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ABSTRACT

The geometry of curved ‘three-dimensional’ absolute intrinsic metric space (an absolute intrinsic
Riemannian metric space) ∅IM̂3, which is curved (as a curved hyper-surface) toward the absolute
time/absolute intrinsic time ‘dimensions’ (along the vertical), and projects a flat three-dimensional
absolute proper intrinsic metric space ∅IE′3

ab and its outward manifestation namely, the flat absolute
proper 3-space IE′3

ab, both as flat hyper-surfaces along the horizontal, isolated in the first part of
this paper, is subjected to graphical analysis. Two absolute intrinsic metric tensor equations,
one of which is of the form of Einstein free space field equations and the other which is a
tensorial statement of absolute intrinsic local Euclidean invariance (A∅LEI) on ∅IM̂3, are derived.
Simultaneous (algebraic) solution to the equations yields the absolute intrinsic metric tensor and
the absolute intrinsic Ricci tensor of absolute intrinsic Riemann geometry on the curved ∅IM̂3, in
terms of a derived absolute intrinsic curvature parameter. A superposition procedure that yields the
resultant absolute intrinsic metric tensor and the resultant absolute intrinsic Ricci tensor, when two
or a larger number of absolute intrinsic Riemannian metric spaces co-exist (or are superposed) is
developed.
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The fact that a curved ‘three-dimensional’ absolute intrinsic metric space ∅IM̂3 is perfectly isotropic
and is consequently contracted to a ‘one-dimensional’ isotropic absolute intrinsic metric space,
denoted by ∅ρ̂, which is curved toward the absolute time/absolute intrinsic time ’dimensions’
(ĉt̂/∅ĉ∅t̂) along the vertical is derived.

Keywords: Absolute intrinsic Riemann geometry; coexisting absolute intrinsic metric spaces; super-
position proceure; resultant absolute intrinsic metric tensor; resultant absolute intrinsic
Ricci tensor; contraction to curved ‘one-dimensional’ isotropic absolute intrinsic metric
space.

1 INTRODUCTION

This second part of this paper is a
continuation of the derivation of absolute intrinsic
Riemann geometry of curved absolute intrinsic
Riemannian metric space started in the first part
[1]. The absolute intrinsic Riemann geometry
of a curved ‘three-dimensional’ absolute intrinsic
metric space ∅ÎM3, as a curved hyper-surface
toward the absolute time/absolute intrinsic time
dimensions along the vertical and its projective
flat ‘three-dimensional’ absolute proper intrinsic
metric space ∅IE′3

ab that underlies a flat relative
proper metric space as a flat hyper-surface
along the horizontal IE′3, in which the observers
are located, isolated in the first part of this
paper, is developed in this second part. The
new geometry is more all-encompassing (or
more complete) than the proposed curved four-
dimensional spacetime solely in the gravitational
field in the general theory of relativity GR).

The development shall be extended to curved
‘two-dimensional’ absolute intrinsic Riemannian
metric spacetime with absolute intrinsic sub-
Riemannian metric tensor ∅ĝik in long-range
metric force fields in general in the third part
of this paper. The curved two-dimensional
absolute intrinsic metric spacetime coexist with
flat four-dimensional metric spacetime in long-
range metric force fields. The curved absolute
intrinsic metric spacetime will support absolute
intrinsic metric theory of gravity, while the flat
four-dimensional spacetime will support a flat
spacetime theory of gravity. Thus the new
geometry is naturally equipped to support a two-
theory approach to gravitation.

No work on absolute intrinsic Riemann geometry
in physics or mathematics exists in the open
literature, as far as can be found. This thereby

limits the references in this paper to the previous
papers of the author on which it is based
essentially.

2 DERIVATION GRAPHI-
CALLY OF ABSOLUTE
INTRINSIC RIEMANN
GEOMETRY ON CURVED
ABSOLUTE INTRINSIC
METRIC SPACE

Let us start with a curved ‘two-dimensional’
absolute intrinsic metric space (an absolute
intrinsic Riemannian metric space) ∅IM̂2 with
extended curved absolute intrinsic metric
‘dimensions’, ∅x̂1 and ∅x̂2. The extended
curved absolute intrinsic metric ‘dimensions’ of
∅IM̂2 originate from a point O(∅x′1ab(0),∅x̂′2ab(0))
of the underlying flat two-dimensional absolute
proper intrinsic metric space ∅IE′

ab
2, with

extended straight line absolute proper intrinsic
metric dimensions, ∅x′1ab and ∅x′2ab, as illustrated
in Figs. 1a and 1b.

Figures 1a and 1b are two-dimensional forms of
Figs. 6a and 6b of the first part of this paper [1],
with the absolute intrinsic metric dimensions
shown explicitly. Figure. 5 of part one of that
paper is reproduced as Fig. 2 of this paper.

The flat ‘two-dimensional’ absolute proper metric
space IE′2

ab in Fig. 1b is the outward manifestation
of the flat ‘two-dimensional’ absolute proper
intrinsic metric space ∅IE′2

ab in Fig. 1a and the
flat two-dimensional relative proper metric space
IE′2 in Fig. 1b is the outward manifestation of
the flat two-dimensional relative proper intrinsic
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metric space ∅IE′2 in Fig. 1a. Figures 1a and 1b
are not separated in nature; their separation is
done for clarity only.

Figures 1a and 1b are valid with respect to 2-
observers in the relative (or physical) proper
metric space IE′2, as indicated.
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Figure 1: (a) A curved ‘two-dimensional’ absolute intrinsic Riemannian metric space
∅IM̂2 and its projective flat ‘2-dimensional’ absolute proper intrinsic metric space
∅IE′2

ab underlying a flat 2-dimensional relative proper intrinsic metric space ∅IE′2

that automatically appears. (b) The flat absolute proper metric space IE′2
ab as

outward manifestation of the flat ∅IE′2
ab underlying a flat relative proper metric space

IE′2 as outward manifestation of ∅IE′2.
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Figure 2: The ‘3-dimensional’ absolute intrinsic metric space curving toward the
absolute intrinsic time ‘dimension’ along the vertical, projects flat 3-dimensional
absolute proper intrinsic metric space, which lies underneath (or is embedded in)
the flat relative proper metric 3-space along the horizontal; Fig. 5 of [1]

It is to be recalled from part one of this paper that
a ‘three-dimensional’ absolute intrinsic metric
space ∅IM̂3 is curved (as a hyper-surface) onto
the absolute intrinsic metric time ‘dimension’,
∅x̂0 (= ∅ĉs∅t̂), along the vertical and projects
a ‘three-dimensional’ flat absolute proper intrinsic
metric space ∅IE′3

ab (as a flat hyper-surface)
along the horizontal. The curved absolute
intrinsic metric space ‘dimensions’, ∅x̂1,∅x̂2

and ∅x̂3, of ∅IM̂3, are curved onto the absolute
intrinsic metric time ‘dimensions’ ∅x̂0 along the
vertical.

A feature of Fig. 1a to note is that an absolute
intrinsic metric space ‘dimension’ ∅x̂i ; i = 1, 2
or 3, of ∅IM̂3 that is curved onto ∅x̂0 along the
vertical, is curved relative to and, hence, lies
above (or spans) only the straight line absolute
proper intrinsic metric space dimension ∅x′iab it
projects along the horizontal. This is a peculiar
feature of absolute intrinsic metric spaces. The
situation where the curved ∅x̂1 spans ∅x′2ab
or/and ∅x′3ab along the horizontal; the curved ∅x̂2

spans ∅x′1ab or/and ∅x′3ab along the horizontal;
and the curved ∅x̂3ab spans ∅x′1ab or/and ∅x′2ab
along the horizontal, does not arise in absolute
intrinsic Riemann geometry (of curved absolute
intrinsic metric spaces). The implication of this
on the structure of the absolute intrinsic metric
tensors on absolute intrinsic metric spaces (or
in absolute intrinsic Riemann geometry) shall be
seen shortly.

Let us take a short segment, AGB ≡ ∆∅x̂1,
about point ∅x̂1(1) along the curved ‘dimension’
∅x̂1. Then in the limit as ∆∅x̂1 becomes
indefinitely short, that is, in the limit as A→B,
we must let ∆∅x̂1 → d∅x̂1 and ∆∅x′1ab → d∅x′1ab
in Fig. 1a. It is required in this limit that the
length of the arc AGB be equal to the length of
the hypotenuse AB of the triangle ABC. Then
the absolute intrinsic angle ∅ψ̂x̂1(∅x̂1) is single-
valued, being equal to ∅ψ̂x̂1(∅x̂1(1)) over the arc
AGB in this limit.

Similarly by taking a short segment, DHE
≡ ∆∅x̂2, about point ∅x̂2(1) along the curved
‘dimension’ ∅x̂2 we have in the limit as ∆∅x̂2
becomes indefinitely short, that is, in the limit
as D → E, ∆∅x̂2 → d∅x̂2 and ∆∅x′2ab → dx′2ab
in Figs. 1a&b. It is also require in this limit that
the length of the arc DHE be equal to the length
of the hypotenuse DE of the triangle DEF. Then
the absolute intrinsic angle ∅ψ̂x̂2(∅x̂2) is single-
valued, being equal to ∅ψ̂x̂2(∅x̂2(1)) over the arc
DHE.

Thus by displacing the limiting constant
elementary straight line intervals, d∅x̂1 and
d∅x̂2, defined above along the curved
‘dimensions’, ∅x̂1 and ∅x̂2, respectively, one
can attach a locally flat manifold of elementary
‘dimensions’, d∅x̂1 and d∅x̂2, to every point
of the ‘2-dimensional’ curved absolute intrinsic
metric space ∅IM̂2. One can then construct
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geometry, that is, derive single absolute intrinsic
metric tensor, single absolute intrinsic Ricci
tensor, single absolute intrinsic Riemann scalar,
etc (in a lumped parameter fashion), which are
valid at every point within the local neighborhood
with elementary straight line ‘dimensions’, d∅x̂1

and d∅x̂2, with respect to 2-observers in the
underlying flat relative proper metric 2-space IE′2,
and repeat this about every point on the curved
absolute intrinsic metric space ∅IM̂2. This is
the graphical approach to the absolute intrinsic
Riemann geometry of a curved ‘2-dimensional’
absolute intrinsic metric space, which has no
counterpart in conventional Riemann geometry.
The derivation can be easily extended to a curved

‘3-dimensional’ absolute intrinsic metric space
∅IM̂3 — a ‘3-dimensional’ absolute intrinsic
Riemannian metric space.

The elementary straight line intervals, d∅x̂1
and d∅x̂2, defined about point (∅x̂1(1),∅x̂2(1)) of
the ‘2-dimensional’ absolute intrinsic Riemannian
metric space ∅IM̂2, project intervals of absolute
proper intrinsic metric space ‘dimensions’, d∅x′1ab
and d∅x′2ab, respectively about the corresponding
point (∅x′1ab(1),∅x′2ab(1)) of the underlying flat
absolute proper intrinsic metric space ∅IE′2

ab

in Fig. 1a. One obtains the following from
elementary coordinate geometry

d∅x′1ab = dx̂1 cos∅ψ̂x̂1(∅x̂
1
(1)) and dx′2ab = d∅x̂2 cos∅ψ̂x̂2(∅x̂

2
(1)) (1)

Having established the, sec∅ψ = ∅γ, parametrization of the the intrinsic Lorentz boost in the context
of intrinsic special theory of relativity (∅SR), in which the rotations of intrinsic affine spacetime
coordinates are expressed as trigonometric ratios, cosine and sine, of an intrinsic angle ∅ψ in [2],
which leads to intrinsic length contraction formulae, ∅x̃ = ∅γ∅x̃ ′ cos∅ψ (or∅x̃ ′ = (1−∅v2/∅c2)1/2),
intrinsic spacetime coordinate rotations on the vertical intrinsic spacetime hyperplane have uniformly
been expressed in terms of the trigonometric ratios of the intrinsic angle ∅ψ in the subsequent
articles. This is also done in system (1) for the rotation of absolute intrinsic metric space coordinates
by an absolute intrinsic angle ∅ψ̂ on the vertical absolute intrinsic spacetime hyperplane in Fig. 1a.

A ‘Riemannian’ observer at an arbitrary point (∅x̂1,∅x̂2) on ∅IM̂2 (this is the proper Riemannian
observer), ‘observes’ Euclidean metric tensor locally about his position. This is guaranteed by the
peculiar feature of a curved absolute intrinsic metric space mentioned above that, ∅x̂1 is curved
relative to (or spans) its projective ∅xab ′1 along the horizontal only and ∅x̂2 is curved relative to (or
spans) its projective ∅xab ′2 along the horizontal only. These make the curved ∅x̂1 and ∅x̂2 locally
orthogonal at every point of ∅IM̂2.

The proper Riemannian observer therefore derives Euclidean line element in terms of the orthogonal
elementary intervals, d∅x̂1 and d∅x̂2, at his position as

(d∅l̂ )2 = (d∅x̂1)2 + (d∅x̂2)2 =

2∑
i,k=1

δikd∅x̂idx̂k . (2a)

This local Euclidean absolute intrinsic line element on ∅IM̂2 will be written in terms of the coordinate
intervals of the underlying projective absolute proper intrinsic metric space ∅IE′2

ab by the Euclidean
2-observers in the relative proper metric space IE′2, by virtue of system (1) as

(d∅l̂ )2 = (d∅x̂1)2 + (d∅x̂2)2 = (d∅x′1ab)2 sec2 ∅ψ̂x̂1(∅x̂
1) + (d∅x′2ab)2 sec∅ψ̂x̂2(∅x̂

2) (2b)

or

(d∅l̂ )2 =

2∑
i,k=1

sec∅ψ̂x̂i(∅x̂
i) sec∅ψ̂x̂k (x̂

k)δikd∅x′iabd∅x′kab , (2c)

or

(d∅l̂ )2 =

2∑
i,k=1

∅ĝik(∅x̂1,∅x̂2)d∅x′iabd∅x′kab . (2d)
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The absolute intrinsic metric tensor ∅ĝik on the curved ∅IM̂2 in Fig. 1b, given in terms of absolute
intrinsic angles, ∅ψ̂x̂1(∅x̂1) and ∅ψ̂x̂2(∅x̂2(2)), which Eqs. (2c) and (2d) imply is purely diagonal. It is
the following

∅ĝik = sec∅ψ̂x̂i(∅x̂
i) sec∅ψ̂x̂k(∅x̂

k)δik ;

=

(
sec2 ∅ψ̂x̂1(∅x̂1) 0

0 sec2 ∅ψ̂x̂2(∅x̂2) .

)
(3)

Thus the locally flat region of the curved absolute intrinsic metric space ∅IM̂2 bounded by the
orthogonal elementary straight line coordinate intervals, d∅x̂1 and d∅x̂2, about an arbitrary point
(∅x̂1,∅x̂2) of ∅IM̂2, which possesses Euclidean metric tensor δik with respect to a Riemannian
observer located within this locally flat region of ∅IM̂2, possesses the absolute intrinsic sub-Riemannian
metric tensor ∅ĝik with respect to all Euclidean observers in the underlying flat relative proper metric
space IE′2 in Figs. 1a and 1b. Figures 1a and 1b shall be referred to as Figs. 1a&b for brevity
henceforth.

It is however inappropriate for the absolute proper intrinsic metric coordinate intervals, d∅x′1ab and
d∅x′2ab, of ∅IE′2

ab to appear in the absolute intrinsic line element on the curved ∅IM̂2, with respect
to the Euclidean observers in IE′2, as happens in Eqs. (2b) – (2d). Rather the absolute intrinsic
geodesic on ∅IM̂2 must be written in terms of the orthogonal locally straight elementary absolute
intrinsic coordinate intervals, d∅x̂1 and d∅x̂2, on ∅IM̂2 and the absolute intrinsic metric tensor ∅ĝik
of Eq. (3), with respect to all Euclidean observers in IE′2).

In order to be able to write the absolute intrinsic line element (2c) or (2d) in terms of the elementary
absolute intrinsic coordinate intervals, d∅x̂1 and d∅x̂2, on ∅IM̂2 with respect to the Euclidean observers
(in IE′2), the following invariance must obtain.

2∑
i,k

δikd∅x′iabd∅x′kab =
2∑
i,k

δikd∅x̂id∅x̂k . (4)

This is the discrete version (in the graphical approach), of absolute intrinsic local Euclidean invariance
(A∅LEI), at every point on ∅IM̂2 with respect to Euclidean observers in IE′2 in Figs. 1a&b.

The required absolute intrinsic local Euclidean invariance (A∅LEI) (4) on ∅IM̂2 with respect to observers
in IE′2 obtains naturally (or is trivial). It arises from two facts:

1. The absolute intrinsic Euclidean line element (2a) exists at every point on ∅IM̂2, because of the
peculiar feature of the curved absolute intrinsic ‘dimensions’, ∅x̂1 and ∅x̂2, of ∅IM̂2 relative to
their projective straight line absolute proper intrinsic dimensions, ∅x′1ab and ∅x′2ab, respectively
along the horizontal, mentioned above.

2. There is absolutism of the absolute intrinsic metric coordinates of ∅IM̂2 expressed by, d∅x′1ab =
d∅x̂1 and d∅x′2ab = d∅x̂2, with respect to the Euclidean observers in IE′2. These trivial (or
invariant) intrinsic coordinate projection relations, which are possible because ∅x̂1 and ∅x̂2
are absolute, along with Eq. (2a), establishes the absolute intrinsic Euclidean invariance (4) on
∅IM̂2 with respect to Euclidean observers on IE′2 naturally in Figs. 1a&b.

Apart from the absolute intrinsic Euclidean invariance (A∅LEI) on ∅IM̂2 with respect to the Euclidean
observers on IE′2, stated by Eq. (4), the intrinsic coordinate projection relations of system (1), state the
fact of definite curvatures of ∅IM̂2 (or of ∅x̂1 and ∅x̂2) explicitly, which leads to the absolute intrinsic
metric tensor (3) on ∅IM̂2, with respect to the Euclidean observers in IE′2. In other words, both the the
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absolute intrinsic Euclidean invariance (A∅LEI) (4) and the absolute intrinsic sub-Riemannian metric
tensor (3) obtain on the curved ∅IM̂2 with respect to Euclidean observers in IE′2, in the context of the
absolute intrinsic Riemann geometry.

