of flexible truss structures in spacecraft, along with vibration analysis
and control methods. The equivalent beam theory, simplified from the micropolar beam
principle, is suitable for the dynamic modeling of space column truss structures in a
whole system.

Space in-orbit service simulation test platforms are applied to conduct ground equiv-
alent simulated testing of the in-orbit dynamics of the spacecraft capturing process. The
extreme space environment has little effect on spacecraft dynamics in orbit. A dynamic
model of a space in-orbit service simulation test platform with a column truss structure as
connecting device is first established. A separate dynamic model is then adopted for the
column truss structure of the connecting device. The equivalent beam principle is used to
obtain the flexible truss structure equivalent elastic parameter and modify it. The accuracy
and feasibility of the equivalent elastic parameter are verified by modal analysis of the
equivalent beam and actual truss structure. In the structure of crane system–cantilever
beam–target vehicle system, the cantilever moving load is simply considered as a Euler–
Bernoulli beam and a dynamic model is utilized. However, in actual engineering the
suspension load of the space in-orbit service simulation test platform system is concen-
trated on the mechanical arm or space truss structure. This type of structure is more
complex in the dynamic model. This work studies the typical space column truss structure
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equivalent model problem. After the equivalent elastic parameter and equivalent inertia
parameter of the flexible truss slender structure are obtained, it is substituted into the
dynamic model of the whole system. The accurate dynamic model is then applied to the
whole system.

2. Equivalent Method for Timoshenko Beam

The typical truss column moving load model in the test platform is shown in Figure 1.
The flexibility of the truss structure cannot be ignored when carrying out a large range
of three-dimensional motion. The elongated space flexible truss structure and elongated
flexible continuum beam have similar dynamic characteristics. Therefore, the slender
flexible truss structure is equivalent to the continuum beam model, which can describe
the whole dynamic characteristics of flexible truss and simplify the model. The space
truss structure is equivalent to a Timoshenko continuum beam of the same length, and the
feasibility of the equivalent model is verified by modal analysis.
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Figure 1. Space QTS and periodic element. The blue lines indicate the longitudinal beam, the black
lines indicate the transversal beam, and the red line indicate the inclined beam.

The elastic potential energy and kinetic energy of the periodic element in flexible
QTS are respectively equivalent to the elastic potential energy and kinetic energy of the
equivalent continuum beam of the same length, which is the energy equivalence principle.
The displacement pattern is established first for the flexible QTS periodic element. The
periodic element strain field and element elastic potential energy are calculated according
to their geometric relation. Based on the periodic element displacement pattern, the velocity
field within the element is calculated, then the element kinetic energy is solved. Through
the energy equivalent and continuum mechanic theory, elastic potential energy, and kinetic
energy for a Timoshenko beam of the same length are obtained and the equivalent parame-
ters of the continuum beam are acquired. The flowchart of the equivalent beam model is
shown in Figure 2.
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2.1. Displacement Mode of the Periodic Element

Figure 3a shows the column QTS periodic element in the space in-orbit service sim-
ulation test platform. It is welded by 20 beam components, including four longitudinal
beams, eight transverse beams, and eight inclined beams. Each beam component is fixedly
connected. No mutual constraint exists between two inclined beams on the same plane.
According to the equivalent beam theory in the previous section, the displacement pattern
at any point within the periodic element needs to be calculated. If any cross-section in the
periodic element remains flat before and after deformation, the wrapping and some bend-
ing modes of the cross-sections are not considered. Then, the displacement of any point
on the plane can be expressed by the cross–section’s center displacement and deformation
linearity, as shown in Figure 3b. A right-handed coordinate system o–xyz is established
at the center of any plane in the space element. Accordingly, the displacement [21] of any
point on it can be expressed as follows:

ux(x, y, z) = ux0(x) + zθy0(x)− yθz0(x)
uy(x, y, z) = uy0(x)− zθx0(x) + yεy0(x) + 1

