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+e purpose of this study is to develop a practical artificial neural network (ANN)model for predicting the atmospheric corrosion
rate of carbon steel. A set of 240 data samples, which are collected from the experimental results of atmospheric corrosion in
tropical climate conditions, are utilized to develop the ANN model. Accordingly, seven meteorological and chemical factors of
corrosion, namely, the average temperature, the average relative humidity, the total rainfall, the time of wetness, the hours of
sunshine, the average chloride ion concentration, and the average sulfur dioxide deposition rate, are used as input variables for the
ANN model. Meanwhile, the atmospheric corrosion rate of carbon steel is considered as the output variable. An optimal ANN
model with a high coefficient of determination of 0.999 and a small root mean square error of 0.281mg/m2.month is retained to
predict the corrosion rate. Moreover, the sensitivity analysis shows that the rainfall and hours of sunshine are the most influential
parameters on predicting the atmospheric corrosion rate, whereas the average chloride ion concentration, the average tem-
perature, and the time of wetness are less sensitive to the atmospheric corrosion rate. An ANN-based formula, which ac-
commodates all input parameters, is thereafter proposed to estimate the atmospheric corrosion rate of carbon steel. Finally, a
graphical user interface is developed for calculating the atmospheric corrosion rate of carbon steel in tropical climate conditions.

1. Introduction

Atmospheric corrosion is considered as an electrochemical
nonlinear and complex phenomenon, which is mostly
depending on external factors and material properties. It is a
challenge to evaluate the influence of these parameters on
the degradation of materials, specifically, for structures
exposed to various climatic conditions.

In fact, data of the atmospheric corrosion can be ob-
tained properly based on realistic measurements. Never-
theless, there is still some problem related to the mechanism
of the atmospheric corrosion and the effects of environ-
mental parameters on this phenomenon. Among those, the
potential interaction between the pollutants and the mete-
orological parameters is the one of critical issues. Closer
looking into these problems would be very useful and
provide a better understanding of the atmospheric corrosion
process.

In the last few decades, atmospheric corrosion has been
an interesting topic for researchers around the world. Kallias
et al. [1] proposed a deterioration modeling and performed
the assessment of metallic bridges affected by atmospheric
corrosion. Several studies investigated the atmospheric
corrosion process of metals considering multiple environ-
mental factors [2–4]. It was demonstrated that the presence
of atmospheric pollutants sulfur dioxide in urban and in-
dustrial atmospheres and chloride concentration in marine
atmospheres affected the corrosion rate of metal signifi-
cantly. +e effects of relative humidity on the atmospheric
corrosion were evaluated in some studies [5–9]; meanwhile,
the influence of temperature on the atmospheric corrosion
was demonstrated in the work of Kong et al. [10]. +ey
showed that the corrosion rate of materials was increased as
a function of temperature and relative humidity. A multi-
scale model for predicting atmospheric corrosion was
proposed by Cole et al. [9], in which Australian conditions
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and marine aerosols were considered. Besides, the effects of
rainfall on the atmospheric corrosion rate were investigated
by several studies [11, 12]. However, several studies pointed
out that the chloride ions (Cl− ) coming from the sea and
sulfur dioxide (SO2) are the most important atmospheric
corrosive agents [13–16].

A prediction of the atmospheric corrosion accounting
for exposing time, relative humidity, temperature, time of
wetness, and pollutant concentration was proposed by
Tidblad [17]. +e quantitative relationships of environ-
mental factors on the corrosion process were presented
using the basic linear model [18, 19], the basic log-linear
model [19–21], and dose-response functions [22–24]. Em-
pirical equations to calculate the atmospheric corrosion rate
were also proposed by some studies [19, 21, 25]. However,
these equations only considered few input parameters,
which are sulfur dioxide deposition rate, chloride, and time
of wetness. Also, the atmospheric corrosion is controlled by
various external factors of corrosion and pollution param-
eters such as humidity, temperature, and pollutants. Ad-
ditionally, those atmospheric corrosion models are only
valid for specific local geographical conditions. As the local
geographical condition changed, such corrosion models are
no longer applicable. +erefore, a sufficient model, which
can cover various environmental factors, is still needed for
predicting the atmospheric corrosion rate of carbon steel.