Application of the absolute intrinsic Euclidean invariance (4) then allows us to replace d∅x′iabd∅x′kab
by d∅x̂id∅x̂k in Eqs. (2c) and (2d) yielding the following

(d∅l̂ )2 =

2∑
i,k=1

sec∅ψ̂x̂i(∅x̂
i) sec∅ψ̂x̂k (∅x̂

k)δikd∅x̂id∅x̂k , (5a)

or

(d∅l̂ )2 =

2∑
i,k=1

∅ĝik(∅x̂1,∅x̂2)d∅x̂id∅x̂k . (5b)

The absolute intrinsic line element (5a) or (5b) and the absolute intrinsic metric tensor (3) on ∅IM̂2

admit of easy generalizations to the case of ‘3-dimensional’ absolute intrinsic metric space ∅IM̂3. The
absolute intrinsic geodesic is given at an arbitrary point (∅x̂1,∅x̂2,∅x̂3) on ∅IM̂3, which corresponds
to point (∅x′1ab,∅x′2ab,∅x′3ab) on the underlying projective flat absolute proper intrinsic metric space
∅IE′3

ab, with respect to observers in the relative proper metric space IE′3 as

(d∅l̂ )2 =
3∑

i,k=1

sec∅ψ̂x̂i(∅x̂
i) sec∅ψ̂x̂k(∅x̂

k)δikd∅x̂id∅x̂k ; (6a)

=

3∑
i,k=1

∅ĝik(∅x̂1,∅x̂2,∅x̂3)d∅x̂idx̂k .

(6b)

The absolute intrinsic metric tensor is a 3× 3 diagonal matrix with elements,
sec2 ∅ψ̂x̂1(∅x̂1), sec2 ∅ψ̂x̂2(∅x̂2) and sec2 ∅ψ̂x̂3(∅x̂3), in this case.

In the graphical approach to the absolute intrinsic Riemann geometry of curved absolute intrinsic
metric spaces, once one measures the absolute intrinsic angles ∅ψ̂x̂i(∅x̂i) on ∅IM̂2 or ∅IM̂3, of the
inclinations of the intervals d∅x̂i of the curved absolute intrinsic ‘dimension’ ∅x̂i to the respective
underlying projective straight line absolute proper intrinsic dimensions ∅x′iab at a point along the
curved ∅x̂i. One then obtains the absolute intrinsic metric tensor from Eqs. (6a) and (6b), shown
more explicitly as Eq. (3), at that point. There is no corresponding graphical approach in conventional
Riemann geometry, as far as I know.

The method of synthesizing the absolute intrinsic metric tensor by substituting the numerical values
of, sec2 ∅ψ̂x̂1(∅x̂1), sec2 ∅ψ̂x̂2(∅x̂2) and sec2 ∅ψ̂x̂3(∅x̂3), into the elements of the absolute intrinsic
metric tensor in Eq. (3), within an elementary locally flat neighborhood about every point of ∅IM̂2 or
∅IM̂3, in the absolute intrinsic Riemann geometry, is obviously numerical.

The absolute intrinsic metric tensor of the absolute intrinsic Riemann geometry of a curved absolute
intrinsic metric space ∅IM̂3 is purely diagonal (or is sub-Riemannian) always. This is a consequence
of the peculiar feature of the absolute intrinsic metric spaces described in the second and third
paragraphs of this section namely, all the absolute intrinsic ‘dimensions’ of ∅IM̂3 are curved onto
the absolute intrinsic time ‘dimension’, ∅x̂0 ≡ ∅ĉs∅t̂, along the vertical, such that each curved
absolute intrinsic ‘dimension’ ∅x̂k of ∅IM̂3 lies above its projective straight line absolute proper
intrinsic dimension ∅x′kab in ∅IE′3

ab (along the horizontal). Consequently each curved absolute intrinsic
‘dimension’ ∅x̂k is a plane curve on the vertical ∅x′kab∅x̂0−hyperplane. The cross terms, d∅x̂1d∅x̂2,
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d∅x̂1d∅x̂3 and d∅x̂1d∅x̂3 are therefore naturally precluded in the absolute intrinsic line elements
(5a) or (5b) and (6a) or (6b).

2.1 The Absolute Intrinsic Dimensionless Curvature Parameter of a
Curved ‘One-Dimensional’ Absolute Intrinsic Metric Space on a
Vertical Absolute Proper Intrinsic Space - Absolute Intrinsic Time
Hyperplane

Let us consider a curve s on the horizontal ∅x′1ab∅x′2ab− plane in ∅IE′3
ab shown in Fig. 3(a). The

Eulerian curvature κEul (in honor of Euler), of the curve s at point P in Fig. 3(a) is given from definition,
see chapter 1 of [3], as

dϕ

ds
n̂ =

dt̂

ds
= κEuln̂ , (7)

where t̂ and n̂ are unit tangent vector and unit normal vector respectively, to the curve s at P and the
angle ϕ is the inclination of the curve s to the axis x′ab of ∅IE′2

ab in Fig. 3a . Hence,

dϕ

ds
= | dt̂

ds
| = | κEuln̂ | = κEul . (8)

1

ab

ab
2

ab
2

ab
2

ab
2

ab
1

1
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Figure 3: Deriving the absolute intrinsic curvature parameter of a curved ‘one-
dimensional’ absolute intrinsic metric space on a vertical absolute proper intrinsic
space - absolute intrinsic time plane.

Now let this same plane curve s be on the vertical ∅x′1ab∅x̂0−plane as shown in Fig. 3b, where it has
been re-denoted by ∅x̂1. It now carries a hat label since it is now a ‘one-dimensional absolute intrinsic
metric space (or an absolute intrinsic metric space ‘dimension’) on the ∅x′1ab∅x̂0−plane. Again the
curvature of ∅x̂1 is given by Eq. (7), except that the unit normal vector n̂ projects components
n̂ sin∅ψ̂(x̂1) into the absolute proper intrinsic metric space dimension ∅x′1ab along the horizontal.
Hence the curvature of ∅x̂1 that is valid with respect to observers in (different ‘frames’ in) the
underlying relative proper Euclidean space IE′2 in Fig. 3b is

dt̂

ds
= n̂ sin∅ψ̂(∅x̂1)κEul . (9)
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Let us define the absolute intrinsic Riemannian curvature ∅κ̂Riem(∅x̂1) of the plane curve ∅x̂1
(which is a one-dimensional absolute intrinsic Riemannian metric space), at an arbitrary point P (with
arbitrary absolute intrinsic coordinate ∅x̂1) in Fig. 3b as

∅κ̂Riem(∅x̂1) = | dt̂

ds
| = | n̂ | sin∅ψ̂(∅x̂1)κEul , (10)

or
∅κ̂Riem(∅x̂1) = sin∅ψ̂(∅x̂1)κEul . (11)

The dimensionless intrinsic parameter sin∅ψ̂(∅x̂1) shall be referred to as absolute intrinsic curvature
parameter at an arbitrary point ∅x̂1 along the curved ‘one-dimensional’ absolute intrinsic metric space
∅x̂1 and denoted by ∅k̂(∅x̂1). It is an absolute intrinsic parameter since ∅x̂1 is a ‘one-dimensional’
absolute intrinsic metric space (or a ‘dimension’ of ‘three-dimensional’ absolute intrinsic metric space
∅IM̂3). Hence Eq. (11) shall be re-written as follows

∅κ̂Riem(∅x̂1) = ∅k̂(∅x̂1)κEul , (12)

where
∅k̂(∅x̂1) = sin∅ψ̂(∅x̂1) . (13)

Since the absolute intrinsic angle ∅ψ̂ has constant zero value along plane curves in the underlying
flat absolute proper intrinsic metric space ∅IE′3

ab, the absolute intrinsic Riemannian curvature of a
plane curve on ∅IE′3

ab, such as in Fig. 3a is zero.

The absolute intrinsic curvature parameters, ∅k̂x̂1 and ∅k̂x̂2 , at points ∅x̂1 and ∅x̂2 of the curved
absolute intrinsic ‘dimensions’, ∅x̂1 and ∅x̂2, respectively in Figs. 1a&b, are given as follows by virtue
of definition (13),

∅k̂x̂1(∅x̂1) = sin∅ψ̂x̂1(∅x̂1)
∅k̂x̂2(∅x̂2) = sin∅ψ̂x̂2(∅x̂2)

}
(14)

Since the absolute intrinsic angle ∅ψ̂x̂i measures the inclination of the curved absolute intrinsic
‘dimension’ ∅x̂ i on the vertical ∅x′iab∅x̂0−hyperplane, relative to the underlying flat absolute proper
intrinsic space ∅IE′3

ab (as a hyper-surface) along the horizontal, it has the same value with respect to
all ‘frames’ (or all observers) in the underlying flat relative proper Euclidean 3-space IE′3 (also as a
hyper-surface) along the horizontal. Hence the absolute intrinsic curvature parameter ∅k̂x̂ i has the
same value with respect to all ‘frames’ (or all observers) in the underlying flat relative (or physical)
proper Euclidean 3-space IE′3.

2.2 Expressing the Components of the Absolute Intrinsic Metric Tensor
in Terms of Absolute Intrinsic Curvature Parameters in Absolute
Intrinsic Riemann Geometry

One obtains the following from the components of the absolute intrinsic metric tensor in Eq. (3),

∅ĝ11 = sec2 ∅ψ̂x̂1(∅x̂1) = (1− sin2 ∅ψ̂x̂1(∅x̂1))−1 ;

∅ĝ22 = sec2 ∅ψ̂x̂2(∅x̂2) = (1− sin2 ∅ψ̂x̂2(∅x̂2))−1 ;

∅ĝ12 = ∅ĝ21 = 0 .

(15)

Then by using system (14) in system (15), the components of the absolute intrinsic metric tensor are
given in terms of absolute intrinsic curvature parameters as

∅ĝ11 = (1−∅k̂x̂1(∅x̂1)2)−1 ;

∅ĝ22 = (1−∅k̂x̂2(∅x̂2)2)−1 ;

∅ĝ21 = ∅ĝ12 = 0 .

(16)
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Hence,

∅ĝik =


1

1−∅k̂x̂1(∅x̂)2
0

0
1

1−∅k̂x̂2(∅x̂2)2

 . (17)

Extension to the case of a ‘3-dimensional’ absolute intrinsic metric space ∅IM̂3 is straight forward, in
which case the 2× 2 diagonal matrix of Eq. (17) becomes a 3× 3 diagonal matrix.

Thus the absolute intrinsic metric tensor has parametric dependence on the square of the absolute
intrinsic curvature parameters in absolute intrinsic Riemann geometry. The absolute intrinsic curvature
parameters shall ultimately be related to the absolute intrinsic parameter(s) of the absolute intrinsic
metric force field that establishes absolute intrinsic Riemann geometry with further development.

2.3 Recovering Local Intrinsic Euclidean Line Element on a Curved
Absolute Intrinsic Metric Space with Respect to Euclidean
Observers

The flat ‘two-dimensional’ absolute intrinsic metric space ∅ÎE2 underlying the flat ‘two-dimensional’
absolute metric space ÎE2 (like Fig. 7 of part one of this paper [1], drawn for ∅ÎE3 and ÎE3), existed
prior to the evolution of curved ∅IM̂2 and its underlying flat ∅IE′2

ab and IE′2 in Figs. 1a&b of this article.
The absolute intrinsic Euclidean line element (2a) obtains at every point of the flat ∅ÎE2 prior to the
evolving into the curved ∅IM̂2 in the geometry of Figs. 1a&b. Figure 7 of [1] is reproduced as Fig. 4 of
this article.

flat absolute intrinsic metric ‘3-space’

flat absolute metric ‘3-space’

‘observers’

x =cst

x = cs t

:

:

Figure 4: Flat ‘3-dimensional’ absolute metric space - absolute metric time is
underlay by flat ‘3-dimensional’ absolute intrinsic metric space - absolute intrinsic
metric time; Fig. 7 of [1].

On the other hand, the absolute intrinsic sub-Riem- annian line element (2c) and (2d) obtains on
∅IM̂2 with respect to Euclidean observers in the underlying flat relative proper metric space IE′2 in
Figs. 1a and 1b. An extra term shall be added to the right-hand side of Eq. (2c) or (2d) in order to
recover the absolute intrinsic Euclidean line element locally on ∅IM̂2 with respect to observers in IE′2

in Figs. 1a&b, and the result shall be extended to ∅IM̂3 in this sub-section.
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One observes from Figs. 1a&b that the interval d∅x̂1 of the curved absolute intrinsic ‘dimension’
∅x̂1 projects component d∅x′1ab into the underlying absolute proper intrinsic metric space dimension
∅x′1ab of ∅IE′2

ab and a component d∅x̂01 (shown as ∆∅x̂01), into the vertical absolute intrinsic time
‘dimension’ ∅x̂0. Similarly the interval d∅x̂2 of the curved absolute intrinsic metric space ‘dimension’
∅x̂2 of ∅IM̂2, projects component d∅x′2ab into the underlying absolute proper intrinsic metric space
dimension ∅x′2ab and component d∅x̂02 (shown as ∆∅x̂02), into the vertical absolute intrinsic metric
time ‘dimension’ ∅x̂0.

The components, d∅x′1ab and d∅x′2ab, projected into the underlying flat absolute proper intrinsic metric
space ∅IE′2

ab have been made use of in deriving the absolute intrinsic metric line element (2c) or (2d)
(which become converted to Eq. (5a) or (5b) by virtue of the absolute intrinsic Euclidean invariance
(4)), with respect to observers in the relative proper metric space IE′2, while the components d∅x̂01
and d∅x̂02 have been left out. This is done because the absolute time and absolute intrinsic time
‘dimensions’ along the vertical, being not curved from their vertical position, cannot appear in the
absolute intrinsic line element on the curved ∅IM̂2. The absolute intrinsic time ‘dimension’ can at best
appear in the Gaussian form of absolute intrinsic line element on ∅IM̂2, with respect to observers in
the relative proper physical Euclidean 2-space IE′2 as

d∅ŝ2 = (d∅x̂0)2 −
2∑

i,k=1

∅ĝikd∅x′iabd∅x′kab , (18a)

which by virtue of A∅LEI of Eq. (4) becomes,

d∅ŝ2 = (d∅x̂0)2 −
2∑

i,k=1

∅ĝikd∅x̂ id∅x̂k . (18b)

It is this Gaussian form that shall often be written on ∅IM̂2 with respect to observers in IE′2 in
Figs. 1a&b of this article.

The absolute intrinsic coordinate intervals d∅x̂01 and d∅x̂02 projected along ∅x̂0 cannot appear
even in the Gaussian form (18b) with respect to observers in the relative proper Euclidean 2-space
IE′2. They are metrically elusive to these observers and they shall be referred to as ‘non-metric’
components consequently. On the other hand, the components d∅x′1ab and d∅x′2ab projected into the
underlying flat absolute proper intrinsic metric space ∅IE′2

ab, which have been used in deriving the
absolute intrinsic metric line element (2c) or (2d), shall be referred to as metric components with
respect to observers in the relative proper metric Euclidean 2-space IE′2.

Although the ‘non-metric’ absolute intrinsic coordinate intervals, d∅x̂01 and d∅x̂02, projected along
the absolute intrinsic time ‘dimension’ ∅x̂0 are elusive and must be disregarded when deriving
absolute intrinsic metric line element on the curved ‘two-dimensional’ absolute intrinsic metric space
∅IM̂2, with respect to observers in IE′2 in Figs. 1a&b, as done in obtaining the absolute intrinsic line
element (2c) and (2d) and the absolute intrinsic sub-Riemannian metric tensor (17), let us temporarily
put both the metric components, d∅x′1ab and d∅x′2ab, and the ‘non-metric’ components, d∅x̂01 and
d∅x̂02, into consideration in order to recover the absolute intrinsic Euclidean line element and the
absolute intrinsic Euclidean metric tensor on ∅IM̂2 with respect to observers in IE′2. Thus let us
apply the Pythagorean formula to triangles ABC and DEF in Figs. 1a&b to have the following

(d∅x̂1)2 = (d∅x′1ab)2 + (d∅x̂01)2 and (d∅x̂2)2 = (d∅x′2ab)2 + (d∅x̂02)2 . (19)

But d∅x̂01 and d∅x̂02 are given in terms of absolute intrinsic angles, ∅ψ̂x̂1(∅x̂1) and ∅ψ̂x̂2(∅x̂2),
and intervals, d∅x̂1 and d∅x̂2, respectively as

dx̂01 = d∅x̂1 sin∅ψ̂x̂1(∅x̂
1) and d∅x̂02 = d∅x̂2 sin∅ψ̂x̂2(∅x̂

2) . (20)
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The following obtain from systems (19) and (20)

(d∅x′1ab)2 = (d∅x̂1)2 − (d∅x̂1)2 sin2 ∅ψ̂x̂1(∅x̂1);
(d∅x′2ab)2 = (d∅x̂2)2 − (d∅x̂2)2 sin2 ∅ψ̂x̂2(∅x̂2) .