2 zγyz0(x)
uz(x, y, z) = uz0(x) + yθx0(x) + zεz0(x) + 1

2 yγyz0(x)
(1)

where ux0, uy0, and uz0 are the displacements along the x-, y-, and z-axes of the periodic
element center (y = 0, z = 0), respectively, θx0, θy0, and θz0 are the rotation angles around
the x-, y-, and z-axes of the periodic element center, respectively, εx0, εy0, and εz0 are the
positive strains along the x-, y-, and z-axes of the periodic element center, respectively, and
γxy0 and γyz0 are the shear strain of the periodic element.
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If the displacement of any point in the periodic element is Taylor expanded at the
periodic element center and the derivative term of the strain is ignored, then

ux(x, y, z) = ux0 − yθz0 + zθy0 + xεx0 − xyκy0 + xzκz0

uy(x, y, z) = uy0 + yεy0 + z
(
−θx0 +

1
2 γyz0

)
+ x

(
θz0 + γxy0

)
− xzκx0 +

1
2 x2κy0

uz(x, y, z) = uz0 + y
[
θx0 +

1
2 γyz0

]
+ zεz0 + x

(
γxz0 − θy0

)
+ xyκx0 − 1

2 x2κz0

(2)

where κx0, κy0, and κz0 are the curvature along the three axes of the periodic element center,
respectively.

The periodic element exists at the center with the following geometric equation.
εx0 = ∂ux0(x)

∂x x=0, εy0 =
∂uy0(x)

∂x , εz0 = ∂uz0(x)
∂x

κx0 = ∂θx0(x)
∂x , κy0 = ∂θz0(x)

∂x , κz0 = ∂θz0(x)
∂x

γxy0 =
∂uy0(x)

∂x − θz0(x), γxz0 = ∂uz0(x)
∂x + θy0(x)

(3)
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Based on the continuum beam deformation geometric equation, the following equation
can be derived.

θx(x, y, z) = 1
2

(
∂uz
∂y − ∂uy

∂z

)
= θx0 + xκx0

θy(x, y, z) = 1
2

(
∂ux
∂z − ∂uz

∂x

)
= θy0 + xκz0 − 1

2 γxz0 − 1
2 yκy0

θz(x, y, z) = 1
2

(
∂uy
∂x − ∂ux

∂y

)
= θz0 + xκy0 +

1
2 γxy0 − 1

2 zκx0

(4)

Compared to the micropolar beam theory proposed by Noor, equivalent beam theory
ignores the microrotation of the fixed joint and simplifies the calculation process. However,
the bend curvature and the effect on structure transverse bend displacement and deforma-
tion during Taylor expansion development need to be considered. The method is suitable
for rigid jointed processes with periodic QTS equivalent.

2.2. Elastic Potential and Kinetic Energy of the Periodic Element

The periodic element total potential energy of the space QTS is the total of all com-
ponents’ elastic potential energy in the periodic element. The total kinetic energy of the
periodic element refers to of all components’ kinetic energy in the periodic element:

U = ∑
e

Ue, T = ∑
e

Te (5)

where e is the number of components; Ue is the elastic potential energy of the e-th com-
ponents, which includes the bend potential energy, vertical bend potential energy, axial
tension and compression potential energy, and torsional potential energy of each transverse
component; and Te is the kinetic energy of the e-th component.

Using the FE method, each component field displacement is obtained by the boundary
displacement interpolation of the beam component. Then, its elastic potential energy and
kinetic energy are as follows:

Ue = U(u)
e + U(v)

e + U(w)
e + U(ϑ)

e (6)

Te = T(u)
e + T(v)

e + T(w)
e + T(ϑ)

e (7)

where U(u)
e , U(v)

e , U(w)
e , and U(ϑ)

e are respectively the axial tension and compression po-
tential energy, transverse bend potential energy, vertical bend potential energy, and tor-
sional potential energy of each component and T(u)

e , T(v)
e , T(w)

e , and T(ϑ)
e are respectively

the axial tension and compression kinetic energy, transverse bend kinetic energy, ver-
tical bend kinetic energy, and torsional kinetic energy of each component. The 6-DOF
displacement of the i-th (i = 1, 2) boundary of the e-th beam element is represented by

qe
i = [ue

xi ue
yi ue

zi θe
xi θe

yi θe
zi]

T
, where u, v, and w are respectively the axial dimension

and transverse and vertical directions of the cross section, while θ represents the torsion
angle of the cross-section.