Artificial intelligence (AI) models have been commonly
utilized in predicting corrosion behaviors of steel structures.
Seghier et al. [26] estimated the maximum pitting corrosion
depth in oil and gas pipelines using support vector re-
gression (SVR) combined with optimization techniques
such as Genetic Algorithm and particle swarm optimization
and firefly algorithm (FFA). +ey demonstrated that the
SVR-FFA model had superior performance compared with
other considered models. In the study of Seghier et al. [27],
the authors applied various data-driven models, which are
artificial neural networks (ANNs), M5 tree, multivariate
adaptive regression splines, locally weighted polynomials,
kriging, and extreme learning machines, for calculating the
maximum pitting corrosion depth of pipelines. Recently, a
hybrid soft computing model, namely, multilayer percep-
tron-marine predators algorithm, was proposed for pre-
dicting the corrosion rate in the suspension bridge cables
[28]. Diao et al. [29] developed corrosion rate models for
low-alloy steels using the random forest and gradient
boosting decision tree algorithms.

ANNs, an example of the most powerful algorithms of
machine learning models, have been widely applied for
metal sciences and atmospheric corrosion fields due to their
advantages [30–34]. +ose typical benefits are as follows: (1)
ANN is a nonlinear model, which is easy to use and un-
derstand compared to statistical methods, and (2) ANNs
allow the modeling of physical phenomena in complex
systems without requiring explicit mathematical represen-
tations. +eir findings showed that neural network models
had a reliable prediction with a small error and a large
coefficient of determination value (R2). +e ANN models
were effective for various investigations such as thickness
prediction of sherardizing coating [31], corrosion of metals

in equatorial climate [33], and corrosion of copper in
Valparaiso (Chile) [34]. Particularly, ANN was used for
predicting the penetration of corrosion or the corrosion rate
of carbon steel considering input parameters such as hu-
midity, temperature, time of wetness, precipitation, sulfur
dioxide concentration (SO2), and chloride deposition rate
(Cl− ) [30, 35]. It was demonstrated that ANN models
predicted the corrosion rate accurately with R2 values of 0.90
in the work of Pintos et al. [35] and 0.998 in the work of Dı́az
and López [30]. It should be noted that the database used in
the study of Pintos et al. [35] was measured from the Ibero-
America region. Besides, the effects of temperature and
hours of sunshine were not considered in the study of Dı́az
and López [30]. Additionally, it was stated that ultraviolet
light can activate the metal surface and then lead to a sooner
initiation and a faster rate of corrosion process [36].
+erefore, the influence of sunshine hours, an important
meteorological parameter, on the corrosion rate needs to be
considered in the predicted model. Moreover, ANN-based
explicit formulas or practical tools have not been proposed
to apply the ANN model for realistic engineering problems
so far.

+e purpose of this study is to develop a practical ANN
model, which can be readily applied for predicting the at-
mospheric corrosion rate (K) of carbon steel. A total of 240
experimental data samples are used to establish the ANN
model. Seven external factors, which are the average tem-
perature (T), average relative humidity (RH), total rainfall
(Rf), time of wetness (TOW), hours of sunshine (HoS), Cl− ,
and SO2 deposition rate, are considered as input variables of
the ANN model. +e performances of the ANN model are
also compared with those of three existing empirical for-
mulas and three regressionmodels. Moreover, the influences
of all input variables on the predicted corrosion rate are
investigated thoroughly. Eventually, an ANN-based equa-
tion and a graphical user interface (GUI) tool are established
to predict the atmospheric corrosion rate of carbon steel.

2. Data Collection

A set of 240 measured data samples of the atmospheric
corrosion under tropical climate conditions in Vietnamwere
used to build up the ANN model. +ese databases were
provided by the report of the Center for Material Failure
Analysis [37], in which the data points were recorded in
2 years. Seven parameters, namely, T, RH, Rf, TOW, HoS,
Cl− , and SO2, were involved as input parameters. It should
be noted that the atmospheric corrosion rate was measured
based on the weight loss of carbon steel samples. +e re-
lationship between corrosion rate (K) and weight loss is
expressed by the following equation [38]:

K �
m1 − m2

S × t
, (1)

where m1 and m2 are the weights of samples before and after
corrosion, respectively; S is the area of sample surface; t is the
corrosion time considered.