(21)

And from system (21) Euclidean line element is constructed in terms of the components, d∅x′1ab and
d∅x′2ab, projected into ∅IE′2

ab as

(d∅l′)2 = (d∅x′1ab)2 + (d∅x′2ab)2

= (d∅x̂1)2 − (d∅x̂1)2 sin2 ∅ψ̂x̂1(∅x̂
1) + (d∅x̂2)2 −

(d∅x̂2)2 sin2 ∅ψ̂x̂2(∅x̂
2) . (22)

Then by using, d∅x̂i = d∅x′iab sec∅ψ̂x̂i(∅x̂i); i = 1, 2, which follows from system (1), Eq. (22)
becomes the following

(d∅l′)2 = (d∅x′1ab)2
(
sec2 ∅ψ̂x̂1(∅x̂

1) − tan2 ∅ψ̂x̂1(∅x̂
1)
)

+ d∅x′2ab)2
(
sec2 ∅ψ̂x̂2(∅x̂

2) − tan2 ∅ψ̂x̂2(∅x̂
2)
)
, (23)

which upon using sec2 ∅ψ − tan2 ∅ψ = 1, gives (d∅l′)2 = (d∅x′1ab)2 + (d∅x′2ab)2.
Thus by considering the ‘non-metric’ components, d∅x̂01 and d∅x̂02, projected into the absolute
intrinsic time ‘dimension’ ∅x̂0 along the vertical along with the metric components, d∅x′1ab and d∅x′2ab,
projected into the absolute proper intrinsic metric space ∅IE′2

ab along the horizontal in Figs. 1a&b, in
constructing absolute intrinsic line element on ∅IM̂2, with respect to observers in the relative proper
metric space IE′2, the absolute intrinsic Euclidean line element at every point on the flat absolute
intrinsic metric space ∅ÎE2 that evolves into the curved ∅IM̂2 is recovered at every point on ∅IM̂2,
with respect to observers in IE′2.

The absolute intrinsic Euclidean invariance (A∅LEI), which obtains naturally on ∅IM̂2 with respect to
observers in IE′2, stated as Eq. (4) has thus been constructed (or recovered) by putting the projective
‘non-metric’ intrinsic coordinate intervals, d∅x̂01 and d∅x̂02, and the projective metric intrinsic coordinate
intervals, d∅x′1ab and d∅x′2ab, into consideration in constructing the absolute intrinsic line element on
∅IM̂2.

2.4 Deriving a tensorial statement for absolute intrinsic local Euclidean
invariance on absolute intrinsic Riemannian metric spaces

Let us by virtue of absolute intrinsic local Euclidean invariance (A∅LEI) on ∅IM̂2, when the projective
‘non-metric’ intrinsic coordinate intervals d∅x̂01 and d∅x̂02 and the projective metric intrinsic coordinate
intervals, d∅x′1ab and d∅x′2ab, are put into consideration in constructing the absolute intrinsic line
element on ∅IM̂2, established above, and written as Eq. (4) earlier, replace the elementary absolute
proper intrinsic coordinate intervals, d∅x′1ab and d∅x′2ab, by absolute intrinsic coordinate intervals,
d∅x̂1 and d∅x̂2, respectively, at the right-hand side of Eq. (23) to have

(d∅l′)2 = (d∅x′1ab)2 + (d∅x′2ab)2 = (d∅x̂1)2
(
sec2 ∅ψ̂x̂1(∅x̂

1) − tan2 ∅ψ̂x̂1(∅x̂
1)
)

+ (d∅x̂2)2
(
sec2 ∅ψ̂x̂2(∅x̂

2) − tan2 ∅ψ̂x̂2(∅x̂
2)
)
. (24)

Equation (24) states formally the absolute intrinsic local Euclidean invariance,

(d∅x′1ab)2 + (d∅x′2ab)2 = (dx̂1)2 + (dx̂2)2 , or (d∅l′ab)2 = d∅l̂2 ,

50



Joseph; PSIJ, 25(10): 39-77, 2021; Article no.PSIJ.79626

on ∅IM̂2, which has also been stated by the invariance (4), in absolute intrinsic Riemann geometry.
Thus the absolute intrinsic line element recovered at every point of ∅IM̂2 with respect to observers
in IE′2, when both the projective metric and ‘non-metric’ intrinsic coordinate intervals are put into
consideration is the following

(d∅l̂)2 = (d∅x̂1)2
(
sec2 ∅ψ̂x̂1(∅x̂

1) − tan2 ∅ψ̂x̂1(∅x̂
1)
)

+ (d∅x̂2)2
(
sec2 ∅ψ̂x̂2(∅x̂

2) − tan2 ∅ψ̂x̂2(∅x̂
2)
)
. (25)

It is for the purpose of recovering the absolute intrinsic Euclidean line element (25) on the curved
absolute intrinsic metric space ∅IM̂2 with respect to every observer in the underlying flat relative (or
physical) proper metric space IE′2 in Figs. 1a&b that the ‘non-metric’ intrinsic coordinate intervals,
d∅x̂01 and d∅x̂02, projected along the absolute intrinsic time ‘dimension’ ∅x̂0 along the vertical have
been considered along with the intrinsic metric coordinate intervals, d∅x′1ab and d∅x′2ab, projected into
∅IE′2

ab along the horizontal in that figure, in deriving the absolute intrinsic line element in Eq. (19)
– (23). However observers in the relative proper Euclidean space IE′2 must actually make use of
the metric intrinsic coordinate intervals, d∅x′1ab and d∅x′2ab, projected into ∅IE′2

ab solely in deriving
the absolute intrinsic sub-Riemannian metric line element (2b) or (5b) on ∅IM̂2 with respect to
themselves, since the ‘non-metric’ intrinsic coordinate intervals are metrically elusive to these observers.

Now, by subtracting the absolute intrinsic metric line element (2b) (obtained by using the metric
intrinsic coordinate intervals only) from the absolute intrinsic Euclidean line element (24), one obtains
the absolute intrinsic line element (d∅l̂nm)2 on the ‘non-metric’ sub-space formed by the ‘non-metric’
components d∅x̂01 and d∅x̂02 projected into the absolute intrinsic time ‘dimension’ ∅x̂0 along the
vertical in Figs. 1a&b as

(d∅l̂nm)2 = tan2 ∅ψ̂x̂1(∅x̂
1)(d∅x′1ab)2 + tan2 ∅ψ̂x̂2(∅x̂

2)(d∅x′2ab)2 . (26)

Observe that (d∅l̂nm)2 vanishes for, ∅ψ̂x̂1(∅x̂1) = ∅ψ̂x̂2(∅x̂2) = 0, which will be the case if the
absolute intrinsic ‘dimensions’ ∅x̂1 and ∅x̂2 were along the horizontal in Figs. 1a&b. That is, if the
∅x̂1 and ∅x̂2 were not curving onto the absolute intrinsic time ‘dimension’ ∅x̂0 along the vertical in
that figure.

Let us rewrite the line element (d∅l̂nm)2 of Eq. (26) as follows

(d∅l̂nm)2 =

2∑
i,k=1

tan2 ∅ψ̂x̂i(∅x̂
i) tan2 ∅ψ̂x̂k (∅x̂

k)δikd∅x′iabd∅x′kab . (27)

Equation (27) is the same as the following by virtue of the absolute intrinsic local Euclidean invariance
(4) in absolute intrinsic Riemann geometry,

(d∅l̂nm)2 =

2∑
i,k=1

tan2 ∅ψ̂x̂i(∅x̂
i) tan2 ∅ψ̂x̂k (∅x̂

k)δikd∅x̂id∅x̂k . (28)

Then let us introduce another absolute intrinsic tensor to be denoted by ∅R̂ik and rewrite Eq. (28) as

(d∅l̂nm)2 =

2∑
i,k=1

∅R̂ikd∅x̂id∅x̂k . (29)

where
∅R̂ik = tan2 ∅ψ̂x̂i(∅x̂

i) tan2 ∅ψ̂x̂k(∅x̂
k)δik , (30)

or

∅R̂ik =

(
tan2 ∅ψ̂x̂1(∅x̂1) 0

0 tan2 ∅ψ̂x̂2(∅x̂2)

)
. (31)
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Again the absolute intrinsic tensor ∅R̂ik vanishes for absolute intrinsic angles, ∅ψ̂x̂i(∅x̂i) = 0; i =
1, 2, which will be the case if none of the ‘dimensions’, ∅x̂i; i = 1, 2, was curving toward the absolute
intrinsic ‘dimension’ ∅x̂0 along the vertical in Figs. 1a&b. Certainly the absolute intrinsic tensor ∅R̂ik
conveys information about the absolute intrinsic curvature of the ‘dimensions’ of the absolute intrinsic
Riemannian metric space ∅IM̂2.

The absolute intrinsic local Euclidean line element (25) on the absolute intrinsic metric space ∅IM̂2

can then be written in terms of the absolute intrinsic metric tensor ∅ĝik and the new absolute intrinsic
(curvature) tensor ∅R̂ik as

(d∅l̂ )2 =

2∑
i,k=1

(∅ĝik −∅R̂ik)d∅x̂id∅x̂k =

2∑
i,k=1

δikd∅x̂id∅x̂k . (32)

The absolute intrinsic Euclidean line element (32) obtains at every point on ∅IM̂2, once the projective
‘non-metric’ absolute intrinsic coordinate intervals, d∅x̂01 and d∅x̂02, and the projective absolute
proper intrinsic metric coordinate intervals, d∅x′1ab and d∅x′2ab, are put into consideration in constructing
the absolute intrinsic metric line element on ∅IM̂2 with respect to observers in IE′2 in Figs. 1a&b.
Equation (32) can therefore be said to express absolute intrinsic local Euclidean invariance on ∅IM̂2

with this condition. Thus the tensorial statement of absolute intrinsic local Euclidean invariance
(A∅LEI) on a curved ‘two-dimensional’ absolute intrinsic metric space ∅IM̂2 — a ‘two-dimensional’
absolute intrinsic Riemannian metric space — in Figs. 1a&b, which is also valid for ∅IM̂3, with respect
to Euclidean observers in the relative proper intrinsic metric space IE′2 or IE′3, is the following

∅ĝik −∅R̂ik = δik (A∅LEI) . (33)

This is a tensorial statement of absolute intrinsic local Euclidean invariance on the curved ∅IM̂2, with
respect to Euclidean observers in IE′2, stated by Eq. (4) earlier, which is required in order re-write the
absolute intrinsic Euclidean line (2c) or (2d) as the the absolute intrinsic line element (5a) or (5b).

2.5 Deriving a second absolute intrinsic metric tensor equation (“the
field equations”) in absolute intrinsic Riemann geometry

Now let us introduce a 2× 2 absolute intrinsic matrix (or scalar) ∅Ĉ through the following relation,

∅R̂ik −∅Ĉ∅ĝik = 0 . (34)

Then from the definitions of the absolute intrinsic tensors ∅ĝik and ∅R̂ik in Eq. (3) and (31), the
absolute intrinsic matrix ∅Ĉ is given in the case of ‘2-dimensional’ absolute intrinsic Riemannian
metric space ∅IM̂2 as

∅Ĉ =

(
sin2 ∅ψ̂x̂1(∅x̂1) 0

0 sin2 ∅ψ̂x̂2(∅x̂2)

)
. (35)

And from system (14), the matrix ∅Ĉ is given in terms of absolute intrinsic curvature parameters as

∅Ĉ =

(
∅k̂x̂1(∅x̂1)2 0

0 ∅k̂x̂2(∅x̂2)2

)
. (36)

Equations (35) and (36) become the following respectively for ‘3-dimensional’ absolute intrinsic Riemannian
metric space ∅IM̂3

∅Ĉ =

sin2 ∅ψ̂x̂1(∅x̂1) 0 0

0 sin2 ∅ψ̂x̂2(∅x̂2) 0

0 0 sin2 ∅ψ̂x̂3(∅x̂3)


(37)
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and

∅Ĉ =

 ∅k̂x̂1(∅x̂1)2 0 0

0 ∅k̂x̂2(∅x̂2)2 0

0 0 ∅k̂x̂3(∅x̂3)2

 (38)

Now multiplying through Eq. (34) from the left by ∅ĝik one obtains the following

∅ĝik∅R̂ik −∅ĝik∅Ĉ∅ĝik = 0 . (39)

Then by applying the known rules for raising and lowering of the indices of a tensor in Riemann
geometry namely, gαβRαδ = Rβδ and gαβgαγ = δβγ , so that ∅ĝik∅R̂ik = ∅R̂ i

i and ∅ĝik∅ĝik = δii ,
Eq. (39) simplifies as

∅R̂ i
i −∅Ĉ = 0 , or ∅Ĉ = ∅R̂ i

i . (40)

Thus Eq. (34) can be re-written in terms of ∅R̂ i
i as

∅R̂ik −∅R̂ i
i∅ĝik = 0 . (41)

In a situation where

sin2 ∅ψ̂x̂1(∅x̂
1)= sin2 ∅ψ̂x̂2(∅x̂

2)= sin2 ∅ψ̂x̂3(∅x̂
3) ≡ sin2 ∅ψ̂ ,

or ∅k̂x̂1(∅x̂
1)=∅k̂x̂2(∅x̂

2) = ∅k̂x̂3(∅x̂
3) ≡ ∅k̂ ,

in Eq. (38), as will be the case for an isotropic absolute intrinsic metric space ∅IM̂2 or ∅IM̂3, the
purely diagonal matrix ∅R̂ i

i or ∅Ĉ can be replaced by a number namely, Tr∅Ĉ/n or Tr∅R̂ i
i/n in

Eq. (34) or (41) to have

∅R̂ik −
1

n
Tr∅Ĉ∅ĝik = 0 , (42)

or
∅R̂ik −

1

n
Tr∅R̂ i

i∅ĝik = 0 . (43)

Equation (43) becomes its familiar form in conventional Riemann geometry for n = 2 namely,

∅R̂ik −
1

2
∅R̂∅ĝik = 0 . (44)

where, ∅R̂ (= Tr∅R̂ i
i), is the sum of the equal entries of the diagonal matrix ∅R̂ i

i or ∅Ĉ. Obviously
the absolute intrinsic tensor ∅R̂ik defined by Eq. (31) (referred to as absolute intrinsic curvature
tensor earlier), is the absolute intrinsic Ricci tensor in absolute intrinsic Riemann geometry (of curved
absolute intrinsic metric spaces).

It is to be noted that Eqs. (42), (43) or (44) have been written for the restrictive situation in which all
the curved absolute intrinsic ‘dimensions’ ∅x̂q of ∅IM̂3 have identical absolute intrinsic curvatures
or identical absolute intrinsic curvature parameters, ∅k̂x̂q (∅x̂q) = ∅k̂; q = 1, 2, 3, at each point of
∅IM̂3, as stated earlier. Interestingly it is this restrictive situation that pertains to isotropic absolute
intrinsic metric spaces, which shall be of relevance in absolute intrinsic Riemann geometry ultimately.
However situations where the matrix ∅R̂ i

i or ∅Ĉ is a diagonal matrix but, ∅k̂xi ̸= ∅k̂xk , are
admissible in general.

For the restrictive situation,

∅k̂x̂1(∅x̂
1) = ∅k̂x̂2(∅x̂

2) = ∅k̂x̂3(∅x̂
3) = ∅k̂ ,

in Eq. (38), let us re-write Eq. (42), (43) or (44) in the following final form in which it shall be found
most useful for application later,

∅R̂ik −∅k̂2∅ĝik = 0 . (45)
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where ∅k̂ is the identical absolute intrinsic curvature parameter of all the absolute intrinsic ‘dimensions’
of ∅IM̂3, whose value varies from point to point on ∅IM̂3.

What have been achieved to this point in this section is the formulation of the absolute intrinsic
Riemann geometry of the curved absolute intrinsic metric space ∅IM̂3 — an absolute intrinsic Riema-
nnian metric space — relative to 3-observers in the underlying flat relative proper (or physical) metric
3-space IE′3. Two important absolute intrinsic metric tensor equations (33) and (45) have been
derived the in the process. While Eq. (33) is a tensorial statement of absolute intrinsic local Euclidean
invariance (A∅LEI) on ∅IM̂3 with respect to Euclidean observers in IE′3, as stated earlier, the corres-
ponding significance of Eq. (45), which shall sometimes be referred to as “field equations”, shall be
derived elsewhere with further development.

Equations (33) and (45) apply on the curved absolute intrinsic metric space ∅IM̂3 with respect to
every Euclidean observer in IE′3. They must be solved algebraically to obtain the absolute intrinsic
metric tensor ∅ĝik and absolute intrinsic Ricci tensor ∅R̂ik on ∅IM̂3 with respect to these 3-observers
in IE′3 respectively as

∅ĝik =

 (1−∅k̂2)−1 0 0

0 (1−∅k̂2)−1 0

0 0 (1−∅k̂2)−1

 (46)

and

∅R̂ik =



∅k̂2

1−∅k̂2
0 0

0
∅k̂2

1−∅k̂2
0

0 0
∅k̂

1−∅k̂2

 , (47)

where it is to be noted that the situation in which all the absolute intrinsic ‘dimensions’ of ∅IM̂3

possess identical absolute intrinsic curvature parameter ∅k̂ that varies from pint to point on ∅IM̂3,
which pertains to isotropic absolute intrinsic metric spaces that shall be the only relevant situation in
absolute intrinsic Riemann geometry, has been considered.

The ‘non-metric’ component ∅R̂ikd∅x̂ id∅x̂kδik of the absolute intrinsic Euclidean line element (32)
on ∅IM̂2 or ∅IM̂3 is metrically elusive to observers in the underlying IE′2 or IE′3. Consequently ∅IM̂3

possesses unique absolute intrinsic sub-Riemannian metric tensor ∅ĝik of Eq. (46) with respect to
these Euclidean observers, from the point of view of absolute intrinsic metric theories of physics.
Hence the Euclidean observers write absolute intrinsic line element on ∅IM̂3 in terms of ∅ĝik in the
Gaussian form involving isotropic absolute intrinsic coordinate intervals as Eq. (18b), which is given
explicitly as

d∅ŝ2 = (d∅x̂0)2 − (d∅x̂1)2 + (d∅x̂2)2 + (d∅x̂3)2

1−∅k̂2
. (48)

The two steps of formulation of the absolute intrinsic Riemann geometry of curved absolute intrinsic
metric spaces (or of curved absolute metric nospaces), isolated in part one of this paper [1] have
been accomplished in this section namely,

1. derivation of the projections of the curved absolute intrinsic ‘dimensions’ of a curved absolute
intrinsic metric space ∅IM̂3 into its underlying projective absolute proper intrinsic metric space
∅IE′3

ab and

2. formulation of absolute intrinsic Riemann geometry on the curved absolute intrinsic metric
space from the projections.
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The derived projection relations (1) for ∅IM̂2,
which is directly extendable to ∅IM̂3, with respect
to Euclidean observers in the underlying relative
proper Euclidean metric 3-space IE′3, is the
accomplish-ment of step one. On the other
hand, the derivation of the two absolute intrinsic
tensor equations (33) and (45) by starting from
system (19) and the derivations of the absolute
intrinsic metric tensor (45), absolute intrinsic
Ricci tensor (47) and the absolute intrinsic line
element (48), by solving equations (33) and (45)
simultaneously, is accomplishment of step two.
Let us proceed to the accomplishment of the
two steps of formulation of absolute intrinsic
Riemann geometry on curved absolute intrinsic
metric space, in a situation where two and a
larger number of absolute intrinsic metric spaces
co-exist, or are superposed, in the next sub-
section.