According to the FE method, the elastic potential energy and kinetic energy of the e-th
beam element are written as follows:

Ue =
1
2

qeTkeqe, Te =
1
2

.
qeTMe

.
qe (8)

where qe is the boundary displacement of the e-th beam element in the local coordinate
system, qe =

[
qeT

0 qeT
1
]T , while Ke is the element stiffness matrix and Me is the element

mass matrix.
Because the transverse beam is shared by two adjacent periodic elements, the geomet-

ric parameter and mass parameter of the transverse beam cross-section are each regarded
as half of the calculation. In a similar way, the transverse beam is shared by two adjacent
periodic elements; thus, the geometric parameter and mass parameter of the transverse
beam cross-section are regarded as halves as well. Considering that the direction of each
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element’s local coordinate system in the beam system is different, all of them need to be
transformed into the displacement under the global coordinate system during the structural
analysis, which can be written as follows:

qe = Γq̂e (9)

where q̂e is the nodes’ displacement in the global coordinate system.
The transformation matrix from the global coordinate system to the component local

coordinate system is Γ, and the 3–2–1 Euler angle can be used to represent its transformation
matrix, which is written as follows:

Γ =


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

 (10)

where

λ =

 cos θ1 cos θ3 cos θ2 sin θ3 − sin θ2
− cos θ1 sin θ3 + sin θ1 sin θ2 cos θ3 cos θ1 cos θ3 + sin θ1 sin θ2 sin θ3 sin θ1 cos θ2
sin θ1 sin θ3 + cos θ1 sin θ2 cos θ3 − sin θ1 cos θ3 + cos θ1 sin θ2 sin θ3 cos θ1 cos θ2

 (11)

where θ3, θ2, and θ1 represent the rotation angle along the z-, y-, and z-axes in the global
coordinate system, respectively.

Then, the stiffness matrix and mass matrix in the global coordinate system are derived
as follows.

K̂e = ΓT
e KeΓe (12)

M̂e = ΓT
e MeΓe (13)

The periodic element elastic potential energy and kinetic energy can be derived
as follows.

U =
1
2∑

e
q̂eTK̂eq̂e (14)

K =
1
2∑

e

.
q̂

eT
M̂e

.
q̂

e
(15)

The displacement of any point within the periodic element can be represented by
the displacement and strain at the periodic element center. When calculating the periodic
element elastic potential energy, the rigid body displacement term in the displacement
expression is ignored, i.e.,



uxk
uyk
uzk
θxk
θyk
θzk

 =



x 0 0 0 0 0 0 −xy xz
0 y 0 x 0 1

2 z −xz 1
2 x2 0

0 0 z 0 x 1
2 y xy 0 − 1

2 x2

0 0 0 0 0 0 x 0 0
0 0 0 0 − 1

2 0 − 1
2 y 0 x

0 0 0 1
2 0 0 − 1

2 z x 0





εx0
εy0
εz0
γxy0
γxz0
γyz0
κx0
κy0
κz0


= Lc



εx0
εy0
εz0
γxy0
γxz0
γyz0
κx0
κy0
κz0


(16)

where xk = [uxk uyk uzk θxk θyk θzk]
T is a displacement vector at the material point

and x, y, and z are the position coordinates of a material point in the periodic element
coordinate system.
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According to the classical beam theory, no mutual extrusion occurs between the layers of
the cross-section, and the beam model is equivalent to the equivalent periodic element, i.e.,

∂U
∂εy0

=
∂U
∂εz0

=
∂U

∂γyz0
= 0. (17)

According to Equation (17), the potential energy of the periodic element can be written
as a function of εx0, γxo, γxz0, κx0, κy0, and κz0, with ε = [εx0, γxo, γxz0, κx0, κy0, κz0]T.