+e summary of the statistical properties of the input
parameters is presented in Table 1. It should be noted that
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the database used in this study was mostly focused on the
tropical monsoon climate, where steel is the most sus-
ceptible to corrosion. Figure 1 presents the histogram of
the used data samples. In addition, the relationships
between the atmospheric corrosion rate of carbon steel
and seven input parameters are represented by the cor-
relation matrix, as described in Figure 2. Based on this
figure, it can be found that some parameters had a strong
correlation such as RH and TOW or T and HoS. It is
attributed to the reason that the relative humidity is al-
ways accompanied by time of wetness, and temperature is
associated with the sunshine hour. Meanwhile, some
others were poorly correlated such as Rf and SO2 or TOW
and SO2 since their physical meanings have no connec-
tion. Moreover, the correlation between each single input
parameter and the output, K, appeared to be weak.

3. Existing Empirical Equations, Regression,
and ANN Models

3.1. Existing Equations for Predicting the Atmospheric
Corrosion Rate. In addition to regression models, the
existing formulas for calculating the corrosion rate are
presented in this study. +ree typical formulas proposed by
various studies [19, 21, 25] were used to obtain the atmo-
spheric corrosion rate of carbon steel. Table 2 summarizes
the empirical equations for calculating the atmospheric
corrosion rate of steel.

3.2. Regression Models. We also performed regression
models to calculate the corrosion rate based on the used
database. +e regression is normally employed to define a
relationship between variables. +e regression model can be
expressed by a general linear least-squares model as follows:

Y � a0 + a1z1 + a2z2 + · · · + amzm + e,

� [Z] ×[A] +[E]
(2)

where z1, z2, zm are basis functions; a0, a1, a2, am represent
the regression coefficients; e is the residual, while [E] de-
notes the residual matrix [39]; [A] is the matrix determined
by minimizing the mean squared difference between the
regression values and the actual experimental data; [Z] is the
input parameter matrix; A

∧
is the least-square estimate of [A],

and it is determined according to [40] and expressed as
follows:

􏽢A � [Z]
T
[Z]􏽨 􏽩 [Z]

T
[Y]􏽮 􏽯, (3)

where [Z]T is the transformation matrix of [Z]. +is study
has used linear, quadratic, and quadratic with mixed terms
regression models for input data. A summary of the forms
and coefficients of three regression models is presented in
Table 3.

3.3. Proposed ANN Model. ANN is capable of dealing with
various categories such as regression analysis, classification,
or data processing [41, 42]. Neurons are the smallest units in
an ANN model. An ANN model comprises (1) an input
layer, which contains input parameters, (2) single or mul-
tiple hidden layers, and (3) an output layer, which holds the
output result. Neurons transfer signals to other neurons
based on the signals they receive from other neurons. +us,
each neuron is connected to other neurons in the network
through these synaptic connections, whose values are
weighted. +e signals transmitting through the network are
strengthened or dampened by these weight values. It should
be noted that there is a bias and an activation in each neuron
[43]. +e input signal of neuron is represented by a vector as
x � [x1, x2, . . . , xm], while the weighted sum of the input
vector is determined by z ∈ R, as shown in equation (7).

z � 􏽘
d

i�1
wixi � w

T
x + b, (4)

where w � [w1, w2, . . . , wd] ∈ Rd is the vector of weight in
the d-dimension; b denotes the bias.

An activation function in the network determines the
transformation of the weighted sum of the input into an
output from a node or nodes in a layer of the network.
Activation functions also support normalizing the output of
any input in the range [1, −1] or [0, 1]. +e selection of
activation functions is depending on the problem purpose.
Some typical activation functions such as sigmoid and tanh

forms can be used in the hidden layer of the recurrent neural
network [44]. Since this study focuses on the prediction
problem, the hyperbolic tangent sigmoid function, so-called
tansig, and a linear activation function, namely, purelin, are
employed, as expressed by equations (5) and (6). It should be
noted that the tansig function is used in the hidden layer,
while the purelin function is utilized in the output layer.
+ose functions were also used for training neural networks
in previous studies [45–47].

Table 1: Statistic properties of the experimental data.

Input variable
T RH TOW Cl− SO2 Rf HoS K

(0C) (%) (hrs) (mg/m2.day) (mg/m2.day) (mm) (hrs) (g/m2)

(X1) (X2) (X3) (X4) (X5) (X6) (X7) (Output)
Min 17.400 65.000 112.237 5.641 5.141 10.700 36.300 20.429
Mean 25.538 82.042 445.408 12.886 8.197 213.079 146.242 22.830
Max 32.800 91.000 618.809 25.854 10.566 1163.700 270.800 25.267
SD 4.424 6.921 136.214 6.220 1.684 306.325 64.788 1.076
COV 0.173 0.084 0.305 0.482 0.205 1.437 0.443 0.047
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Figure 1: Histograms and normal distribution curves of experimental datasets (noting that the red curves represent the normal distribution
of data).
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Figure 2: Correlation between input parameters in the dataset.