2.6 Superposition of absolute
intrinsic Riemannian metric
spaces

Although superposition of Riemann spaces may
be unknown or meaningless in conventional
Riemann geometry, it is definitely of important
relevance in absolute intrinsic Riemann
geometry. The ‘two-dimensional’ absolute
intrinsic Riemannian metric space ∅IM̂2 in
Figs. 1a&b, to be re-denoted by ∅IM̂2

(1), with
curved absolute intrinsic metric ‘dimensions’ ∅x̂1
and ∅x̂2 in Figs. 1a&b, is curved relative to its
underlying projective flat absolute proper intrinsic
metric space ∅IE′2

ab. If another ‘two-dimensional’
absolute intrinsic Riemannian metric space
∅IM̂2

(2) with curved absolute intrinsic ‘dimensions’
∅ŷ1 and ∅ŷ2, say, is brought to the location of
∅IM̂2

(1), so that ∅IM̂2
(1) and ∅IM̂2

(2) co-exist, then
∅IM̂2

(2) will be curved relative to IM̂2
(1).

The resultant absolute intrinsic curvature
parameter ∅k̂ of the absolute intrinsic space
IM̂2

(2) relative to the underlying flat absolute
proper intrinsic metric space ∅IE′2

ab can then
be derived, and the resultant absolute intrinsic
metric tensor ∅ĝik, the resultant absolute
intrinsic Ricci tensor ∅R̂ik and the resultant
absolute intrinsic line element d∅ŝ2 can be

written straight away in terms of ∅k̂, by simply
replacing ∅k̂ by ∅k̂ in equations (45), (46), (47)
and (48). The resultant projections into ∅IE′2

ab of
the curved absolute intrinsic metric ‘dimensions’
of IM̂2

(2) can also be derived. The procedure can
be extended to situations where three, four and
larger number of absolute intrinsic metric spaces
coexist (or are superposed).

2.6.1 The resultant absolute
intrinsic metric tensor and
resultant absolute intrinsic
Ricci tensor when two or a
larger number of ‘parallel’
absolute intrinsic metric
spaces coexist

Let us consider a pair of ‘two-dimensional’
absolute intrinsic metric spaces denoted by
∅IM̂2

(1) and ∅IM̂2
(2), with absolute intrinsic

‘dimensions’, ∅x̂1, ∅x̂2 and ŷ1, ŷ2, respectively.
Let these ‘dimensions’ of the two absolute
intrinsic metric spaces be curved relative to
the same absolute proper intrinsic metric
dimensions, ∅x′1ab and ∅x′2ab, respectively, of their
underlying global flat absolute proper intrinsic
metric space ∅IE′2

ab prior to their superposition.
In other words, as the two absolute intrinsic
metric spaces existed at their separate locations
before superposing them, the following intrinsic
coordinate transformations existed,

∅x′1ab = f1(∅x̂1) ; ∅x′2ab = f2(∅x̂2) ;
∅x′1ab = g1(∅ŷ1) ; ∅x′2ab = g2(∅ŷ2) .

}
(49)

The absolute intrinsic metric spaces, ∅IM̂2
(1) and

∅IM̂2
(2), in the situation of system (49), in which

∅x̂1 of ∅IM̂2
(1) and ŷ1 of ∅IM̂2

(2) are both curved
relative to ∅x′1ab of ∅IE′2

ab and ∅x̂2 of ∅IM̂2
(1)

and ∅ŷ2 of ∅IM̂2
(2) are both curved relative to

∅x′2ab of ∅IE′2
ab at their different locations, as

illustrated in Figs. 5a and 5b, shall be referred
to as parallel absolute intrinsic metric spaces
(or parallel absolute intrinsic Riemannian metric
spaces).
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Figure 5: A pair of ‘parallel’ curved ‘two-dimensional’ absolute intrinsic metric
spaces (or absolute intrinsic Riemannian metric spaces) are underlay by the global
two-dimensional flat absolute proper intrinsic metric space and flat relative proper
(or physical) metric 2-space (not shown) prior to their superposition.

Now let us superpose the absolute intrinsic
metric spaces ∅IM̂2

(1) and ∅IM̂2
(2) in Figs. 5a

and 5b by bringing ∅IM̂2
(2) to the location of

∅IM̂2
(1). The origin P of ∅IM̂2

(2) does not have
to coincide with the origin O of ∅IM̂2

(1) in doing
this. Since the curved absolute intrinsic metric
‘dimensions’ ∅x̂1 of ∅IM̂2

(1) and ∅ŷ1 of ∅IM̂2
(2)

both lie above the same absolute proper intrinsic
metric dimension ∅x′1ab of ∅IE′2

ab (and dimension
x ′1 of IE′2), and the curved absolute intrinsic
metric ‘dimensions’ ∅x̂2 of ∅IM̂2

(1) and ∅ŷ2 of
∅IM̂2

(2) both lie above the same absolute proper
intrinsic metric dimension ∅x′2ab of ∅IE′2

ab (and
dimension x ′2 of IE′2) prior to their superposition,
the curved absolute intrinsic metric ‘dimension’
ŷ1 will be naturally curved relative to the curved
absolute intrinsic metric ‘dimension’ ∅x̂1 on
the vertical ∅x′1ab∅x̂0−plane, and the curved
absolute intrinsic metric ‘dimension’ ŷ2 will be
naturally curved relative to the curved absolute
intrinsic metric ‘dimension’ ∅x̂2 on the vertical
∅x′2ab∅x̂0−plane, upon bringing them to the

same location (or upon superposing them), as
illustrated in Fig. 6. This case shall be referred
to as superposition of parallel absolute intrinsic
Riemannian metric spaces.

The point ∅ŷ1 measured from point P of ∅IM̂2
(2)

lies above point ∅x̂1 measured from point O
of ∅IM̂2

(1), where points P and O may not be
coincident, and they both lie vertically above point
∅x′1ab (1) of ∅IE′2

ab (and point x ′1 of IE′2). Likewise
point ∅ŷ2 of ∅IM̂2

(2) lies vertically above point
∅x̂2 of ∅IM̂2

(1), and they both lie vertically above
point ∅x′2ab (1) of ∅IE′2

ab (and point x ′2 of IE′2).

The curved absolute intrinsic metric space
‘dimension’ ∅ŷ1 has known absolute intrinsic
curvature parameter ∅k̂ŷ1(∅ŷ1) at point
∅ŷ1 relative to ∅IE′2

ab, and the curved
absolute intrinsic metric ‘dimension’ ∅ŷ2 has
known absolute intrinsic curvature parameter
∅k̂ŷ2(∅ŷ2) at point ∅ŷ2 relative to ∅IE′2

ab from
Fig. 5b.
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Figure 6: Two co-existing parallel absolute intrinsic Riemannian metric spaces.

Likewise the curved absolute intrinsic metric ‘dimension’ ∅x̂1 has known absolute intrinsic curvature
parameter ∅k̂x̂1(∅x̂1) at point ∅x̂1 relative to ∅IE′2

ab and the curved absolute intrinsic metric ‘dimension’
∅x̂2 has known absolute intrinsic curvature parameter ∅k̂x̂2(∅x̂2) at point ∅x̂2 relative to ∅IE′2

ab from
Fig. 5a.

We wish to obtain the resultant absolute intrinsic curvature parameters of the curved absolute intrinsic
metric ‘dimension’ ∅ŷ1 at point ∅ŷ1 and of the curved absolute intrinsic metric ‘dimension’ ∅ŷ2 at
point ∅ŷ2 relative to relative to ∅IE′2

ab, or with respect to observers in IE′2, when the absolute intrinsic
metric space ∅IM̂2

(2) is curved relative to the absolute intrinsic metric space ∅IM̂2
(1) as illustrated in

Fig. 6, and then write the resultant absolute intrinsic metric tensor, resultant absolute intrinsic Ricci
tensor and resultant absolute intrinsic line element at an arbitrary point (∅ŷ1,∅ŷ2) of ∅IM̂2

(2), in terms
of the resultant absolute intrinsic curvature parameters relative to these observers in IE′2.

Now the resultant absolute intrinsic metric tensor, ∅ĝik at point (∅ŷ1,∅ŷ2) of ∅IM̂2
(2) is given in terms

of the absolute intrinsic angles, ∅ψ̂ŷ1(∅ŷ1) and ∅ψ̂ŷ2(∅ŷ2), of inclination of the curved absolute
intrinsic metric ‘dimension’ ∅ŷ1 relative to the straight line absolute proper intrinsic metric dimension
∅x′1ab and of the curved absolute intrinsic metric ‘dimension’ ∅ŷ2 relative to the straight line absolute
proper intrinsic metric dimension ∅x′2ab respectively in Fig. 5b as

∅ĝ(2)ik =

 1

1−sin2 ∅ψ̂
ŷ1 (∅ŷ1) 0

0 1

1−sin2 ∅ψ̂
ŷ2 (∅ŷ2)

 ;

=

 1

1−∅k̂
ŷ1 (∅ŷ1)2 0

0 1

1−∅k̂
ŷ2 (∅ŷ2)2

 . (50)
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Likewise the absolute intrinsic metric tensor is given at point (∅x̂1,∅x̂2) of ∅IM̂2
(1) in Fig. 5a as

∅ĝ(1)ik =

 1

1−sin2 ∅ψ̂
x̂1 (∅x̂1) 0

0 1

1−sin2 ∅ψ̂
x̂2 (∅x̂2)

 ;

=

 1

1−∅k̂
x̂1 (∅x̂1)2 0

0 1

1−∅k̂
x̂2 (∅x̂2)2

 . (51)

When the two parallel absolute intrinsic Riemannian metric spaces coexist, as illustrated in Fig. 6,
then the resultant absolute intrinsic metric tensor ∅ĝik of the upper absolute intrinsic metric space
∅IM̂

(2)
2 relative to its projective underlying absolute proper intrinsic metric space ∅IE′2

ab and, hence,
relative to the relative proper physical Euclidean space IE′2 overlying ∅IE′2

ab, is given in terms of
the resultant absolute intrinsic angles, ∅ψ̂1 and ∅ψ̂2, and in terms of the resultant absolute intrinsic
curvature parameters, ∅k̂1 and ∅k̂2, respectively as

∅ĝik =


1

1− sin2 ∅ψ̂1

0

0
1

1− sin2 ∅ψ̂2

 (52)

and

∅ĝik =


1

1− (∅k̂1)2
0

0
1

1− (∅k̂2)2

 , (53)

where, as can be observed from Fig. 6,

∅ψ̂1 = ∅ψ̂ŷ1(∅ŷ
1) +∅ψ̂x̂1(∅x̂

1) and ∅ψ̂2 = ∅ψ̂ŷ2(∅ŷ
2) +∅ψ̂x̂2(∅x̂

2).

Now the absolute intrinsic metric spaces, ∅IM̂2
(2) and ∅IM̂2

(1), are curved relative to their common
projective flat relative proper intrinsic metric space ∅IE′2

ab with the Euclidean metric δik (in Figs. 5a
and 5b), prior to their superposition. Hence the components of their absolute intrinsic metric tensors
can be written in terms of the components of the Euclidean metric tensor prior to their superposition
respectively as

(∅ĝ(2)11 )−1 = δ11 − sin2 ∅ψ̂ŷ1(∅ŷ1) = δ11 −∅k̂ŷ1(∅ŷ1)2 ;

(∅ĝ(2)22 )−1 = δ22 − sin2 ∅ψ̂ŷ2(∅ŷ2) = δ22 −∅k̂ŷ2(∅ŷ2)2 ;

(∅ĝ(2)12 )−1 = (∅ĝ(2)21 )−1 = 0 ; for ∅IM̂2
(2)

(54)

and
(∅ĝ(1)11 )−1 = δ11 − sin2 ∅ψ̂x̂1(∅x̂1) = δ11 −∅k̂x̂1(∅x̂1)2 ;

(∅ĝ(1)22 )−1 = δ22 − sin2 ∅ψ̂x̂2(∅x̂2) = δ22 −∅k̂x̂2(∅x̂2)2 ;

(∅ĝ(1)12 )−1 = (∅ĝ(1)21 )−1 = 0 ; for ∅IM̂2
(1) .

(55)

Upon the two absolute intrinsic metric spaces co-existing as in Fig. 6, on the other hand, while ∅IM̂2
(1)

is still curved relative to the flat absolute proper intrinsic metric space ∅IE′2
ab with the Euclidean metric
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tensor δik, such that the tangent to the curved absolute intrinsic metric ‘dimension’ ∅x̂1 at point ∅x̂1
is inclined to the straight line absolute proper intrinsic metric dimension ∅x′1ab at absolute intrinsic
angle ∅ψ̂x̂1(∅x̂1) and the tangent to the curved absolute intrinsic metric ‘dimension’ ∅x̂2 at point
∅x̂2 is inclined to ∅x′2ab at absolute angle intrinsic ∅ψ̂x̂2(∅x̂2), the absolute intrinsic Riemannian
metric space ∅IM̂2

(2) is curved relative to the absolute intrinsic Riemannian metric space ∅IM̂2
(1) with

absolute intrinsic metric tensor ∅ĝ(1)ik .

It follows as a consequence of the foregoing that the tangent to the curved absolute intrinsic metric
‘dimension’ ∅ŷ1 at point ∅ŷ1 of ∅IM̂2

(2) is now inclined at absolute intrinsic angle ∅ψ̂ŷ1(∅ŷ1) relative
to the tangent to the curved absolute intrinsic metric ‘dimension’ ∅x̂1 at point ∅x̂1 of ∅IM̂2

(1) and
the tangent to the absolute intrinsic metric ‘dimension’ ∅ŷ2 at point ∅ŷ2 of ∅IM̂2

(2) is now inclined
at absolute intrinsic angle ∅ψ̂ŷ2(∅ŷ2) relative to the tangent to the curved absolute intrinsic metric
‘dimension’ ∅x̂2 at point ∅x̂2 of ∅IM̂2

(1). In the present situation, the absolute intrinsic metric tensor
∅ĝ(1)ik of the absolute intrinsic metric space ∅IM̂2

(1) serves as the foundation absolute intrinsic metric
tensor upon which the absolute intrinsic metric tensor of absolute intrinsic metric space ∅IM̂2

(2) must
be constructed.

The components of the resultant absolute intrinsic metric tensor (i.e. of the upper curved absolute
intrinsic metric space ∅IM̂2

(2) relative to the flat absolute proper intrinsic metric space ∅IE′2
ab in Fig. 6),

are therefore given in terms of the components of ∅ĝ(1)ik (like system (54) or (55) is written relative to
the Euclidean metric δik) as

(∅ĝ11)
−1 = ∅ĝ(1)11 − sin2 ∅ψ̂ŷ1(∅ŷ1) = ∅ĝ(1)11 −∅k̂ŷ1(∅ŷ1)2 ;

(∅ĝ22)
−1 = ∅ĝ(1)22 − sin2 ∅ψ̂ŷ2(∅ŷ2) = ∅ĝ(1)22 −∅k̂ŷ2(∅ŷ2)2 ;

(∅ĝ12)
−1 = (∅ĝ21)

−1 = 0 .

(56)

It is appropriate to further elucidate system (56). The components ∅ĝ(1)11 and ∅ĝ(1)22 of the absolute
intrinsic metric tensor ∅ĝ(1)ik of the curved absolute intrinsic metric space ∅IM̂2

(1) have been written
relative to the intrinsic Euclidean metric tensor reference in system (54) (by virtue of the appearance
of the components δ11 and δ22 of the Euclidean metric tensor in (54)), because ∅IM̂2

(1) is curved
relative to the absolute proper intrinsic metric space ∅IE′2

ab with intrinsic Euclidean metric tensor in
Fig. 5a.

The components ∅ĝ(2)11 and ∅ĝ(2)22 of the absolute intrinsic metric tensor ∅ĝ(2)ik of the curved absolute
intrinsic metric space ∅IM̂2

(2) have likewise been written relative to the absolute intrinsic Euclidean
metric tensor reference in system (55), because ∅IM̂2

(2) is curved relative to the absolute proper
intrinsic metric space ∅IE′2

ab in Fig. 5b. The components δ11 and δ22 of the intrinsic Euclidean metric
tensor of ∅IE′2

ab that appear in systems (54) and (55) are related to the constant zero absolute intrinsic
angle (∅ψ̂ = 0) of inclination to the horizontal of the absolute proper intrinsic dimensions ∅x′1ab and
∅x′2ab of ∅IE′2

ab along the horizontal in Figs. 5a and 3b as, δ11 = δ22 = sec2(∅ψ̂ = 0) = 1.