The periodic element potential energy U can be written as follows:

U =
1
2
εTDcε (18)

where Dc is the stiffness matrix.
When calculating the periodic element kinetic energy, because the rigid body motion

is the main component of the kinetic energy, the strain term in the displacement expression
can be ignored, as shown below.

xk =



uk
vk
wk
θxk
θyk
θzk

 =



1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





ux0
uy0
uz0
θx0
θy0
θz0

 = Lb



ux0
uy0
uz0
θx0
θy0
θz0

 (19)

The same condition applies to the elastic potential energy of the periodic element,
which can be collectively referred to as the positioning matrix. The displacement at each
material point within the periodic element can be found by locating the displacement or
stress at the matrix and the periodic element center. The kinetic energy of the periodic
element can be written as the function of ux0, uyo, uz0, θx0, θy0, and θz0, i.e., u= [ux0, uyo,
uz0, θx0, θy0, θz0]T, while the kinetic energy can be derived as follows.

T =
1
2

.
uTMc

.
u (20)

2.3. Elastic Potential Energy and Kinetic Energy of an Equivalent Beam

This study considers an equivalent Timoshenko continuum beam which has the
same length Ll as the truss periodic element. The total elastic potential energy and total
kinetic energy of the periodic element are equal to those of the Timoshenko continuum
beam. The expressions of the elastic potential energy and kinetic energy obtained by
calculation show that the coupling terms exist in deformation. Given that the periodic truss
element equivalent of continuum beam is a short and thick beam, the span height ratio is
approximately 1. Therefore, the QTS should be equivalent to the anisotropic Timoshenko
beam. According to continuum mechanics, the continuum beam elastic potential energy Û
is written as follows:

Û =
1
2

∫
Ll

XTDXdx (21)

where X = [εx0, γxyo, γxz0, κx0, κy0, κz0]T is the strain vector at the central axis of the
equivalent continuum beam. Because the derivative term of strain is ignored, the strain
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on the neutral axis of the equivalent beam can be regarded as the constant strain, which is
equal to the strain at the periodic element center. Here, D is the elastic matrix,

D =



EA η12 η13 η14 η15 η16
GAy η23 η24 η25 η26

GAz η34 η35 η36
GJ η45 η46

EIz η56
sym EIy

 (22)

where EA is the compressive stiffness of the anisotropic beam, GAy and GAz are the shear
stiffness of the anisotropic beam, GJ is the anisotropic beam torsional stiffness, EIz and
EIy are the anisotropic beam bend stiffness, and ηij is the coupling stiffness; some of these
terms may be zero depending on whether or not the spatial truss element is symmetrical.

According to the equivalent beam principle, the potential energy U of the QTS is equal
to the equivalent anisotropic beam, shown below:

U = Û (23)

From the above equations, a certain relationship exists between the matrices Dc and
D, as follows: {

EA = D11
Ll

, GAy = D22
Ll

, GAz =
D33
Ll

GJ = D44
Ll

, EIz =
D55
Ll

, EIy = D66
Ll

(24)

where Dij is the element in matrix D.
The kinetic energy of the flexible truss periodic element for the anisotropic Timoshenko

beam is as follows:
T̂ =

1
2

∫
Ll

.
δ

T
M

.
δdx (25)

where δ = [ux0, uyo, uz0, θx0, θy0, θz0]T is the displacement vector along the neutral axis of
the beam.

The periodic element strain term is ignored, and only the rigid body displacement of
the periodic element is considered. The periodic element and equivalent beam model with
constant velocity on the neutral axis is

M =



mc m12 m13 m14 m15 m16
mc m23 m24 m25 m26

mc m34 m35 m36
Jx m45 m46

Jy m56
sym Jz

 (26)

where mc is the linear density of the anisotropic Timoshenko beam and Jx, Jy, and Jz are the
moments of inertia around the x-, y-, and z-axes of the unit length beam, respectively.