Table 2: Formulas for calculating the atmospheric corrosion rate of carbonic steel.

Reference Formulas
Knotkova et al. [19] and Roberge et al. [21] K � 1.327 + 0.4313(SO2) + 0.1384(Cl− ) + 0.0057(TOW) (2)
ISOCORRAG [25] K � 0.31(SO2) + 0.57(Cl− ) + 0.31(TOW) (3)
MICAT [25] K � 0.30(SO2) + 0.69(Cl− ) (4)

Table 3: Forms and coefficients of three regression models.

Regression model Function type, y Regression coefficient

First order (MLR1) a0 + a1X1 + · · · + a7X7

a0 � 15.594, a1 � 0.060, a2 � 0.001
a3 � 0.334, a4 � 0.041, a5 � 0.275
a6 � 0.002, a7 � 0.001, R

2
� 0.9330

Quadratic order (MLR2) a0 + a1X1 + · · · + a7X7+

+a11X
2
1 + a22X

2
2 + · · · + a77X

2
7

a0 � 81.698, a1 � 0.194, a2 � 0.001
a3 � 0.134, a4 � 0.040, a5 � 0.275
a6 � 0.018, a7 � 0.001, a11 � 0.001
a22 � 0.021, a33 � 5.56e − 05, a44 � 7.67e − 05
a55 � 5.66e − 03, a66 � −2.43e − 07, a77 � −9.86e − 06
R
2

� 0.93345.

Quadratic with mixed terms (MLR3)
a0 + a1X1 + · · · + a7X7+

+a11X
2
1 + a22X

2
2 + · · · + a77X

2
7+

+a12X1X2 + · · · + a67X6X7

a0 � 47.301, a1 � 0.1e − 07, a2 � 0.1e − 07
a3 � 0.1e − 07, a4 � 0.1e − 07, a5 � 0.1e − 07
a6 � 0.1e − 07, a7 � 0.1e − 07, a11 � 0.1e − 07
a22 � 0.1e − 07, a33 � 0.1e − 05, a44 � 0.008
a55 � 0.0, a66 � 2.5e − 06, a77 � 2.7e − 05
a12 � −0.003, a13 � 5.7e − 05, a14 � 0.019
a15 � 0.0, a16 � −0.001, a17 � 3.4e − 05
a23 � −0.001, a24 � −0.017, a25 � 0.022
a26 � 6.64e − 05, a27 � −0.002, a34 � 1.62e − 04
a35 � −0.002, a36 � −7.49e − 05, a37 � 3.4e − 04
a45 � 0.0, a46 � 2.94e − 05, a47 � 8.23e − 05
a56 � 8.56e − 05, a57 � −0.005, a67 � −2.38e − 05
R
2

� 0.93519
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y � tansig(x) �
2

1 + e
− 2x

− 1, (5)

y � purelin(x) � x. (6)

According to Golafshani and Ashour [48], normalizing
the database in a range of [−1, 1] before training is required.
+e normalization of input variables is determined by the
following expression:

xn � 2 ×
x − xmin( 􏼁

xmax − xmin( 􏼁
− 1, (7)

where x is the considered input variable, xn is the nor-
malization of variable, and xmin and xmax denote the min-
imum and maximum of the variable in the dataset,
respectively.

For the proposed ANN model in this study, seven pa-
rameters, namely, T, RH, Rf, TOW, HoS, Cl− , SO2, are
considered as the input variables, whereas the atmospheric
corrosion rate of carbon steel, K, is the output variable. +e
two following steps are implemented for training ANN
model:

Step 1. +e input signals, after entering into the input layer,
are transferred through the connections, from the hidden
layer to the output layer.

Step 2. +e predicted result is obtained from the feedforward
process; however, we need to minimize the error, which uses
the mean square error (MSE) indicator. To diminish this
error, the iteration is conducted till a convergence is obtained.
+is step is for minimizing the error and obtaining an optimal
model. +is procedure is called back-propagation. +e MSE
value is calculated using the following equation:

MSE �
1
n

􏽘

n

i�1
pi − ti( 􏼁

2
, (8)

where n is the number of training data samples; pi and ti

represent the predicted and target values of the ith sample,
respectively.