On the other hand, the components, ∅ĝ11
(2) and ∅ĝ22

(2), of the resultant absolute intrinsic metric tensor
∅ĝik

(2) of the curved absolute intrinsic metric space ∅IM̂2
(2) relative to the flat absolute proper intrinsic

metric space ∅IE′2
ab in Fig. 6, have been written relative to absolute intrinsic sub-Riemannian metric

tensor reference in system (56). This is so because ∅IM̂2
(2) is curved relative to the intermediate

curved absolute intrinsic metric space ∅IM̂2
(1), which, in turn, is curved relative to the flat absolute

proper intrinsic metric space ∅IE′2
ab in Fig. 6.
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The components ∅ĝ(1)11 and ∅ĝ(1)22 of the absolute intrinsic metric tensor on ∅IM̂2
(1) that appear in

system (56) are related to the varying absolute intrinsic angles, ∅ψ̂x̂1(∅x̂1) and ∅ψ̂x̂2(∅x̂2), of the
inclinations of the curved absolute intrinsic metric ‘dimensions’, ∅x̂1 and ∅x̂2, of ∅IM̂2

(1) relative to the
flat absolute proper intrinsic metric dimensions, ∅x′1ab and ∅x′2ab, of ∅IE′2

ab respectively at an arbitrary
point on ∅IM̂2

(1) as, ∅ĝ(1)11 = sec2 ∅ψ̂x̂1(∅x̂1) and ∅ĝ(1)22 = sec2 ∅ψ̂x̂2(∅x̂2) .

In other words, the constant zero absolute intrinsic angle (∅ψ̂ = 0) of inclination to the horizontal
of the absolute proper intrinsic metric dimensions ∅x′1ab and ∅x′2ab along the horizontal, of the flat
absolute proper intrinsic metric space ∅IE′2

ab in Figs. 5a and 3b, have been replaced by the varying
absolute intrinsic angles, ∅ψ̂x̂1(∅x̂1) and ∅ψ̂x̂2(∅x̂2), of inclinations to the horizontal of the curved
absolute intrinsic metric ‘dimensions’, ∅x̂1 and ∅x̂2, of the intermediate curved absolute intrinsic
metric space ∅IM̂2

(1) in Fig. 6. Consequently, δ11 = δ22 = sec2(∅ψ̂ = 0) = 1 in systems (54) and
(55) have been replaced by, ∅ĝ(1)11 = sec2 ∅ψ̂x̂1(∅x̂1) and ∅ĝ(1)22 = sec2 ∅ψ̂x̂2(∅x̂2), respectively in
system (57). Substitution of system (55) into system (56) gives the following

(∅ĝ11)
−1 = 1− sin2 ∅ψ̂x̂1(∅x̂1)− sin2 ∅ψ̂ŷ1(∅ŷ1) =

1−∅k̂x̂1(∅x̂1)2 −∅k̂ŷ1(∅ŷ1)2;

(∅ĝ22)
−1 = 1− sin2 ∅ψ̂x̂2(∅x̂2)− sin2 ∅ψ̂ŷ2(∅ŷ2) =

1−∅k̂x̂2(∅x̂2)2 −∅k̂ŷ2(∅ŷ2)2;

(∅ĝ12)
−1 = (∅ĝ21)

−1 = 0 .

The components of the resultant absolute intrinsic metric tensor in system (57) are the same as in
Eqs. (52) and (53). Hence we obtain expressions for the resultant absolute intrinsic angles ∅ψ̂ and
the resultant absolute intrinsic curvature parameter ∅k̂ in terms of the absolute intrinsic angles ∅ψ̂x̂
and ∅ψ̂ŷ and absolute intrinsic curvature parameters ∅k̂x̂ and ∅k̂ŷ of the individual absolute intrinsic
metric spaces prior to their superposition respectively as follows

∅ĝ11 =
(
1− sin2 ∅ψ̂1

)−1

=
(
1− sin2 ∅ψ̂x̂1(∅x̂

1)− sin2 ∅ψ̂ŷ1(∅ŷ
1)
)−1

hence,

sin2 ∅ψ̂1 = sin2
(
∅ψ̂x̂1(∅x̂

1) +∅ψ̂ŷ1(∅ŷ
1)
)

; sin2 ∅ψ̂x̂1(∅x̂
1) + sin2 ∅ψ̂ŷ1(∅ŷ

1) ; (58a)

∅ĝ22 =
(
1− sin2 ∅ψ̂2

)−1

=
(
1− sin2 ∅ψ̂x̂2(∅x̂

2)− sin2 ∅ψ̂ŷ2(∅ŷ
2)
)−1

,

hence,

sin2 ∅ψ̂2 = sin2
(
∅ψ̂x̂2(∅x̂

2) + ψ̂ŷ2(∅ŷ
2)
)
= sin2 ∅ψ̂x̂2(∅x̂

2) + sin2 ∅ψ̂ŷ2(∅ŷ
2) . (58b)

Consequently,

(∅k̂1)2 = ∅k̂x̂1(∅x̂
1)2 +∅k̂ŷ1(∅ŷ

1)2 ; (58a)

(∅k̂2)2 = ∅k̂x̂2(∅x̂
2)2 +∅k̂ŷ2(∅ŷ

2)2 . (58b)

Equations (58a) and (58b) give the rules for the composition of two absolute intrinsic angles, ∅ψ̂x̂
and ∅ψ̂ŷ, while Eqs. (59a) and (59b) give the corresponding rule for the composition two absolute
intrinsic curvature parameters, for the purpose of writing the resultant absolute intrinsic metric tensor
and resultant absolute intrinsic Ricci tensor in absolute intrinsic Riemann geometry, for the situation
where a pair of parallel ‘two-dimensional’ absolute intrinsic metric spaces coexist, as illustrated in
Fig. 6.
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They can be extended to the situation where a pair of parallel ‘three-dimensional’ absolute intrinsic
metric spaces coexist as follows

sin2 ∅ψ̂1 = sin2
(
∅ψ̂x̂1(∅x̂1) +∅ψ̂ŷ1(∅ŷ1)

)
;

= sin2 ∅ψ̂x̂1(∅x̂1) + sin2 ∅ψ̂ŷ1(∅ŷ1) ;

sin2 ∅ψ̂2 = sin2
(
∅ψ̂x̂2(∅x̂2) +∅ψ̂ŷ2(∅ŷ2)

)
;

= sin2 ∅ψ̂x̂2(∅x̂2) + sin2 ∅ψ̂ŷ2(∅ŷ2) ;

sin2 ∅ψ̂3 = sin2
(
∅ψ̂x̂3(∅x̂3) +∅ψ̂ŷ3(∅ŷ3)

)
;

= sin2 ∅ψ̂x̂3(∅x̂3) + sin2 ∅ψ̂ŷ3(∅ŷ3) ;

(59)

and
(∅k̂1)2 = ∅k̂x̂1(∅x̂1)2 +∅k̂ŷ1(∅ŷ1)2 ;

(∅k̂2)2 = ∅k̂x̂2(∅x̂2)2 +∅k̂ŷ2(∅ŷ2)2 ;

(∅k̂3)2 = ∅k̂x̂3(∅x̂3)2 +∅k̂ŷ3(∅ŷ3)2 .

(60)

Systems (60) and (61) admit of generalization to a situation where N parallel ‘3-dimensional’ absolute
intrinsic metric spaces coexist (where the Nth absolute intrinsic metric space ∅IM̂3

(N) has curved
absolute intrinsic metric ‘dimensions’ ∅ŵ1, ∅ŵ2 and ∅ŵ3) as follows

sin2 ∅ψ̂1 = sin2
(
∅ψ̂x̂1(∅x̂

1) +∅ψ̂ŷ1(∅ŷ
1) + · · ·+∅ψ̂ŵ1(∅ŵ1)

)
;

= sin2 ∅ψ̂x̂1(∅x̂
1) + sin2 ∅ψ̂ŷ1(∅ŷ

1) + · · ·+ sin2 ∅ψ̂ŵ1(∅ŵ1) ;

sin2 ∅ψ̂2 = sin2
(
∅ψ̂x̂2(∅x̂

2) +∅ψ̂ŷ2(∅ŷ
2) + · · ·+∅ψ̂ŵ2(∅ŵ2)

)
; (61)

= sin2 ∅ψ̂x̂2(∅x̂
2) + sin2 ∅ψ̂ŷ2(∅ŷ

2) + · · ·+ sin2 ∅ψ̂ŵ2(∅ŵ2) ;

sin2 ∅ψ̂3 = sin2
(
∅ψ̂x̂3(∅x̂

3) +∅ψ̂ŷ3(∅ŷ
3) + · · ·+∅ψ̂ŵ3(∅ŵ3)

)
;

= sin2 ∅ψ̂x̂3(∅x̂
3) + sin2 ∅ψ̂ŷ3(∅ŷ

3) + · · ·+ sin2 ∅ψ̂ŵ3(∅ŵ3) .

The corresponding resultant absolute intrinsic curvature parameters are

(∅k̂1)2 = ∅k̂x̂1(∅x̂
1)2 +∅k̂ŷ1(∅ŷ

1)2 + · · ·+∅k̂ŵ1(∅ŵ1)2;

(∅k̂2)2 = ∅k̂x̂2(∅x̂
2)2 +∅k̂ŷ2(∅ŷ

2)2 + · · ·+∅k̂ŵ2(∅ŵ2)2; (62)

(∅k̂3)2 = ∅k̂x̂3(∅x̂
3)2 +∅k̂ŷ3(∅ŷ

3)2 + · · ·+∅k̂ŵ3(∅ŵ3)2 .

Although equations (60) – (63) show no ceiling on the resultant absolute intrinsic angle, ∅ψ̂q; q =

1, 2 or 3, it is known that ∅ψ̂q has a maximum value of, ∅ψ̂q = ∅π̂/2, since then the curved absolute
intrinsic metric ‘dimension’ ŵq of the last (i.e. the Nth) absolute intrinsic metric space will lie along
the vertical, parallel to the absolute intrinsic metric time ‘dimension’ ∅x̂0. This implies that there is
a ceiling on the number of absolute intrinsic metric spaces that can be superposed. The implication
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of going beyond the ceiling, that is, for making, ∅ψ̂q > ∅π̂/2, will be derived elsewhere with further
development.

The resultant absolute intrinsic metric tensor ∅ĝik of the last (i.e. the Nth) absolute intrinsic metric
space ∅IM̂3

(N) relative to the underlying flat absolute proper intrinsic metric space ∅IE′3
ab is given in

terms of the resultant absolute intrinsic angles and the resultant absolute intrinsic curvature parameters
in systems (62) and (63) respectively as

∅ĝ(2)ik =


1

1−sin2 ∅ˆ
ψ1

0 0

0 1

1−sin2 ∅ˆ
ψ2

0

0 0 1

1−sin2 ∅ˆ
ψ3

 , (63)

or

∅ĝ(2)ik =


1

1−(∅ˆ
k1)2

0 0

0 1

1−(∅ˆ
k2)2

0

0 0 1

1−(∅ˆ
k3)2

 . (64)

The resultant absolute intrinsic Ricci tensor is likewise given in terms of the resultant absolute intrinsic
angles and resultant absolute intrinsic curvature parameters as

∅R̂ik =


sin2 ∅ˆ

ψ1

1−sin2 ∅ˆ
ψ1

0 0

0 sin2 ∅ ˆ̄ψ2

1−sin2 ∅ˆ
ψ2

0

0 0 sin2 ∅ˆ
ψ3

1−sin2 ∅ˆ
ψ3

 ; (65)

or

∅R̂ik =


(∅ˆ
k1)

2

1−(∅ˆ
k1)2

0 0

0 (∅ˆ
k2)

2

1−(∅ˆ
k2)2

0

0 0 (∅ˆ
k3)

2

1−(∅ˆ
k3)2

 . (66)

The resultant absolute intrinsic line element on the last (i.e. the Nth) absolute intrinsic metric space
∅IM̂3

(N) relative to the the underlying flat absolute proper intrinsic metric space ∅IE′3
ab is the following

(d∅ŝ)2=(d∅x̂0)2−
(
(d∅ŵ1)2+(d∅ŵ2)2+(d∅ŵ3)2

)
1− (∅k̂)2

(67)

where ∅k̂ = ∅k̂1 = ∅k̂2 = ∅k̂3 is assumed.

As mentioned earlier, only the situation where ∅k̂1, ∅k̂2 and ∅k̂3 are all identical to ∅k̂, as assumed
in writing Eq. (68), shall be of relevance in absolute intrinsic Riemann geometry ultimately. For that
situation, the two absolute intrinsic metric tensor equations (33) and (45), derived in the context of
absolute intrinsic Riemann geometry earlier, are given in terms of the resultant absolute intrinsic
tensors, ∅ĝik and ∅R̂ik, and resultant absolute intrinsic curvature parameter as

∅ĝik −∅R̂ik = δik (68)

and
∅R̂ik − (∅k̂)2∅ĝik = 0 . (69)
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The solution to equations (69) and (70) are equations (65) and (67) with, (∅k̂)2 = (∅k̂1)2 = (∅k̂2)2 =

(∅k̂3)2, assumed.

The first step of the formulation of absolute intrinsic Riemann geometry in a situation where two or
a larger number of parallel absolute intrinsic metric spaces co-exist (or are superposed) has again
been accomplished in this sub-section. Let us now proceed to the second step namely, obtaining
resultant absolute intrinsic coordinate projection relations, when two or a larger number of parallel
absolute intrinsic metric spaces co-exist.

2.6.2 The resultant absolute intrinsic coordinate projection relations when
two or a larger number of parallel absolute intrinsic metric spaces co-
exist

Now let us redraw Fig. 6 while showing certain detail required for this sub-sub-section as Fig. 7.
Let us consider elementary absolute intrinsic metric coordinate intervals, d∅ŷ1 and d∅ŷ2, defined
about point (∅ŷ1,∅ŷ2) of ∅IM̂2

(2), to be the dimensions of a locally flat region (or frame) on ∅IM̂2
(2).

The interval d∅ŷ1 about point ∅ŷ1 of ∅IM̂2
(2) projects component d∅x̂1 into the underlying curved

absolute intrinsic metric ‘dimension’ ∅x̂1, which lies along the tangent to the curved ∅x̂1 at point ∅x̂1
of ∅x̂1, as shown in Fig. 7. Likewise the interval d∅ŷ2 about point ∅ŷ2 of ∅IM̂2

(2), projects component
d∅x̂2 into the underlying curved absolute intrinsic metric ‘dimension’ ∅x̂2 of ∅IM̂2, which lies along
the tangent to the curved ∅x̂2 at point ∅x̂2 of ∅x̂2, as also shown in Fig. 7. The following projection
relations obtain from elementary coordinate geometry

d∅x̂1 = d∅ŷ1 cos∅ψ̂ŷ1(∅ŷ
1) ;

d∅x̂2 = d∅ŷ2 cos∅ψ̂ŷ2(∅ŷ
2) . (70)
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Figure 7: Obtaining resultant coordinate interval projections of two co-existing
parallel absolute intrinsic metric spaces.

In turn, the component d∅x̂1 projected about an arbitrary point ∅x̂1 of the curved absolute intrinsic
metric ‘dimension’ ∅x̂1 of ∅IM̂2, projects component d∅x′1ab about the corresponding arbitrary point
∅x′1ab of its underlying straight line absolute proper intrinsic metric dimension ∅x′1ab of ∅IE′2

ab, and the
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component d∅x̂2 projected about the point ∅x̂2 of the curved absolute intrinsic metric ‘dimension’
∅x̂2, projects component d∅x′2ab about the corresponding arbitrary point ∅x′2ab of its underlying straight
line absolute proper intrinsic metric dimension ∅x′2ab of ∅IE′2

ab, as shown in Fig. 7.

Again the following coordinate projection relations obtain from Fig. 7 from elementary coordinate
geometry

d∅x′1ab = d∅x̂1 cos∅ψ̂x̂1(∅x̂
1) ;

d∅x′2ab = d∅x̂2 cos∅ψ̂x̂2(∅x̂
2) . (71)

Then by combining systems (71) and (72) the following obtain.

d∅x′1ab = d∅ŷ1 cos∅ψ̂x̂1(∅x̂1) cos∅ψ̂ŷ1(∅ŷ1) ;

d∅x′2ab = d∅ŷ2 cos∅ψ̂x̂2(∅x̂2) cos∅ψ̂ŷ2(∅ŷ2) .
(72)

System (73) gives the resultant length contraction relations of the absolute intrinsic metric coordinate
intervals of the absolute intrinsic metric space ∅IM̂2

(2) with respect to observers in IE′2.
They become the following in terms of absolute intrinsic curvature parameters

d∅x′1ab = d∅ŷ1(1−∅k̂x̂1(∅x̂
1))1/2(1−∅k̂ŷ1(∅ŷ

1))1/2 ;

d∅x′2ab = d∅ŷ2(1−∅k̂x̂2(∅x̂
2))1/2(1−∅k̂ŷ2(∅ŷ

2))1/2 , (73)

where the definitions of the absolute intrinsic curvature parameters of system (14) have been used.

Systems (73) and (74) admit of generalization to a situation where any number N of ‘two-dimensional’
parallel absolute intrinsic metric spaces co-exist, in which case they become the following respectively,

d∅x′1ab = dŵ1 cos∅ψ̂x̂1(∅x̂
1) cos∅ψ̂ŷ1(∅ŷ

1) · · · cos∅ψ̂ŵ1(∅ŵ1) ;

d∅x′2ab = d∅ŵ2 cos ψ̂x̂2(∅x̂
2) cos∅ψ̂ŷ2(∅ŷ

2) · · · cos∅ψ̂ŵ2(∅ŵ2) . (74)

and

d∅x′1ab = dŵ1(1−∅k̂x̂1(∅x̂
1))

1
2 (1−∅k̂ŷ1(∅ŷ

1))
1
2 · · · (1−∅k̂ŵ1(∅ŵ1))

1
2 ;

d∅x′2ab = dŵ2(1−∅k̂x̂2(∅x̂
2))

1
2 (1−∅k̂ŷ2(∅ŷ

2))
1
2 (1−∅k̂ŵ2(∅ŵ2))

1
2 , (75)

where the uppermost Nth curved absolute intrinsic metric space ∅IM̂2
(N) has absolute intrinsic ‘dimensions’

∅ŵ1 and ∅ŵ2 with absolute intrinsic curvature parameters, ∅k̂ŵ1(∅ŵ1) and ∅k̂ŵ2(∅ŵ2), at an
arbitrary point on ∅IM̂2

(N).

Systems (72) through (76) for superposition of ‘two-dimensional’ parallel absolute intrinsic metric
spaces admit of easy and direct extension to superposition of ‘three-dimensional’ parallel absolute
intrinsic metric spaces, in which case, a third expression for d∅x′3ab must be added to each of the
systems.