The kinetic energy of the QTS is equal to the kinetic energy of the equivalent anisotropic
beam, i.e.,

T = T̂. (27)

The relationship between the matrix Mc and elastic matrix M can be written as

mc =
m11

Ll
=

m22

Ll
=

m33

Ll
, Jx =

m44

Ll
, Jy =

m55

Ll
, Jz =

m66

Ll
, (28)

where Mij is the element in matrix Mc.
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3. Equivalent Beam Model of QTS
3.1. Equivalent Beam Model Parameters of QTS

The column QTS in the space in-orbit platform is shown in Figure 4a; it consists of
12 periodic elements, as depicted in Figure 4b. Each periodic element is welded from
20 components. The column QTS of the space in-orbit service simulation test platform
can be approximated as a cantilever structure. According to the component cross-section
parameter in the actual QTS, the equivalent beam principle is used to calculate the equiv-
alent elastic parameter of the flexible QTS. The equivalent elastic parameter is corrected
using modal frequency equality. The material parameters of the component in the periodic
element are listed in Table 1.
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Table 1. Material parameters of the component in the periodic element.

Material Parameter Value

Yong modulus E/Gpa 207
Density ρ kg/m3 7830
Poisson’s ratio v 0.3

According to the equivalent beam model in the Section 2.3, the column QTS in the
space in-orbit service simulation test platform is equivalent, and the elastic matrix and
inertia matrix are obtained. Based on the equivalent beam principle, the elastic potential
energy and the kinetic energy of the QTS periodic element are equal to the elastic potential
energy and kinetic energy of the equivalent beam for the same length. The corresponding
stiffness and mass parameters are as follows.

EA = 27.14 × 108, GJ = 75.94 × 108, EIz = 61.55 × 108, EIy = 62.55 × 108

mc = 639.61, Jx = 245.41, Jy = 256.53, Jz = 189.37

3.2. FE Discretization of Equivalent Beam

The equivalent beam stiffness matrix and mass matrix are calculated using the FE
method. The column QTS of the space in-orbit service simulation test platform is a can-
tilever structure, and its constraint condition is{

w(0) = 0, w′′ (l) = 0, v(0) = 0, v′′ (l) = 0
w′(0) = 0, w′′′(l) = 0, v′(0) = 0, v′′′(l) = 0

. (29)

The space QTS is equivalent to the anisotropic Timoshenko beam. The two-node
Timoshenko beam model has a displacement matrix of 16 DOFs, and each node has 8 DOFs:

δi =
[
u0i vb0i vs0i wb0i ws0i θx0i θy0i θz0i

]T . (30)
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For any element on the cantilever equivalent beam, the left and the right node displace-
ment arrays are δn and δn+1, respectively. The local coordinate system is shown in Figure 5.
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Under the local coordinate system, the internal displacement of the beam element
can be obtained by displacement interpolation of the element node. According to Timo-
shenko beam theory, the beam transverse (vertical) vibration displacement is composed of
transverse (vertical) bend vibration and transverse (vertical) shear vibration, namely,{

v = vs + vb
w = ws + wb

. (31)

The bend displacement and shear displacement are interpolated independently, then

u = N1u0i + N2u0j
vb = N3vb0i + N4θz0i + N5vb0j + N6θz0j
vs = N1vs0i + N2vs0j
wb = N3wb0i + N4θy0i + N5wb0j + N6θy0j
ws = N1ws0i + N2ws0j
θx = N1θx0i + N2θx0j

, (32)

where N1, N2, . . ., N6 are the corresponding form function, which can be written as follows:
N1 = 1 − ξ, N2 = ξ,
N3 = 1 − 3ξ2 + 2ξ3, N4 =

(
ξ − 2ξ2 + ξ3)l

N5 = 3ξ2 − 2ξ3, N6 =
(
ξ3 − ξ2)l

(33)

where ξ is the normalized coordinate along the direction of the equivalent beam length
ξ = x/l, x is the local coordinate, and l is the element length.