Overfitting describes the phenomenon of a model adapting
too well to the training data such that it cannot predict unseen
data samples well. +erefore, the model will fail to predict the
output of data outside of the used training set. Accordingly, this
phenomenon hinders the performance accuracy of the model
and causes a deviation of the predicted result. To prevent such
problem, the regularization solution is employed to modify the
error function using the following equation [47, 49]:

MSEREG � cMSE +(1 − c)MSWB, (9)

where c is the performance ratio; MSWB represents the
mean squared network weights and biases, which is
expressed as follows:

MSWB �
1
n

􏽘

n

j�1
ω2

j . (10)

To optimize the performance of the predictive model, an
efficient ANN model has to be determined using trial-and-
error process. Various ANN architectures were tested with
the training ratio varying from 0.6 to 0.85 and a wide range
of neuron numbers in the hidden layer. It should be noted
that only one hidden layer was used in testing ANN models.
In this study, the Levenberg-Marquardt (i.e., damped least-
square) algorithm was utilized for regulating weights and
biases of ANNmodels [50].+e advantages of this algorithm
are solving nonlinear least-squares problems, robustness,
and obtaining rapid convergence [51]. +is algorithm was
also widely used in previous studies [43, 46, 47, 52–55]. To
assess the ANN models, two indicators, which are the R2

value and MSE, were quantified. Accordingly, the optimum
ANN model contains largest R2 and smallest MSE after
training process was chosen. It should be noted that the
proportion, 70%, 15%, and 15% of the dataset, was employed
in training, testing, and validation, respectively.

+e number of neurons in the hidden layer is an im-
portant factor to train the ANNmodel.+e best ANNmodel
for experimental data was achieved by a sensitivity analysis.
+e number of neurons in the hidden layer was varied from
5 to 21 to obtain the optimumANNmodel. After performing
the sensitivity analysis, the best model with 10 neurons in the
hidden layer was chosen, as illustrated in Figure 3.

Figure 4 shows the structure of the proposed ANN model.
In thismodel, seven neurons in the input layer denote the seven
input variables (shown in Table 1), and one neuron in the
output layer represents the atmospheric corrosion rate of
carbon steel. It should be noted that the developed ANNmodel
and its performance were conducted using MATLAB [56].

4. Results and Discussion

4.1. ANN Model Performance. +e performance of the
proposed ANN model is shown in Figure 5, in which MSE
for training, validating, and testing decrease with an in-
crement of the epoch. +e best validation performance was
selected since MSE was reduced to 1.7814 × 10− 3 at the 4th

epoch. A small value of the squared error indicates that the
ANN model was well trained.

Figure 6 shows the regression of the developed ANN
model, in which the output and target results are highly
matched. +e R2 values for training, testing, validation, and
all-data regression are 0.9998, 0.9998, 0.9999, and 0.9998,
respectively. It is observed that the R2 values were mostly
close to unity, highlighting that the proposed ANN model
has a good performance. In other words, the ANN model
was highly reliable in predicting the atmospheric corrosion
rate of carbon steel.

Figures 7–10 show the comparisons of the atmospheric
corrosion rate of carbon steel obtained from the ANN model
and numerical data for all-data, training, testing, and validation.
+e red lines in the left subfigures show the normalizedK values
predicted based on the ANN model; meanwhile the blue lines
demonstrate the measured values of all-data samples, training,
testing, and validation sets. Moreover, the right subfigures
describe the corresponding errors of the comparisons. +e
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errors were shown to be trivial, mostly smaller than 0.08. Again,
it was demonstrated that the ANN model determined the at-
mospheric corrosion rate of carbon steel accurately. Even
though the ANN performance results were compared with the
validation dataset, cross-validation should be considered.
However, due to the limitation of the developed algorithm,
cross-validation was not performed in this study.

4.2. Comparison between the Developed ANN Model and
Existing Formulas. +e results obtained from the ANN
model were compared with those of the regression models
and existing formulas. +ree regression models presented in
Table 2 and existing formulas in Table 3 were utilized. To
evaluate the performances of all predictive models, four
indicators, which are RMSE, mean absolute percentage error
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Figure 6: Regression results of the optimal ANNmodel. (a) All-data: R2 � 0.9998. (b) Training: R2 � 0.9998. (c) Validation: R2 � 0.9998.
(d) Testing: R2 � 0.9999.
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Figure 7: All-data performance.
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Figure 8: Training data performance.
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Figure 9: Testing data performance.
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(MAPE), R2, and Pearson correlation coefficient (r), were
employed. +ese indicators are calculated by the following
equations:

RMSE �
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(11)

where ti and oi are the target and output of the ith sample,
respectively; n is the number of samples.