Now the flat two-dimensional absolute proper metric 2-space IE′2
ab is the outward manifestation

of ∅IE′2
ab in Figs. 1a&b through Fig. 7 of this paper. The absolute intrinsic coordinate projection

expressions relating the absolute proper intrinsic metric coordinate intervals, d∅x′1ab and d∅x′2ab of
∅IE′2

ab, to the absolute intrinsic metric coordinate intervals, d∅ŵ1 and d∅ŵ2 of ∅IM̂2
(N), respectively,

likewise have their outward manifestations. The outward manifestations of systems (75) and (76),
obtained by simply removing the symbol ∅ are the following respectively,

dx′1ab = dx̂1 cos ψ̂x̂1(x̂
1) cos ψ̂ŷ1(ŷ

1) · · · cos ψ̂ŵ1(ŵ1) ;

dx′2ab = dx̂2 cos ψ̂x̂2(x̂
2) cos ψ̂ŷ2(ŷ

2) · · · cos ψ̂ŵ2(ŵ2) , (76)
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and

dx′1ab = dx̂1(1− k̂x̂1(x̂
1))1/2(1− k̂ŷ1(ŷ

1))1/2 · · · (1− k̂ŵ1(ŵ1))1/2 ;

dx′2ab = dx̂2(1− k̂x̂2(x̂
2))1/2(1− k̂ŷ2(ŷ

2))1/2 · · · · · · (1− k̂ŵ2(ŵ2))1/2 . (77)

It is to be recalled that x̂ i are the absolute metric dimensions of a curved absolute metric 2-space
IM̂2, as the outward manifestation of ∅IM̂2, but which does not actually exist in the absolute intrinsic
Riemann geometry of Figs. 1a and 1b. Thus x̂ i are the outward manifestations of ∅x̂ i.

In the case of a singular absolute intrinsic metric space, systems (77) and (78) simplify respectively
as follows

dx′1ab = dx̂1 cos ψ̂x̂1(x̂
1) ; dx′2ab = dx̂2 cos ψ̂x̂2(x̂

2) (78)

and
dx′1ab = dx̂1(1− k̂x̂1(x̂

1))
1
2 ; dx′2ab = dx̂2(1− k̂x̂2(x̂

2))
1
2 (79)

Systems (79) or (80) is the outward (or physical) manifestation of system (1) derived from Figs. 1a&b.
System (79) or (80) expresses the evolution of the flat two-dimensional absolute proper metric space
IE′2
ab from the flat ‘two-dimensional’ absolute metric space ÎE2 with the presence of absolute intrinsic

Riemann geometry. It is to be noted however that the absolute metric coordinates, x̂1 and x̂2, of
the absolute metric space ÎE2 are not curved despite systems (79) and (80). It is only the absolute
intrinsic metric coordinates, ∅x̂1 and ∅x̂2, of ∅ÎE2 that are curved to form ∅IM̂2.

Once the absolute intrinsic metric ‘dimensions’, ∅x̂1 and ∅x̂2, of the initially flat absolute intrinsic
metric space ∅ÎE2 underlying ÎE2 in the reference geometry of absolute intrinsic Riemann geometry
of Fig. 7 of part one of this paper [1], reproduced as Fig. 4 of this article, become curved to form
the absolute intrinsic metric space ∅IM̂2, and projects absolute proper intrinsic metric dimensions,
∅x′1ab and ∅x′2ab, respectively along the horizontal in Figs. 1a&b, then the projective absolute proper
intrinsic metric dimensions, ∅x′1ab and ∅x′2ab, of ∅IE′2

ab along the horizontal are made manifested in the
absolute proper metric space dimensions, x′1ab and x′2ab, respectively of the flat absolute proper metric
space IE′2

ab along the horizontal, without any need to prescribe the curvature of the ‘dimensions’, x̂1

and x̂2, of the initially flat absolute metric space ÎE2 overlying the initially flat absolute intrinsic metric
space ∅ÎE2 in Fig. 4. The flat absolute proper metric space IE′2

ab has simply evolved from the initial
flat absolute space ÎE2 by virtue of the evolution of curved absolute intrinsic metric space ∅IM̂2 from
the initial flat ∅ÎE2 in Fig. 4.

The results of the first step of the formulation of absolute intrinsic Riemann geometry for a singular
‘two-dimensional’ or ‘three-dimensional’ absolute intrinsic metric space in sub-sections 1.1 through
1.5, and for two or a larger number of co-existing parallel ‘two-dimensional’ or ‘three-dimensional’
absolute intrinsic metric spaces in sub-section 1.6, are valid with respect to 2-observers or 3-observers
in the flat relative proper (or physical) metric space IE′2 or IE′3.

Now let us rewrite system (75) in terms of resultant absolute intrinsic angles ∅ψ̂1res and ∅ψ̂2res as
follows

d∅x′1ab = dŵ1 cos∅ψ̂1res; d∅x′2ab = dŵ2 cos∅ψ̂2res. (80)

And let us rewrite system (76) in terms of resultant absolute intrinsic curvature parameters ∅k̂1res
and k̂2res as

d∅x′1ab = dŵ1(1−∅k̂21res)
1/2 ; d∅x′2ab = dŵ2(1−∅k̂22res)

1/2 . (81)

Then as follows from systems (75) and (81)

cos∅ψ̂1res = cos(∅ψ̂x̂1 +∅ψ̂ŷ1 + · · ·+∅ψ̂ŵ1) = cos∅ψ̂x̂1 cos∅ψ̂ŷ1 · · · cos∅ψ̂ŵ1 ;

cos∅ψ̂2res = cos(∅ψ̂x̂2 +∅ψ̂ŷ2 + · · ·+∅ψ̂ŵ2) = cos∅ψ̂x̂2 cos∅ψ̂ŷ2 · · · cos∅ψ̂ŵ2 .
(82)
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And as follows from systems (78) and (82),

∅k̂21res = 1− (1−∅k̂2x̂1)(1−∅k̂2ŷ1) · · · (1−∅k̂2ŵ1) ;

∅k̂22res = 1− (1−∅k̂2x̂2)(1−∅k̂2ŷ2) · · · (1−∅k̂2ŵ2) .
(83)

System (83) expresses the rule for the composition of the absolute intrinsic angles, ∅ψ̂x̂1 ,∅ψ̂ŷ1 , . . . ,∅ψ̂ŵ1

and ∅ψ̂x̂2 ,∅ψ̂ŷ2 , . . . ,∅ψ̂ŵ2 , for the purpose of obtaining resultant absolute intrinsic coordinate projections
(or resultant intrinsic length contraction formulae) in the context of absolute intrinsic Riemann geometry,
while system (84) expresses the corresponding rule for the composition of absolute intrinsic curvature
parameters, ∅k̂x̂1 , ∅k̂ŷ1 , . . ., ∅k̂ŵ1 and ∅k̂x̂2 , ∅k̂ŷ2 , . . . , ∅k̂ŵ2 .
Those rules shall be written more compactly as

cos∅ψ̂i res = cos(∅ψ̂i 1 +∅ψ̂i 2 + · · ·+∅ψ̂i N )

= cos∅ψ̂i 1 cos∅ψ̂i 2 · · · cos∅ψ̂i N ; i = 1, 2, 3 . (84)

and
∅k̂2ires = 1− (1−∅k̂2i1)(1−∅k̂2i2) · · · (1−∅k̂2iN ) ; i = 1, 2, 3 . (85)

where i (= 1, 2 or 3) refers to the three curved absolute intrinsic metric ‘dimensions’ of the absolute
intrinsic metric spaces superposed, and N is the number of absolute intrinsic metric spaces superposed.
One observes from Eq. (85) that if ∅ψ̂iq = 90o; q = 1or 2 or 3 . . . orN , then cos∅ψ̂i q = 0 and
cos∅ψ̂i res = 0. Hence ∅ψ̂i res = 90o too. Also if ∅k̂i q = 1; q=1 or 2 or 3 . . . orN , which corresponds
to ∅ψ̂i q = 90o from, ∅k̂i q = sin∅ψ̂i q, then ∅k̂1 res = 1 too. These results show that the rules for
composition of absolute intrinsic angles and absolute intrinsic curvature parameters for the purpose of
obtaining resultant intrinsic coordinate projections (or resultant intrinsic length contraction formulae)
in absolute intrinsic Riemann geometry, do not lead to values of resultant absolute intrinsic angles
larger than 90o or resultant absolute intrinsic curvature parameters larger than unity.

In other words, absolute intrinsic angle, ∅ψ̂ = 90o, is an invariant absolute intrinsic angle and absolute
intrinsic curvature parameter, ∅k̂ = 1, is an invariant absolute intrinsic curvature parameter in the
rules for composition of absolute intrinsic angles and absolute intrinsic curvature parameters, for the
purpose of obtaining resultant absolute intrinsic coordinate projection relations, or resultant intrinsic
length contraction formulae, with respect to observers in the underlying relative (or physical) proper
Euclidean 3-space IE′3, when two or a larger number N of absolute intrinsic metric spaces co-exist.

Finally it is important to remark the major difference between the rule for composition of absolute
intrinsic angles of system (62) (or the equivalent rule for composition of absolute intrinsic curvature
parameters of system (63)), for the purpose of writing the resultant absolute intrinsic line element,
the resultant absolute intrinsic metric tensor and the resultant absolute intrinsic Ricci tensor, and
the counterpart rule for composition of absolute intrinsic angles of system (83) (or its equivalent
rule for composition of absolute intrinsic curvature parameters of system (84)), for the purpose of
writing the resultant intrinsic coordinate projection relations or resultant intrinsic length contraction
formulae, in the context of absolute intrinsic Riemann geometry. These rules are valid with respect to
all 3-observers in the underlying relative (or physical) proper Euclidean 3-space IE′3, when N parallel
‘three-dimensional’ absolute intrinsic metric spaces are superposed.

2.6.3 Parallelism of all absolute intrinsic metric spaces in the universe

The highly ordered situation of the co-existence of parallel absolute intrinsic metric spaces has been
considered so far in this sub-section. As defined previously, a pair of ‘three-dimensional’ absolute
intrinsic metric spaces ∅IM̂3 with absolute intrinsic metric ‘dimensions’, ∅x̂1,∅x̂2,∅x̂3 and ∅IM̂3

(2),
with curved absolute intrinsic ‘dimensions’ ∅ŷ1,∅ŷ2,∅ŷ3, are parallel if each curved absolute intrinsic
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‘dimension’ ∅ŷi of ∅IM̂3
(2) and the corresponding curved absolute intrinsic ‘dimension’ ∅x̂i of ∅IM̂3

lie on the same vertical ∅x′iab∅x̂0− plane. In this situation, the intrinsic dimensions, ∅x′1ab,∅x′2ab
and ∅x′3ab, of the underlying global absolute proper intrinsic metric space ∅IE′3

ab have parametric
dependence on the absolute intrinsic metric ‘dimensions’, ∅x̂1,∅x̂2 and ∅x̂3, respectively of ∅IM̂3,
as well as the absolute intrinsic metric ‘dimensions’, ∅ŷ 1,∅ŷ 2 and ∅ŷ 3 respectively, of ∅IM̂3

(2), prior
to the superposition of ∅IM̂3 and ∅IM̂3

(2) as,

∅x′1ab = g1(∅ŷ1); ∅x′2ab = g2(∅ŷ2); ∅x′3ab = g3(∅ŷ3) (87a)

and
∅x′1ab=f 1(∅x̂1); ∅x′2ab=f2(∅x̂2); ∅x′3ab=f3(∅x̂3) . (87b)

When ∅IM̂3
(2) and ∅IM̂3 coexist, the curved absolute intrinsic metric space ‘dimension’ ∅ŷq lies

above the curved absolute intrinsic metric space ‘dimension’ ∅x̂q on the vertical ∅x′qab∅x̂
0−plane,

for q = 1, 2 and 3, as illustrated in Fig. 6 for the superposition of the pair of parallel ‘two-dimensional’
absolute intrinsic metric spaces in Figs. 5a and 3b prior to their superposition.

Now let us consider the chaotic situation of the co-existence of non-parallel absolute intrinsic metric
spaces. In this situation, some or all of the curved absolute intrinsic metric space ‘dimensions’,
∅ŷ q of ∅IM̂3

(2), do not lie above the corresponding curved absolute intrinsic metric ‘dimensions’,
∅x̂q, of ∅IM̂3 on the vertical ∅x′qab∅x̂

0-plane. In this situation, while the absolute intrinsic metric
‘dimensions’, ∅x̂1,∅x̂2 and ∅x̂3, of ∅IM̂3 are parameterized in terms of an absolute proper intrinsic
metric coordinate set (or ‘frame’) (∅ξ ′1

ab,∅ξ ′2
ab,∅ξ ′3

ab) in the underlying global absolute proper intrinsic
metric space ∅IE′3

ab, the curved absolute intrinsic metric ‘dimensions’, ∅ŷ1,∅ŷ2 and ∅ŷ3 of ∅IM̂3
(2),

are parameterized in terms of a different absolute proper intrinsic metric coordinate set (or ‘frame’)
(∅η′1ab,∅η′2ab,∅η′3ab) in the underlying global absolute proper intrinsic metric space ∅IE′3

ab in general,
prior to the superposition of ∅IM̂3 and ∅IM̂3

(2). In other words, the following transformations of local
intrinsic metric coordinates obtain in general prior to the superposition of ∅IM̂3 and ∅IM̂3

(2)

∅η′1ab = f1(∅ŷ1); ∅η′2ab = f2(∅ŷ2); ∅η′3ab = f3(∅ŷ3) (88a)

and
∅ξ ′1

ab = g1(∅x̂1); ∅ξ ′2
ab = g2(∅x̂2); ∅ξ ′3

ab = g3(∅x̂3) (88b)

When ∅IM̂3
(2) and ∅IM̂3 coexist, or are superposed, they are both underlay by the global flat absolute

proper intrinsic metric space ∅IE′3
ab. However the absolute intrinsic metric ‘dimensions’, ∅ŷ1,∅ŷ2 and

∅ŷ3, of ∅IM̂3
(2) are curved relative to the absolute proper intrinsic metric coordinates, ∅η′1ab,∅η′2ab and

∅η′3ab, respectively of one frame in ∅IE′3
ab, while the absolute intrinsic metric ‘dimensions’, ∅x̂1,∅x̂2

and ∅x̂3, of ∅IM̂3 are curved relative to the absolute proper intrinsic metric coordinates, ∅ξ ′1
ab,∅ξ ′2

ab

and ∅ξ ′3
ab, of another frame in ∅IE′3.

Having described the superposition of parallel absolute intrinsic metric spaces and the superposition
of non-parallel absolute intrinsic metric spaces above, it shall now be shown that non-parallel absolute
intrinsic metric spaces do not exist in nature.

As deduced from the consistent arguments leading to the isolation of absolute intrinsic Riemannian
metric spaces in section 4 of part one of this paper [1], all local absolute intrinsic metric coordinate
sets (or local absolute intrinsic ‘frames’), (∅x̂1,∅x̂2,∅x̂3), (∅ŷ1,∅ŷ2,∅ŷ3), (∅ẑ′1,∅ẑ2,∅ẑ3),
(∅ŵ′1,∅ŵ2,∅ŵ3), etc, at a point on a curved absolute intrinsic metric space ∅IM̂3 are equivalent to a
singular local absolute intrinsic metric coordinate set (or local absolute intrinsic ‘frame’) (∅x̂1,∅x̂2,∅x̂3),
with respect to observers in the relative proper metric 3-space IE′3 underlying ∅IM̂3.
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All the projective local absolute proper intrinsic metric coordinate sets (or local absolute proper
intrinsic ‘frames’), (∅x′1ab,∅x′2ab,∅x′3ab), (∅y′1ab,∅y′2ab,∅y′3ab), (∅z′1ab,∅z′2ab,∅z′3ab) (∅w′1

ab,∅w′2
ab,∅w′3

ab),
etc, at the corresponding point in the underlying projective absolute proper intrinsic metric space
∅IE′3

ab, are equivalent to a singular local absolute proper intrinsic metric coordinate set (or local
absolute proper intrinsic ‘frame’) (∅x′1ab,∅x′2ab,∅x′3ab), with respect to all 3-observers in IE′3, as a
consequence.
It follows from the foregoing paragraph that the two local frames, (∅ξ ′1

ab,∅ξ ′2
ab,∅ξ ′3

ab) and
(∅ηab ′1,∅ηab ′2,∅ηab ′3), on the flat absolute proper intrinsic metric space ∅IE′3

ab that lie underneath
two coexisting non-parallel absolute intrinsic metric spaces, ∅IM̂3 and ∅IM̂3

(2), respectively in our
discussion above, are equivalent to the singular local absolute proper intrinsic metric coordinate set
(or ‘frame’) (∅x′1ab,∅x′2ab,∅x′3ab) in the flat ∅IE′3

ab (where ∅x′1ab, ∅x′2ab and ∅x′3ab are actually the absolute
proper intrinsic dimensions of ∅IE′3

ab).
It then follows that the curved absolute intrinsic metric ‘dimensions’, ∅x̂2,∅x̂2,∅x̂3 and ∅ŷ2,∅ŷ2,∅ŷ3,
of the co-existing non-parallel absolute intrinsic metric spaces, ∅IM̂3 and ∅ÎM3

(2), respectively are
actually curved relative to the singular local absolute proper intrinsic metric coordinate set (or ‘frame’)
(∅x′1ab,∅x′2ab,∅x′3ab) of the underlying flat absolute proper intrinsic metric space ∅IE′3

ab, which makes
them parallel. The local absolute proper intrinsic coordinate set (∅η′1ab,∅η′2ab,∅η′3ab) in (88a) and the
local absolute proper intrinsic coordinate set (∅ξ ′1

ab,∅ξ ′2
ab,∅ξ ′3

ab) in system (88b) must be replaced
by the same local absolute proper intrinsic metric coordinate set (∅xab ′1,∅xab ′2,∅xab ′3).
The conclusion that follows from the preceding paragraph is that all absolute intrinsic Riemannian
metric spaces in the universe are parallel, all lying above the singular absolute proper intrinsic metric
coordinate set (or ‘frame’) (∅x′1ab,∅x′2ab,∅x′3ab) of the isotropic absolute proper intrinsic metric space
∅IE′3

ab that lies underneath all curved absolute intrinsic Riemannian metric spaces.
The programme of this sub-section, which is to formulate absolute intrinsic Riemann geometry when
two or a larger number of absolute intrinsic metric spaces co-exist (both the first and second steps
of the formulation), has been accomplished. An interesting and dramatic aspect of absolute intrinsic
Riemann geometry shall be discussed in the next and concluding section of this article.