The displacement vector of any point in the element is represented by u = [u vb vs wb
ws θx]T, which can be derived by

N1 = 1 − ξ, N2 = ξ,
N3 = 1 − 3ξ2 + 2ξ3, N4 =

(
ξ − 2ξ2 + ξ3)l

N5 = 3ξ2 − 2ξ3, N6 =
(
ξ3 − ξ2)l

, (34)

where δ = [δT
n δT

n+1]
T is the node displacement of the beam element and N is the form

function matrix of the element:

N =



N1 0 0 0 0 0 0 0 N2 0 0 0 0 0 0 0
0 N3 0 0 0 0 0 N4 0 N5 0 0 0 0 0 N6
0 0 N1 0 0 0 0 0 0 0 N2 0 0 0 0 0
0 0 0 N3 0 0 N4 0 0 0 0 N5 0 0 N6 0
0 0 0 0 N1 0 0 0 0 0 0 0 N2 0 0 0
0 0 0 0 0 N1 0 0 0 0 0 0 0 N2 0 0

. (35)
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Based on the strain–displacement relation in the FE method, the following equation
can be derived: {

εx = du
dx , γxy = dvs

dx , γxz =
dws
dx

κx = dθx
dx , κy = d2vb

dx2 , κz = − d2wb
dx2

. (36)

The strain within this element is written as follows:

ε =
{

εx γxy γxz κx κy κz
}T

= LNδ (37)

where L is a differential operator describing geometric relations, which can be written as

L =



d
dx 0 0 0 0 0
0 0 d

dx 0 0 0
0 0 0 0 d

dx 0
0 0 0 0 0 d

dx
0 d2

d2x 0 0 0 0
0 0 0 − d2

d2x 0 0


. (38)

The strain matrix is B = LN, which represents the relationship between strain and
node displacement on the neutral axis of the element. According to the FE method, the
beam element stiffness matrix and mass matrix are derived as follows.

Ke =
l∫

0
BTDcB dx

Me =
l∫

0
NTMcN dx

(39)

Likewise, the whole-space equivalent beam stiffness matrix is equal to the sum of all
elements’ stiffness matrix.

K = ∑ Ke (40)

Moreover, the whole-space equivalent beam mass matrix is equal to the sum of all
elements’ mass matrix.

M = ∑ Me (41)

Note that when assembling the total body stiffness matrix and total body mass matrix
the element matrix needs to be reassembled according to the element node position. At
the same time, the stiffness matrix and mass matrix considering the constraint condition
Equation (41) are calculated to solve the QTS dynamics.

3.3. Modal Analysis Based on the FE Method

According to the FE method of space equivalent beam, the dynamic equation of the
system without damping is written as follows.

M
..
δ+ Kδ = 0 (42)

Based on the boundary constraints of the cantilever beam and assuming the modal
method, the characteristic equation of Equation (42) is written as follows.(

K − ω2M
)
φ = 0 (43)

From Equation (43), the natural and modal frequencies of the equivalent beam can
be obtained to analyze the dynamic characteristics of the system. The equivalent beam
is divided into 12 elements, of which the longitudinal length without external loading is
12 m. The constraint condition is in cantilever beam form. Matlab 2019a software was used
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to carry out the numerical analysis and perform simulations. The first six orders of the
bending vibration mode of the theoretical equivalent beam are shown in Figure 6.
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Figure 6. First six orders of the bending vibration mode of the equivalent beam: (a) first-order trans-
verse bend mode, 3.77 Hz; (b) first-order vertical bend mode, 3.79 Hz; (c) second-order transverse 
bend mode, 22.20 Hz; (d) second-order vertical bend mode, 22.17 Hz; (e) third-order transverse bend 
mode, 57.35 Hz; (f) third-order vertical bend mode, 56.79 Hz.

Figure 6. First six orders of the bending vibration mode of the equivalent beam: (a) first-order
transverse bend mode, 3.77 Hz; (b) first-order vertical bend mode, 3.79 Hz; (c) second-order transverse
bend mode, 22.20 Hz; (d) second-order vertical bend mode, 22.17 Hz; (e) third-order transverse bend
mode, 57.35 Hz; (f) third-order vertical bend mode, 56.79 Hz.