It should be noted that the RMSE and MAPE values
represent the mean of errors, whereas, the R2 and r values
were used to measure the variation and linear correlation
between predicted and actual data, respectively. +e higher
values of R2 and r and the lower values of RMSE and MAPE
indicate a good performance of the predictive model. If the
predictivemodel is perfect, the values of R2 and r are equal to
1.0, and the error is zero. Figure 11 shows the calculated
values of statistical parameters with various predictive
models. It is clear that the ANN model has the smallest
values of RMSE and MAPE and largest values of R2 and r,
followed by quadratic regression models. In other words, the
ANN model is superior in predicting the corrosion rate of
carbon steel compared to the other models. Moreover, an
overall performance of all predictive models is illustrated in
Figure 12. Again, it is observed that the proposed ANN
model contains the smallest standard deviation, followed by
the regression models and predictive models proposed by

Knotkova et al. [19], Roberge et al. [21], and ISO andMICAT
[25]. Details of the calculated results can be seen in Table 4.

Table 5 also shows the statistical results of different ratios
of the predictive models to test results. It demonstrates that
the mean ratio of the ANN model was 1.0002, mostly equal
to unity, and the standard deviation was lowest compared to
those of other models. Again, the ANN model was shown to
be the optimal and reliable option in predicting the cor-
rosion rate of carbon steel.

5. Evaluation of the Effects of Input Parameters

A parametric study was carried out to evaluate the influences
of input parameters on the atmospheric corrosion rate of
carbon steel using the developed ANNmodel. To account for
the interaction of multiple parameters on calculated K, the
considered variable was varied from the lowest to the highest
range, and simultaneously other variables were changed in
turn. It should be noted that the L, ML,M,MH, andH letters
in Table 6 are the abbreviations of the lowest, middle-low,
mean, middle-high, and highest values, respectively. Con-
sequently, the variations of the predicted result caused by the
variation of the input parameters were quantified.

5.1. Effect of the Average Temperature. Figure 13 shows the
effects of the average temperature (i.e., X1) on the at-
mospheric corrosion rate of carbon steel, K. During the
variation of the average temperature T, other parameters
were varied in turn to evaluate the effects of the inter-
action between T and other variables on K. It was found
that the increment of the average temperature caused an
increase in the atmospheric corrosion rate of carbon steel.
If T was 1.5 times increased, the K value was increased by
10%. +is observation can be attributed to the reason that
the increment of temperature can intensify the chemical
reaction, which may boost the corrosion process in the
carbon steel.
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Figure 10: Validation data performance.
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5.2. Effect of the Average Relative Humidity. +e effects of the
average relative humidity (i.e., X2) on the atmospheric cor-
rosion rate of carbon steel are shown in Figure 14. +e cor-
rosion rate was gradually increased when the average relative
humidity increased in all cases. Specifically, the corrosion rate
was not affected by relative humidity at low temperature, short
time of wetness, low level of SO2, and short time of sunshine.

5.3. Effect of the Time of Wetness. +e time of wetness (i.e.,
X3) depends on the temperature, humidity, total rainfall, and
hours of sunshine. TOW had been identified according to
the suggestion of Tidblad and Mikhailov [57]. +e effects of
TOW on the atmospheric corrosion rate of carbon steel are
shown in Figure 15. Similar to T, the corrosion rate K value
was enlarged as TOW increased. +is is consistent with the
previous study [35].

5.4. Effect of theAverageChloride. +e effects of the average
chloride (i.e., X4) on the atmospheric corrosion rate of
carbon steel are shown in Figure 16. It was found that the
corrosion rate was increased with the increment of Cl− . It
can be attributed to the reason that the passivation film of
steel can be damaged by chloride ions in the process of
competing with hydrogen and oxygen ions in the ab-
sorption process, thus causing the occurrence of pitting
corrosion [58].