3 PERFECT ISOTROPY AND IMPLIED ‘ONE-DIMENSIONA-
LITY’ OF A CURVED ABSOLUTE INTRINSIC METRIC ‘3-
SPACE’, ITS PROJECTIVE FLAT ABSOLUTE PROPER
INTRINSIC METRIC ‘3-SPACE’ AND THE FLAT ABSOLUTE
PROPER METRIC ‘3-SPACE’ WITH RESPECT TO 3-OBSER-
VERS IN THE UNDERLYING RELATIVE PROPER METRIC
EUCLIDEAN 3-SPACE

3.1 Natural Contraction of the Curved Three-dimensional Absolute
Intrinsic Metric Space to a Curved ‘One-dimensional’ Scalar ISO-
Tropic Absolute Intrinsic Metric Space with Respect to All Euclidean
3-observers in the Relative Proper Metric 3-Space

As deduced from the fact that both the absolute intrinsic line element and absolute intrinsic metric
tensor on an absolute intrinsic metric space ∅IM̂3 are invariant with change of local absolute intrinsic
coordinate set at each point on ∅IM̂3 in section 4 of part one of this paper [1], different local absolute
intrinsic coordinate sets, (∅x̂1,∅x̂2,∅x̂3), (∅ŷ1,∅ŷ2,∅ŷ3), (∅ẑ1,∅ẑ2,∅ẑ3), etc, which are arbitrarily
orientated relative to one another at a given point P on ∅IM̂3, with respect to a Riemannian observer
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located at the point P on ∅IM̂3, are identical to a singular local absolute intrinsic coordinate set
(∅ξ̂ 1,∅ξ̂ 2,∅ξ̂ 3) at the point P on ∅IM̂3, with respect to Euclidean observers in the relative proper
metric Euclidean 3-space IE′3 underlying the curved ∅IM̂3.

An implication of the foregoing paragraph is that
the local absolute intrinsic metric coordinates,
∅x̂1, ∅ŷ1 and ∅ŷ1, etc, of the different local
absolute intrinsic coordinate sets (or ‘frames’),
(∅x̂1,∅x̂2,∅x̂3), (∅ŷ1,∅ŷ2,∅ŷ3), (∅ẑ1,∅ẑ2∅ẑ3),
etc, which are orientated along different
directions about the point P on ∅IM̂3, with respect
to a Riemannian observer at this point, are all
identical to a singular local absolute intrinsic
coordinate ∅ξ̂ 1 at the point P on the curved
∅IM̂3, with respect to the Euclidean 3-observers
in IE′3 underlying ∅IM̂3.

It thus follows that the different absolute intrinsic
angles, ∅α̂,∅β̂,∅γ̂, etc, at which the local
absolute intrinsic coordinates, ∅x̂1,∅ŷ1,∅ẑ1,
etc, of different local absolute intrinsic coordinate
sets are inclined relative to one another at the
point P on ∅IM̂3, with respect to a Riemannian
observer at this point, all vanish, that is, ∅α̂ =
∅β̂ = ∅γ̂ = 0, with respect to observers in
the relative proper metric Euclidean 3-space
IE′3 underlying ∅IM̂3. The different local
absolute intrinsic coordinates, ∅x̂1,∅ŷ1,∅ẑ1,
etc, are all aligned along a singular direction,
thereby constituting a singular local absolute
intrinsic coordinate ∅ξ̂ 1 at the point P on the
curved ∅IM̂3, with respect to observers in the
relative proper metric Euclidean 3-space IE′3

consequently.

The different absolute intrinsic angles,
∅δ̂,∅θ̂,∅φ̂, etc, at which the local absolute
intrinsic coordinates, ∅x̂2,∅ŷ2,∅ẑ2, etc, of
different local absolute intrinsic coordinate
sets (or ‘frames’) are inclined relative to one
another at point P on ∅IM̂3, with respect to a
Riemannian observer at this point all vanish,
that is, ∅δ̂ = ∅θ̂ = ∅φ̂ = 0, with respect to
Euclidean observers in IE′3 underlying ∅IM̂3.
Consequently the different local absolute intrinsic
coordinates, ∅x̂2,∅ŷ2,∅ẑ2, etc, are all aligned
along a singular direction, thereby constituting a
singular local absolute intrinsic coordinate ∅ξ̂ 2

at the point P on ∅IM̂3, with respect to Euclidean
observers in IE′3. Likewise the different local

absolute intrinsic coordinates, ∅x̂3,∅ŷ3,∅ẑ3,
etc, are all aligned along a singular direction,
thereby constituting a singular local absolute
intrinsic coordinate ∅ξ̂ 3 at point P on ∅IM̂3, with
respect to all Euclidean observers in IE′3.

As found from the foregoing two paragraphs,
two directions within an elementary local
neighborhood about a point P of the curved
absolute intrinsic metric space ∅IM̂3, which are
distinct directions separated by absolute intrinsic
Euler angles, ∅α̂,∅β̂ and ∅γ̂, with respect to
a Riemannian observer located at point P on
∅IM̂3, are the same direction with respect to
observers in the relative proper metric Euclidean
3-space IE′3 underlying ∅IM̂3. This is so, since
any magnitudes of the absolute intrinsic angles,
∅α̂, ∅β̂ and ∅γ̂, on ∅IM̂3 are equivalent to zero
magnitudes of the corresponding relative Euler
angles, α′, β ′ and γ ′, in the relative proper metric
Euclidean 3-space IE′3.

It also follows as further implication of
the preceding paragraph that the singular
local absolute intrinsic coordinate set
(∅ξ̂ 1, ∅ξ̂ 2, ∅ξ̂ 3) at point P on ∅IM̂3, with
mutually perpendicular local absolute intrinsic
coordinates, ∅ξ̂ 1, ∅ξ̂ 2 and ∅ξ̂ 3, is impossible
with respect to Euclidean observers in IE′3.

The end of the preceding paragraph is so,
because the absolute intrinsic angle, ∅ϕ̂ =
∅π̂/2, separating the local absolute intrinsic
coordinates, ∅ξ̂ 1 and ∅ξ̂ 2, and the absolute
intrinsic angle, ∅θ̂ = ∅π̂/2, separating the
local absolute intrinsic coordinates, ∅ξ̂ 2 and
∅ξ̂ 3, as well as the absolute intrinsic angle,
∅φ̂ = ∅π̂/2, separating the local absolute
intrinsic coordinates, ∅ξ̂ 1 and ∅ξ̂ 3, all vanish
with respect to Euclidean observers in IE′3,
thereby causing, ∅ξ̂ 1, ∅ξ̂ 2 and ∅ξ̂ 3, to be
aligned along a singular direction. They thereby
constitute a singular local absolute intrinsic
coordinate ∅ξ̂P at point P on ∅IM̂3 with respect
to all observers in IE′3.

69



Joseph; PSIJ, 25(10): 39-77, 2021; Article no.PSIJ.79626

The result derived at point P on the curved
absolute intrinsic metric space ∅IM̂3 in the
preceding paragraph obtains at every other point
on ∅IM̂3. In other words, only singular local
absolute intrinsic coordinates, ∅ξ̂Q, ∅ξ̂R, ∅ξ̂S,
∅ξ̂T, etc, exist at points Q, R, S, T, etc, on ∅IM̂3,
with respect to the Euclidean observers in the
relative proper metric Euclidean 3-space IE′3

underlying ∅IM̂3. When the singular indefinitely
short local absolute intrinsic coordinates at
every point of ∅IM̂3 are joined together, one
obtains a continuous curved ‘one-dimensional’
absolute intrinsic metric space (or an absolute
intrinsic Riemannian metric space ‘dimension’),
to be denoted by ∅ρ̂, with respect to Euclidean
observers in IE′3.

The singular indefinitely short local absolute
intrinsic coordinates, ∅ξ̂Q, ∅ξ̂Q, ∅ξ̂R, ∅ξ̂S,
∅ξ̂T, etc, that exist within elementary locally
flat (or Euclidean) regions at points P, Q, R, S,
T, etc, on ∅IM̂3, with respect to the Euclidean
observers in the relative proper metric Euclidean
3-space IE′3, have no unique orientations (or
basis) within their locally flat elementary regions.
They are consequently scalar isotropic local
absolute intrinsic coordinates within their locally
flat regions. The continuous curved ‘one-
dimensional’ absolute intrinsic metric space (or a
‘one-dimensional’ absolute intrinsic Riemannian
metric space ‘dimension’) ∅ρ̂, obtained by
joining the local absolute intrinsic coordinates, is
consequently a scalar isotropic curved absolute
intrinsic ‘dimension’ (in the small), with respect to
Euclidean observers IE′3.

An important conclusion has been reached
in the preceding paragraph that, the curved
absolute intrinsic metric space (or absolute
intrinsic Riemannian metric space), which has
been considered as ‘two-dimensional’ ∅IM̂2

or ‘three-dimensional’ ∅IM̂3, with respect to
Euclidean observers in the underlying relative
proper metric Euclidean space, IE′2 or IE′3, so
far in this article, is actually a ‘one-dimensional’
curved scalar isotropic absolute intrinsic metric
space (or a curved scalar isotropic absolute
intrinsic Riemannian metric space ‘dimension’),
with respect to all 3-observers in the underlying
relative proper physical Euclidean 3-space IE′3.

3.2 Natural contraction of
the projective flat three-
dimensional absolute proper
intrinsic metric space
∅IE′3

ab to a straight line
‘one-dimensional’ isotropic
absolute proper intrinsic
metric space with respect to
all 3-observers in the relative
proper metric Euclidean 3-
space

The ‘one-dimensional’ scalar isotropic absolute
intrinsic metric space ∅ρ̂ that is curved toward the
absolute intrinsic metric time ‘dimension’ ∅ĉs∅t̂
along the vertical, with respect to Euclidean
observers in the flat relative proper metric
space IE′3, will naturally project one-dimensional
straight line scalar isotropic absolute proper
intrinsic metric space, to be denoted by ∅ρ′ab,
underneath the relative proper metric Euclidean
3-space IE′3, with respect to 3-observers in IE′3.

However let us for completeness also show
below that a three-dimensional flat absolute
proper intrinsic metric space ∅IE′3

ab, considered
to be projected underneath the flat relative
proper metric 3-space IE′3 by the curved ‘three-
dimensional’ absolute intrinsic metric space
∅IM̂3 previously in this article and its first part,
naturally contracts to a one-dimensional scalar
isotropic absolute proper intrinsic metric space
∅ρ′ab with respect to 3-observers in IE′3.

Now any magnitudes of the absolute proper
intrinsic angles, ∅α′

ab,∅β′
ab and ∅γ′

ab, on the flat
absolute proper intrinsic metric space ∅IE′3

ab are
equivalent to zero magnitude of relative proper
(or physical) angles, α′, β ′ and γ ′, respectively
in the relative proper metric Euclidean 3-space
IE′3, with respect to 3-observers in IE′3 overlying
∅IE′3

ab. These follow from the equivalences,
∅α′

ab ≡ ∅α̂ = 0 × α′, ∅β′
ab ≡ ∅β̂ = 0 × β ′

and ∅γ′
ab ≡ ∅γ̂ = 0× γ ′. Consequently any two

distinct directions, which are separated by non-
zero absolute proper intrinsic angles, ∅α′

ab,∅β′
ab

and ∅γ′
ab, on the flat three-dimensional absolute

proper intrinsic metric space ∅IE′3
ab, with respect

to hypothetical intrinsic 3-observers in ∅IE′3
ab, are
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the same direction with respect to 3-observers
in the relative proper physical Euclidean 3-space
IE′3.

A consequence of the preceding paragraph
is that the mutually orthogonal local absolute
proper intrinsic metric coordinates, ∅ξ ′1

ab,∅ξ ′2
ab

and ∅ξ ′3
ab, of ∅IE′3

ab, at a point on ∅IE′3
ab, are

impossible with respect to 3-observers in IE′3.
This is so because the absolute proper intrinsic
angle, ∅ϕ′

ab ≡ ∅ϕ̂ = ∅π̂/2, between the local
absolute proper intrinsic coordinates, ∅ξ ′1

ab and
∅ξ ′2

ab and ∅θ′ab ≡ ∅θ̂ = ∅π̂/2, between the local
absolute proper intrinsic coordinates, ∅ξ ′2

ab and
∅ξ ′3

ab, as well as the absolute proper intrinsic
angle, ∅φ′

ab ≡ ∅φ̂ = ∅π̂/2, between the local
absolute proper intrinsic coordinates, ∅ξ ′1

ab and
∅ξ ′3

ab, all vanish with respect to observers in
IE′3. The three local absolute proper intrinsic
coordinates, ∅ξ ′1

ab,∅ξ ′2
ab and ∅ξ ′3

ab of ∅IE′3
ab, are

consequently aligned along a singular direction,
thereby constituting a singular absolute proper
intrinsic metric space (or a singular absolute
proper intrinsic metric space dimension) denoted
by ∅ρ′ab above, which underlies the relative
proper metric Euclidean 3-space IE′3, with
respect to all 3-observers in IE′3.

The one-dimensional absolute proper intrinsic
metric space ∅ρ′ab has no unique orientation
(or basis) in the flat three-dimensional absolute
proper intrinsic metric space ∅IE′3

ab that contracts
to it. Consequ-ently it has no unique orientation
(or basis) in the relative proper metric Euclidean
3-space IE′3 overlying ∅IE′3

ab, with respect to 3-
observers in IE′3. Thus ∅ρ′ab is a scalar isotropic
intrinsic metric space (or scalar isotropic intrinsic
metric space dimension) in IE′3, with respect to
3-observers in IE′3. It can be considered to lie
along any direction in IE′3 by 3-observers in IE′3.

3.3 Natural contraction of the flat three-dimensional absolute proper
metric space IE′3

ab to a straight line ‘one-dimensional’ isotropic
absolute proper metric space with respect to all Euclidean 3-obser-
vers in the relative proper metric 3-space

The natural contractions of the curved absolute intrinsic metric space ∅IM̂3 (or ∅IM̂2) in Fig. 1a to
a curved ‘one-dimensional absolute intrinsic metric space ∅ρ̂ and the natural contraction of the flat
absolute proper intrinsic metric space ∅IE′3

ab (or ∅IE′2
ab) projected along the horizontal by the curved

∅IM̂3 (or ∅IM̂2) in Fig. 1a, to a straight line ‘one-dimensional’ scalar isotropic absolute proper intrinsic
metric space ∅ρ′ab along the horizontal, with respect to all 3-observers in the relative proper metric
Euclidean 3-space IE′3, has been shown in the preceding two sub-sections.

The outward manifestation of the projective absolute proper intrinsic metric space ∅IE′3
ab (or ∅IE′2

ab)
namely, the flat absolute proper metric space IE′3

ab (or IE′2
ab) in Fig. 1b, likewise naturally contracts to

a straight line ‘one-dimensional’ isotropic scalar absolute proper metric space ρ′ab with respect to all
3-observers in the relative proper metric Euclidean 3-space IE′3, demonstrated as follows.

Now any magnitudes of the absolute proper angles, α′
ab, β

′
ab and γ′

ab, (which are equivalent to
absolute angles, α̂, β̂ and γ̂ respectively), on the flat absolute proper metric space IE′3

ab, are equivalent
to zero magnitude of relative (or physical) proper angles, α′, β ′ and γ ′, respectively in the relative
proper physical Euclidean 3-space IE′3, with respect to 3-observers in IE′3 overlying IE′3

ab. These
follow from the equivalences, α′

ab ≡ α̂ = 0 × α′, β′
ab ≡ β̂ = 0 × β ′, and γ′

ab ≡ γ̂ = 0 × γ ′. (An
absolute angle is equivalent to zero relative angle.) Consequently any two distinct directions, which
are separated by non-zero absolute proper angles, α′

ab, β
′
ab and γ′

ab, on the flat three-dimensional
absolute proper metric space IE′3

ab, with respect to hypothetical 3-observers in IE′3
ab, are the same

direction with respect to 3-observers in the relative (or physical) proper metric Euclidean 3-space IE′3.

A consequence of the preceding paragraph is that the mutually orthogonal local absolute proper
metric coordinates, ξ ′1

ab, ξ
′2
ab and ξ ′3

ab of IE′3
ab, are impossible with respect to 3-observers in IE′3.
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This is so because the absolute proper angle, ϕ′
ab ≡ ϕ̂ = π̂/2, between the local absolute proper

coordinates, ξ ′1
ab and ξ ′2

ab, and ∅θ′ab ≡ θ̂ = π̂/2 between the local absolute proper coordinates, ξ ′2
ab

and ξ′3ab, as well as the absolute proper angle, φ′
ab ≡ φ̂ = π̂/2, between the local absolute proper

coordinates, ξ ′1
ab and ξ ′3

ab, all vanish with respect to observers in IE′3. The three local absolute proper
coordinates, ξ′1ab, ξ

′2
ab and ξ′3ab of IE′3

ab, are consequently aligned along a singular direction, thereby
constituting a singular absolute proper metric space (or absolute proper metric space dimension),
denoted by ρ′ab above, which underlies the relative proper metric Euclidean 3-space IE′3, with respect
to all 3-observers in IE′3.