From Figure 6 to Figure 7, it can be seen that the vertical bend and the modes of the
first three orders in the torsional position of the actual QTS transverse bend fit well using
the equivalent beam principle.

According to the analysis in Table 2, the relative frequency errors RE1 corresponding
to the vertical bend, torsional and axial tension, and compression are relatively large at
more than 10%. Nevertheless, the relative error decreases with the increase in order. The
relative error mainly comes from the following aspects: (1) the slender QTS is different from
the local equivalent continuum beam, especially when torsional and shear deformation
occurs; (2) when calculating the periodic element elastic potential energy, the strain on
the neutral axis of the periodic element is regarded as a constant, while when calculating
the periodic element kinetic energy only the rigid body motion of the periodic element is
considered; and (3) when calculating the transverse beam potential energy in the element,
two adjacent periodic elements share a transverse beam. Hence, one half of the transverse
beam parameter is taken, but not the half of the transverse beam parameter on the other
side of the boundary of the periodic element. From Table 2, the equivalent beam method
of QTS is not accurate. Thus, the equivalent elastic or mass parameters of the equivalent
beam model need to be revised.
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Table 2. Natural frequencies and relative errors (REs) of the equivalent model.

Mode Order
Frequencies /Hz

RE1 %
The FE Model The Equivalent Beam Model

Transverse bend
1 3.31 3.77 14.03
2 19.87 22.17 11.58
3 51.93 56.79 9.37

Vertical bend
1 3.31 3.79 14.78%
2 19.87 22.20 11.73%
3 51.93 57.35 10.43%

Torsional
1 37.83 36.67 3.06
2 112.45 110.65 1.60
3 183.76 186.52 1.50

Axial tension
and compression 1 43.13 42.94 0.43

3.4. Modification of the Equivalent Beam Model

For the study of the QTS dynamics, its equivalent elastic parameter is important.
Inaccuracy of the equivalent elastic parameter can lead to large relative error during
dynamic analysis. The equivalent mass coefficient has a minimal effect on the dynamic
problem; therefore, the equivalent elastic parameter is mainly corrected.

The slender truss structure is quite different from the equivalent continuous beam
in the local area, especially when torsion and shear occur. When calculating the elastic
potential energy of the periodic element, the strain on the neutral axis of the periodic
element is regarded as a constant. When calculating the kinetic energy of the periodic
element, only the rigid body motion of the periodic element is considered, which has some
error in comparison with the actual results. When calculating the potential energy of the
beam in the cell, considering that two adjacent periodic elements share a beam, the beam
parameter is selected as half of the original. However, the beam parameter on one side of
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the boundary periodic element is not used as half of the original, resulting in a certain error.
The effect of the equivalent mass coefficient on the dynamics problem is very small, and
the inaccuracy of the equivalent elastic parameters can lead to large errors in the dynamics
research; thus, the equivalent elastic parameters are mainly modified.

Considering that the QTS is a cantilever beam structure under ideal conditions, the
equivalent beam bend along with the torsional and even axial vibration frequencies should
be the same as the corresponding vibration frequencies of a cantilever QTS. On this basis,
the equivalent elastic parameter is revised in this work. For the cantilever form of the
continuum beam, its bend vibration frequency is

ωn =
(βnl)2

l2

√
EI
ρA

, (44)

where βnl is the n th-order solution of the transcendental equation, with βnl = 1.875.
The linear density mc in the inertia matrix is calculated using the equivalent beam

model. The vibration frequency w′
n of the QTS is equal to the vibration frequency wn of the

equivalent beam model, which can be written as

ω′
1 = ω1 =

1.8752

l2

√
E′ I′

mc
. (45)

After Equation (45) is solved, the corrected bend stiffness E′ I′ can be obtained. Simi-
larly, the transverse bend stiffness E′ I′z, vertical bend stiffness E′ I′y, and beam axial vibration
frequency of the cantilever can be derived as follows:

ωn =
nπ

2l

√
EA
mc

. (46)

For a given mc, the first-order axial vibration frequency can be made equal to that of
the actual QTS to obtain the corrected axial stiffness E′A′. The beam torsional vibration
frequency of the cantilever can then be derived as follows.