5.5. Effect of the Average Sulfur Dioxide Deposition Rate.
Figure 17 shows the effects of the average sulfur dioxide
deposition rate (i.e.,X5) on the atmospheric corrosion rate of
carbon steel. +e atmospheric corrosion rate of carbon steel
increased as the SO2 rate increased. +is is due to the at-
tribution of SO2 to react with H2SO4 in the atmosphere or on

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RM
ES

 (m
g/

m
2)

[19,21]ISO MICAT MLR3MLR2MLR1ANN
Model

Test data
Validation dataTraining data

All data

(a)

0

0.05

0.1

0.15

0.2

0.25

M
A

PE
 (%

)

[19,21]ISO MICAT MLR3MLR2MLR1ANN
Model

Test data
Validation dataTraining data

All data

(b)

Test data
Validation data

0

0.2

0.4

0.6

0.8

1

R2

Training data
All data

ISO [19,21] MICAT MLR1 MLR2 MLR3ANN
Model

(c)

r

0

0.2

0.4

0.6

0.8

1

Test data
Validation dataTraining data

All data

[19,21]ISO MICAT MLR3MLR2MLR1ANN
Model

(d)

Figure 11: Calculated statistical parameters of predicted models.
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the surface of carbon steel. Combining with high humidity
or wetness, the damage caused by SO2 would be considerable
[59].

5.6. Effect of the Total Rainfall. Figure 18 shows the influ-
ences of the total rainfall (i.e., X6) on the atmospheric
corrosion rate. It can be observed that the atmospheric
corrosion rate of carbon steel was increased, since Rf varied
from the minimum to the maximum value. Moreover, the K
value was increased by 6% if the total rainfall increased 6
times. In the tropical climate region, due to the annual high
rainfall, a consideration of the effects of rainfall on the
corrosion rate is needed.+is statement was also pointed out
in previous studies [30, 60].

5.7. Effect of the Hours of Sunshine. Figure 19 shows the
effects of the hours of sunshine (i.e., X7) on the atmospheric
corrosion rate of carbon steel. It was found that the at-
mospheric corrosion rate was decreased with an increment
of HoS. +is observation is probably due to the reason that
the sunshine hours have a strongly negative correlation with
the relative humidity and time of wetness, as shown in
Figure 2. Moreover, the corrosion mechanism of carbon
steel in the tropical region is a complex combination of
chemical and physical conditions.

Figure 20 demonstrates the sensitivity of input variables
to the atmospheric corrosion rate of carbon steel. It should
be noted that the K value in this figure was achieved at the
upper bound (i.e., maximum) of each input parameter. It
was observed that the rainfall was the most influential

parameter on predicting the atmospheric corrosion rate,
followed by the time of wetness, the average temperature, the
average sulfur dioxide deposition rate, the average chloride,
and average relative humidity. Meanwhile, the sunshine
duration negatively affected the atmospheric corrosion rate.

6. Practical Tools for the Atmospheric
Corrosion Rate of Carbon Steel

6.1. ANN Model-Based Equation. As analyzed above, the
proposed ANN model can predict the atmospheric corro-
sion rate of carbon steel accurately. It is needed to develop an
ANN-based formula for explicit usage in the practical
problems. Considering the K value as the output response,
the procedures presented in the previous sections were
adopted herein. +e explicit formulation of K was obtained
directly from the developed ANN model by using the ac-
tivation functions, weights, biases, and normalization fac-
tors, expressed as

K � 2.419 × KN + 1( 􏼁 + 20.429, (12)

where KN is a normalized atmospheric corrosion rate of
carbon steel. +e form of equation (12) comes from the
denormalization procedure of equation (3). As a result, the
value of 20.429 is the minimum value of the atmospheric
corrosion rate of the database. +e value of 2.419 is a half of
the difference of maximum and minimum atmospheric
corrosion rate values of database, as shown in Table 1. +e
normalized value KN was a function, which is expressed by
the following equation:

KN � h0 + 􏽘
n

i�1
hiHi, (13)

Hi � tanh cio + ci1X1 + ci2X2 + ci3X3 + ci4X4 + ci5X5 + ci6X6 + ci7X7( 􏼁, (14)
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Table 5: Statistical characteristics of different predicted models, in which they are normalized with the test result.

Parameter Knotkova/test ISO/test MICAT/test MLR1/test MLR2/test MLR3/test ANN/test
Mean 0.9323 0.9318 0.9365 0.9312 1.0007 1.0005 1.0002
Standard deviation 0.0223 0.0220 0.0223 0.0225 0.0122 0.0121 0.0121
Coefficient of variation 0.0005 0.0005 0.0005 0.0005 0.0001 0.0001 0.0001

Table 6: +e variation range of input parameters.