The one-dimensional absolute proper metric space ρ′ab has no unique orientation (or unique basis)
in the flat three-dimensional absolute proper space IE′3

ab that contracts to it. Consequently it has
no unique orientation (or basis) in the relative (or physical) proper metric Euclidean 3-space IE′3

overlying IE′3
ab, with respect to 3-observers in IE′3. Thus ρ′ab is a scalar isotropic absolute proper

metric space (or scalar isotropic absolute proper metric space dimension) embedded in IE′3, with
respect to 3-observers in IE′3. It can be considered to lie along every direction in IE′3 by 3-observers
in IE′3.

3.4 Natural contraction of the flat three-dimensional relative proper
intrinsic metric space ∅IE′3 to a straight line one-dimensional scalar
isotropic relative proper intrinsic metric space with respect to all
Euclidean 3-observers in the relative proper metric 3-space

The flat three dimensional relative proper intrinsic metric space ∅IE′3 (or ∅IE′2) underlying the curved
absolute intrinsic metric space ∅IM̂3 (or ∅IM̂2) in Fig. 1a, is also naturally contracted to a straight line
one-dimensional scalar isotropic relative proper intrinsic metric space (or a scalar isotropic relative
proper intrinsic space dimension), which has been denoted by ∅ρ′ since its introduction (as ansatz)
in sub-section 4.4 of [2], and used in the articles [4–6] that follow [2].

As mentioned in [2], the three-dimensional relative proper intrinsic metric space ∅IE′3 (denoted
by ∅Σ ′ in that article), with respect to intrinsic 3-observers in it, in Fig. 6a of that article, naturally
contracts to a straight line one-dimensional scalar isotropic relative intrinsic metric space ∅ρ′, with
respect to 3-observers in the three-dimensional relative proper Euclidean 3-space ∅IE′3 (or Σ ′)
overlying it, in Fig. 6b of that article. This fact shall be shown formally in this sub-section. Figures 6a
and 6b of [2] are reproduced as Fig. 8a and 8b of this article.

Now any magnitudes of the relative proper intrinsic angles, ∅α ′,∅β ′ and ∅γ ′, on the flat relative
proper intrinsic metric 3-space ∅IE′3 are equivalent to zero magnitude of relative proper (or physical)
angles α′, β ′ and γ ′ respectively, in the relative proper physical Euclidean 3-space IE′3, with respect
to 3-observers in IE′3 overlying ∅IE′3. These follow from the definitions, ∅α ′ = 0× α′, ∅β ′ = 0× β ′

and ∅γ ′ = 0×γ ′. Consequently any two distinct directions, which are separated by non-zero relative
proper intrinsic angles, ∅α ′,∅β ′ and ∅γ ′, on the flat three-dimensional relative proper intrinsic metric
space ∅IE′3, with respect to hypothetical intrinsic 3-observers in ∅IE′3, are the same direction with
respect to 3-observers in the relative proper metric Euclidean 3-space IE′3.

A consequence of the preceding paragraph is that the mutually orthogonal relative proper intrinsic
metric coordinates, ∅ξ ′1,∅ξ ′2 and ∅ξ ′3, of ∅IE′3, at a point on ∅IE′3, are impossible with respect to
3-observers in IE′3.
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Figure 8: (a) The flat 4-dimensional spacetime and its underlying flat 2-dimensional
intrinsic spacetime with the inertial masses of three objects scattered in the
Euclidean 3-space and their one-dimensional intrinsic inertial masses aligned
along the one-dimensional isotropic intrinsic space with respect to observers in
spacetime. (b) The flat 2-dimensional intrinsic spacetime with respect to observers
in spacetime in (a) is a flat four-dimensional intrinsic spacetime containing 3-
dimensional intrinsic inertial masses of particles and objects in 3-dimensional
intrinsic space with respect to intrinsic-mass-observers in intrinsic spacetime;
Fig. 6a&b of [2].

This is so because the relative proper intrinsic angle, ∅ϕ ′ = ∅π/2, between the relative proper
intrinsic coordinates, ∅ξ ′1 and ∅ξ ′2, and ∅θ ′ = ∅π/2 between the relative proper intrinsic coordinates,
∅ξ ′2 and ∅ξ ′3, as well as the relative proper intrinsic angle, ∅φ ′ = ∅π/2, between the relative proper
intrinsic coordinates, ∅ξ ′1 and ∅ξ ′3, all vanish with respect to observers in IE′3. The three relative
proper intrinsic coordinates, ∅ξ ′1,∅ξ ′2 and ∅ξ ′3 of ∅IE′3, are consequently aligned along a singular
direction, thereby constituting a singular relative proper intrinsic metric space (or a singular relative
proper intrinsic metric space dimension) ∅ρ′, which underlies the relative proper metric Euclidean
3-space IE′3, with respect to all 3-observers in IE′3.

The one-dimensional relative proper intrinsic metric space ∅ρ′ has no unique orientation (or basis) in
the flat three-dimensional relative proper intrinsic metric space ∅IE′3 that contracts to it. Consequently
it has no unique orientation (or basis) in the relative (or physical) proper Euclidean 3-space IE′3

overlying ∅IE′3, with respect to 3-observers in IE′3. Thus ∅ρ ′ is a scalar isotropic intrinsic metric
space (or scalar isotropic intrinsic metric space dimension) in IE′3, with respect to 3-observers in IE′3.
It can be considered to lie along every direction in IE′3 by 3-observers in IE′3.

On the other hand, the relative proper (or physical) Euclidean 3-space IE′3, in which different coordinate
sets, (x ′1, x ′2, x ′3), (y ′1, y ′2, y ′3), (z ′1, z ′2, z ′3), etc, at a point on it are distinct with respect to 3-
observers in it, and this is true at every point on 3-space IE′3, is not naturally contracted with respect
to 3-observers in 3-space IE′3.

Let us give a graphical illustration of the natural contractions of the flat absolute proper and relative
proper intrinsic metric 3-spaces, along with the curved absolute metric 3-space, with respect to 3-
observers in the relative proper metric 3-space, described in the preceding four sub-sections. In
doing this, the curved ‘one-dimensional’ absolute intrinsic metric space ∅ρ̂, to which the curved ‘three-
dimensional’ absolute intrinsic metric space ∅IM̂3 naturally contracts, with respect to 3-observers in
the relative (or physical) proper metric Euclidean 3-space IE′3, must be allowed to be curved onto the

73



Joseph; PSIJ, 25(10): 39-77, 2021; Article no.PSIJ.79626

straight line absolute intrinsic metric time ‘dimension’, ∅x̂0 = ∅ĉs∅t̂, and to projects a straight line
scalar isotropic absolute proper intrinsic metric space ∅ρ′ab along the horizontal. The projective ∅ρ′ab
is made manifested outwardly as ‘one-dimensional’ scalar isotropic absolute proper metric space ρ′ab
that overlies ∅ρ′ab along the horizontal.
The contracted one-dimensional scalar isotropic relative proper intrinsic metric space ∅ρ′ likewise
lies along the horizontal underneath the non-contracted flat three-dimensional relative proper metric
space IE′3 (as a hyper-surface) along the horizontal, with respect to 3-observers in IE′3.

Naturally the straight line absolute proper intrinsic metric space ∅ρ′ab is embedded in the straight line
relative proper intrinsic metric space ∅ρ′ and the straight line absolute proper metric space ρ′ab is
embedded in the flat three-dimensional relative proper metric space IE′3, in which the 3-observers
are located, as illustrated in Fig. 9.

isotropic absolute
proper metric space

flat relative proper
metric 3-space

isotropic absolute proper
intrinsic metric space

ab

ab

curved absolute
intrinsic metric space

isotropic relative
proper intrinsic
metric space

Figure 9: The curved ‘three-dimensional’ absolute intrinsic metric ‘3-space’ ∅IM̂3, its
projective flat absolute proper intrinsic metric ‘3-space’ ∅IE′3

ab, the flat relative proper
intrinsic metric 3-space ∅IE′3, as well as the flat absolute proper metric ‘3-space’ IE′3

ab,
as outward manifestation of ∅IE′3

ab, isolated in the context of absolute intrinsic Riemann
geometry in [1] and illustrated in Fig. 5 of that article, reproduced as Fig. 2 of this article,
contract naturally to curved isotropic scalar ‘one-dimensional’ absolute intrinsic metric
space ∅ρ̂, straight line isotropic scalar absolute proper intrinsic metric space ∅ρ′ab, straight
line isotropic scalar relative proper intrinsic metric space ∅ρ ′ and straight line isotropic
scalar absolute proper metric space ρ′ab respectively, with respect to 3-observers in the flat
three-dimensional relative proper metric space IE′3.

Thus the ‘three-dimensional’ absolute intrinsic metric spaces ∅IM̂3 (which are ‘three-dimensional’
absolute intrinsic Riemannian metric spaces), underlay by flat three-dimensional absolute proper
intrinsic metric space ∅IE′3

ab, which have been carried along from the first part of this paper to
this point, have now been found to be naturally contracted to curved ‘one-dimensional’ absolute
intrinsic metric spaces (which are ‘one-dimensional’ absolute intrinsic Riemannian metric spaces)
∅IM̂1, underneath which lies its projective one-dimensional isotropic absolute proper intrinsic metric
space (or ‘dimension’) ∅ρ′ab, with respect to 3-observers in IE′3.

The relative (or physical) proper metric Euclidean 3-space IE′3 that has been known to be the outward
manifestation of the 3-dimensional relative proper intrinsic metric space ∅IE′3 from the first part of this
paper to this point, is now the outward manifestation of the one-dimensional isotropic relative proper
intrinsic metric space ∅ρ′ in Fig. 9. It may be recalled that this fact is stated as ansatz in sub-section
4.4 of [2], prior to formal validation of the existence of the proper intrinsic metric space ∅ρ′ underlying
the proper physical Euclidean 3-space IE′3 in nature in section 1 of [6].
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The absolute intrinsic metric tensors ∅ĝik of absolute intrinsic Riemann geometry on curved ‘three-di-
mensional’ absolute intrinsic metric spaces ∅IM̂3, which are 3× 3 diagonal ‘matrices’ in section one,
are actually 1 × 1 ‘matrices’ or numbers ∅ĝ11 on curved ‘one-dimensional’ absolute intrinsic metric
spaces ∅ρ̂. Likewise the absolute intrinsic Ricci tensors. The absolute intrinsic Gaussian line element
written in terms of mutually orthogonal elementary intervals of absolute intrinsic metric ‘dimensions’,
∅x̂1,∅x̂2 and ∅x̂3 of ∅IM̂3, as Eq. (48), is actually the following absolute intrinsic Gaussian line
element in terms of elementary interval of the ‘one-dimensional’ curved absolute intrinsic metric space
∅ρ̂, with respect to 3-observers in the underlying flat relative proper metric Euclidean 3-space IE′3 in
Fig. 9

d∅ŝ2 = (d∅x̂0)2 −∅ĝ11(d∅ρ̂)2

= (d∅x̂0)2 − (d∅ρ̂)2

1− (∅k̂)2
. (88)

It is to be remembered that ∅ρ̂ has been formed by bundling together the curved absolute intrinsic
metric space ‘dimensions’, ∅x̂1,∅x̂2 and ∅x̂3, of ∅IM̂3 into ‘one-dimensional’ curved absolute intrinsic
metric space, with respect to 3-observers in the relative proper metric Euclidean 3-space IE′3. In
effect, (d∅x̂1)2 + (d∅x̂2)2 + (d∅x̂3)2 in Eq. (48) has simply been replaced by (d∅ρ̂)2 in Eq. (89). All
absolute intrinsic Riemannian metric spaces in the universe are curved ‘one-di-into ‘one-dimensional’
absolute intrinsic metric spaces, ∅ρ̂,∅ρ̂′,∅ρ̂′′, etc, all of which are curved relative to the singular
universal isotropic absolute proper intrinsic metric space ∅ρ′ab (with no unique orientation in the
universal proper physical Euclidean 3-space IE′3), with respect to 3-observers in IE′3. They are all
‘parallel’ absolute intrinsic metric spaces with respect to observers in IE′3.

Illustrated in Figs. 10a&b is a situation where two absolute intrinsic metric spaces, ∅ρ̂ and ∅ρ̂′, co-
exist (or are superposed), such that ∅ρ̂ is curved relative to curved ∅ρ̂′ and ∅ρ̂′ is curved relative
to the straight line absolute proper intrinsic metric space ∅ρ′ab along the horizontal. For the purpose
of writing the absolute intrinsic line element, the absolute intrinsic metric tensor and the absolute
intrinsic Ricci tensor on the upper curved ‘one-dimensional’ absolute intrinsic metric space ∅ρ̂, with
respect to 3-observers in IE′3, the resultant absolute intrinsic angle ∅ψ̂ of inclination of ∅ρ̂ relative
to ∅ρ′ab at point ∅x̂ along the curved ∅ρ̂ (from the origin of ∅ρ̂), which corresponds to point ∅x̂′

along the curved ∅ρ̂ ′ and point ∅x ab′ along the underlying straight line ∅ρ′ab, is given in terms of
the absolute intrinsic angles, ∅ψ̂2(∅x̂) and ∅ψ̂1(∅x̂′), as follows, as derived in sub-sub-section 1.6.1
(see Eqs. (58a) and (58b)),

sin2 ∅ψ̂ = sin2
(
∅ψ̂1(∅x̂′) +∅ψ̂2(∅x̂)

)
;

= sin2 ∅ψ̂1(∅x̂′) + sin2 ∅ψ̂2(∅x̂) . (89)

Hence the resultant absolute intrinsic curvature parameter ∅k̂ of the upper curved absolute intrinsic
metric space ∅ρ̂ at point ∅x̂ along ∅ρ̂ in Figs. 10a&b, to appear in the component of the resultant
absolute intrinsic metric tensor ∅ĝ11 at this point, is given in terms of the absolute intrinsic curvature
parameters, ∅k̂2(∅x̂) and ∅k̂1(∅x̂′), of the curved absolute intrinsic metric spaces, ∅ρ̂ and ∅ρ̂′,
respectively relative to ∅ρ′ab prior to their superposition as

∅k̂ 2 = ∅k̂1(∅x̂′)2 +∅k̂2(∅x̂)2 . (90)

The only component ∅ĝ11 of the resultant absolute intrinsic metric tensor, ∅ĝik; i, k = 1, at point ∅x̂
on the upper curved absolute intrinsic space ∅ρ̂, is then given in terms of ∅k̂ 2 as

∅ĝ11 =
(
1−∅k̂ 2

)−1

=
(
1−∅k̂1(∅x̂′)2 −∅k̂2(∅x̂)2

)−1

. (91)
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ab

ab

ab

ab

(a)

(b)

Figure 10: (a and b) Co-existing pair of ‘one-dimensional’ absolute intrinsic metric
spaces.

The resultant absolute intrinsic line element must be written by simply replacing ∅k̂2 by ∅k̂ 2 in
Eq. (89) as

d∅ŝ2 = (d∅x̂0)2 − d∅ρ̂2

1−∅k̂1(∅x̂′)2 −∅k̂2(∅x̂)2
. (92)

This absolute intrinsic line elements shall be
made complete on a curved ‘two-dimensional’
absolute intrinsic metric spacetime by replacing
the term (d∅x̂0)2 with ∅ĝ00 ∅ĉs2d∅t̂2 elsewhere,
where the component ∅ĝ00 of the absolute
intrinsic metric tensor shall be derived.

3.5 Further on the concepts
of ‘absolute proper’ and
‘relative proper’ coordinates
and intrinsic coordinates

Two concepts of proper namely, “absolute
proper” and “relative proper”, have appeared
in the absolute intrinsic Riemann geometry
from the beginning of its development in the
preceding article [1] up to this point in this article.
The curved absolute intrinsic metric space ∅ρ̂
invariantly projects the absolute proper intrinsic
metric space ∅ρ′ab along the horizontal and the
relative proper intrinsic metric space ∅ρ ′ appears
automatically. The absolute proper intrinsic
metric space ∅ρ′ab is imperceptibly embedded
in the relative proper intrinsic metric space ∅ρ ′;
the two thereby appearing as ∅ρ ′ along the
horizontal. The origin of the relative proper

intrinsic metric space that appears automatically
shall be explained elsewhere.

The resulting composite proper intrinsic metric
space ∅ρ ′ (= ∅ρ ′ ∪ ∅ρ ′

ab) is then made
manifested in composite proper metric Euclidean
space, which is composed of three-dimensional
relative proper metric Euclidean space, denoted
by IE′3, with dimensions, x′1 , x′2 and x′3, and
the ‘one-dimensional’ isotropic scalar absolute
proper metric space ρ ′

ab. That is, IE′3 =
IE′3 ∪ ρ ′

ab, where the absolute proper metric
space ρ ′

ab is imperceptibly embedded (as an
isotropic scalar ‘dimension’) in the relative proper
metric Euclidean 3-space IE′3; the two thereby
appearing as IE′3. The ‘one-dimensional’
isotropic absolute proper metric space ρ ′

ab is
orientated along all directions in the relative
proper Euclidean 3-space IE′3, with respect to all
3-observers in IE′3.

4 CONCLUSION

This article gives further support to the existence
of absolute intrinsic Riemann space and absolute
intrinsic Riemann geometry introduced in the
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first part. The metric tensor and the Ricci
tensor on curved conventional metric space have
counterparts pure diagonal absolute intrinsic
metric tensor and absolute intrinsic Ricci tensor,
derived in this article, on curved absolute intrinsic
metric space. The pair of absolute intrinsic metric
tensor equations derived on curved absolute
intrinsic metric space are amenable to algebraic
solution for the absolute intrinsic metric tensor
and absolute intrinsic Ricci tensor. This and
the fact that the curved ‘three-dimensional’
absolute intrinsic metric space naturally contracts
to a curved ‘one-dimensional’ isotropic absolute
intrinsic metric space, also derived in this article,
makes absolute intrinsic Riemann geometry
less rigorous to handle than the conventional
Riemann geometry. The absolute intrinsic
Riemann geometry of curved absolute intrinsic
metric space developed in the preceding first
part of this paper and this second part shall be
extended to curved ‘two-dimensional’ absolute
intrinsic Riemannian metric spacetime in the third
part.
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