ωn =
nπ

2l

√
GJ
Jx

(47)

After Equation (47) is solved, the corrected torsional stiffness G′J′ is obtained. Accord-
ing to the above calculation, the correction can be accomplished by replacing the corrected
E′A′, E′Iz’, E′Iy

′, and G′J′ with their counterparts in the elastic matrix.

4. Discussion

The boundary condition of the column QTS in the space in-orbit service simulation
test platform is the cantilever beam model. The column QTS equivalent elastic matrix of
the space in-orbit service simulation test platform is modified. According to the calculation
in Section 3, the compression, bend, and stiffness of the torsional cross-sections are modified
for the QTS equivalent beam model. The corrected equivalent elastic parameters are
obtained as follows.

E′A′ = 27.34 × 108, G′ J′ = 80.78 × 108, E′ I′z = 47.49 × 108, E′ I′y = 47.75 × 108

The equivalent elastic parameter of the modified flexible QTS equivalent beam model
was used for modal analysis to verify the equivalent elastic parameter accuracy of the
modified model. The equivalent beam was divided into 12 shear Timoshenko beam
elements and modal analysis was performed using the Abaqus 2020 software. The modal
mode and natural vibration frequency of each order were derived for the equivalent beam
model. The results are compared with the actual QTS modal mode and corresponding
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vibration frequency, as shown in Figures 8 and 9. The natural frequencies and relative error
of the modified equivalent model are listed in Table 3.
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Figure 8. First three orders of the bending and torsional modes of the modified equivalent beam: (a) 
first-order bend mode; (b) first−order torsional mode; (c) second-order bend mode; (d) second-order 
torsional mode; (e) third-order bend mode; (f) third-order torsional mode. 

Figure 8. First three orders of the bending and torsional modes of the modified equivalent beam:
(a) first-order bend mode; (b) first−order torsional mode; (c) second-order bend mode; (d) second-
order torsional mode; (e) third-order bend mode; (f) third-order torsional mode.
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Table 3. Natural frequencies and relative error of the modified equivalent model.

Mode Order
Frequency/Hz

RE1 % The Modified Equivalent
Beam Model

RE2 %
The FE Model The Initial Equivalent

Beam Model

Bend
1 3.32 3.77 14.03 3.32 0.32
2 19.87 22.17 11.58 19.54 1.67
3 51.93 56.79 9.37 50.44 2.87

Twist
1 37.83 36.67 3.06 37.83 0.01
2 112.45 110.65 1.60 114.14 1.50
3 183.76 186.52 1.50 192.40 4.70

The relative errors RE2 between the simulated QTS and the modified equivalent beam
are no more than 4.7.%. The accuracy of the modified equivalent beam model is proven to
be sufficient. The relative error increases with the increase in order. The stiffness parameters
derived using the equivalent beam principle are written as follows:

E′A′ = 27.34 × 108, G′ J′ = 80.78 × 108, E′ I′z = 47.49 × 108, E′ I′y = 47.75 × 108

5. Conclusions

In this study, the space repetitive QTS is regarded as an equivalent beam model based
on the energy equivalent method. The space QTS is equivalent to a slender Timoshenko
beam based on the equivalent beam principle. According to the energy equivalence
principle, the space equivalent beam elastic matrix and inertia matrix are calculated. With
the whole dynamic model of the space in-orbit service simulation test platform established,
the equivalent elastic parameter obtained can be directly applied to the dynamic equation
of the system. The model is then corrected to improve the accuracy of the equivalent
beam model. A thorough comparison of the equivalent beam model and the FE model is
conducted for the vibration of the space QTS using a numerical example. The relative error
between the finite element model and the corrected equivalent beam model of the column
quadrilateral truss structure is no more than 4.7%. The results indicate that the accuracy of
the modified equivalent beam model is sufficient.
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