Input parameters L ML M MH H
T (oC) (X1) 17.400 21.469 25.538 29.169 32.800
RH (%) (X2) 65.000 73.521 82.042 86.521 91.000
TOW (hrs) (X3) 112.237 278.823 445.408 532.109 618.809
Cl− (mg/m2.day) (X4) 5.641 9.263 12.886 19.370 25.854
SO2 (mg/m2.day) (X5) 5.141 6.669 8.197 9.382 10.566
Rf (mm) (X6) 10.700 111.890 213.079 688.390 1163.700
HoS (hrs) (X7) 36.300 91.271 146.242 208.521 270.800
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Figure 13: Continued.
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Figure 13: Effects of the average temperature.
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where n � 10 is the number of neurons in the hidden layer of
developed ANN model. +e other coefficients, h0 to hn and
cio to ci7, are presented in Table 7.

6.2. ANN Interactive Graphical User Interface (GUI). In this
study, a practical GUI tool was constructed using MATLAB
[56] to simplify calculating the atmospheric corrosion rate of
carbon steel, as shown in Figure 21. Seven input parameters,
from X1 to X7, were provided in the input signal. Also, ten
neurons in the hidden layer are shown in Figure 21.+is tool
is accessed freely, and it is very convenient to use. Users can

easily obtain the output by clicking on the “Start Predict”
button after putting all input parameters. It takes less than
one second to obtain the result. Since this GUI tool was
developed using the proposed ANN model, the accuracy of
prediction was verified and demonstrated in the previous
section. +is GUI tool is freely available at https://github.-
com/duyduan1304/GUI_corrosionrate.

It should be noted that the ANN algorithm cannot tackle
extrapolation; thus the input values should be restricted to
the minimum and maximum of the utilized database. To
expand the coverage of ANN model, a wide range of col-
lected data should be considered.
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Figure 14: Effect of the average relative humidity.
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Figure 15: Effects of the time of wetness (TOW).
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Figure 16: Effect of the average chloride deposition rate.
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Figure 17: Effect of the average sulfur dioxide deposition rate.
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Figure 18: Effects of the rainfall.
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Figure 19: Effects of the hours of sunshine.
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Figure 21: Practical GUI tool for predicting K.

Table 7: Coefficients for formulation of the atmospheric corrosion rate.

i hi cio ci1 ci2 ci3 ci4 ci5 ci6 ci7

0 0.0493
1 0.0894 2.0629 −1.0393 0.9389 0.1480 0.6153 0.8763 0.4277 0.6584
2 −0.1287 1.5126 −0.1523 1.2986 0.8260 0.9740 −0.4331 −0.2793 0.6598
3 −0.0497 −0.9743 0.4505 0.5804 −0.2783 0.1327 0.2816 0.1549 −1.7495
4 0.9864 −0.0732 −0.0674 −1.0076 1.3142 0.1547 0.0209 0.6745 0.3935
5 −0.3221 −0.0563 0.2031 0.3162 1.0973 −0.9569 −1.0679 0.5407 0.5098
6 −0.2042 −0.0721 1.0733 −0.8696 0.9764 1.1741 −0.3816 −0.2964 −0.2766
7 0.5900 0.7026 0.6368 −0.3613 −0.4065 −0.1896 −0.7083 0.6785 −0.7133
8 0.0918 1.5238 0.9555 0.3775 −0.2519 −0.9748 0.8895 −0.4711 1.0209
9 0.1518 −1.2355 −0.5890 0.7354 −1.1184 1.0177 −0.2707 0.3039 −0.5342
10 0.1086 2.3844 0.3684 0.7974 0.7287 0.8352 0.7734 0.3575 −0.5042
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7. Conclusions

A practical ANN model was developed to predict the at-
mospheric corrosion rate of carbon steel based on a set of
240 experimental data samples. +e results of the proposed
model were compared with those of three regression models
and three existing formulas. Additionally, a series of para-
metric studies were performed to evaluate the effects of input
parameters on the atmospheric corrosion rate.+e following
conclusions are drawn:

+e developed ANN model in this study predicted the
atmospheric corrosion rate of carbon steel more ac-
curately than the regression models and existing
equations. +e accuracy of the model was verified by
the statistical properties including RMSE, MAPE, R2,
and r value.
+e rainfall and hours of sunshine were the most in-
fluential parameters on predicting the atmospheric
corrosion rate. Meanwhile, the average chloride ion, the
average temperature, and the time of wetness were less
sensitive to the atmospheric corrosion rate.
An ANN model-based formula, which considered all
seven input parameters, was proposed to calculate the
atmospheric corrosion rate of carbon steel.
A graphical user interface tool was developed and easily
applied for simplifying the prediction of the atmo-
spheric corrosion rate of carbon steel.
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