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Abstract: As the cornerstone of intelligent transportation systems, accurate traffic prediction can
reduce the pressure of urban traffic, reduce the cost of residents’ travel time, and provide a reference
basis for urban construction planning. Existing traffic prediction methods focus on spatio-temporal
dependence modeling, ignoring the influence of weather factors on spatio-temporal characteristics,
and the prediction task has complexity and an uneven distribution in different spatio-temporal
scenarios and weather changes. In view of this, we propose a weather interaction-aware spatio-
temporal attention network (WST-ANet), in which we integrate feature models and dynamic graph
modules in the encoder and decoder, and use a spatio-temporal weather interaction perception
module for prediction. Firstly, the contextual semantics of the traffic flows are fused using a feature
embedding module to improve the adaptability to weather drivers; then, an encoder–decoder is
constructed by combining the Dynamic Graph Module and the WSTA Block, to extract spatio-
temporal aggregated correlations in the roadway network; finally, the feature information of the
encoder was weighted and aggregated using the cross-focusing mechanism, and attention was paid
to the hidden state of the encoding. Traffic flow was predicted using the PeMS04 and PeMS08 datasets
and compared with multiple typical baseline models. It was learned through extensive experiments
that the accuracy evaluation result is the smallest in WST-ANet, which demonstrated the superiority
of the proposed model. This can more accurately predict future changes in traffic in different weather
conditions, providing decision makers with a basis for optimizing scenarios.

Keywords: urban traffic flow prediction; weather interaction perception; graph attention network;
dynamic spatio-temporal dependence; attention

1. Introduction

Due to rapid urban development and the emergence of the population siphoning
effect, urban transportation systems have become more complex. The capacity of the
existing road network has gradually become unable to handle such a heavy load, which
has triggered more transportation-related problems, including traffic congestion and traffic
accidents. Traffic congestion [1–3] is an urbanization problem that co-exists worldwide.
In order to promote green and sustainable development, traffic forecasting is a key en-
abler of Intelligent Transportation Systems (ITS) [4–6]. Through excellent data storage and
monitoring systems, ITS seeks to be an important guide in traffic management, conges-
tion alleviation, and other transportation-related issues [7]. The inherent non-Euclidean
structure of transportation data makes the dependency and complexity of spatio-temporal
data challenging [8]. As shown in Figure 1, there are direct or indirect correlations between
the nodes in a road network [9]. In terms of spatial structure, nodes in different spatial
locations have different impacts on their surrounding nodes. When a node is congested, it
can have an impact on the surrounding upstream and downstream neighboring nodes, and
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on the traffic flow to and from the outbound lanes. For example, a localized area with the
intersection node, Ptr2, as the center of congestion radiates to Ptr1, Ptr3, and Ptr5, such that
these three nodes are directly affected by the congestion source from Ptr2. In the case of a
single road segment node, the nodes associated with that node are sparse and the impact
caused by localized congestion is not significant. For example, a localized area with the
road segment node, Ptr4, as the center of congestion radiates to Ptr3, causing that node
to be directly affected by the congestion from the Ptr4 congestion source. In terms of the
temporal structure, the traffic characteristics of the different nodes change over time due to
the dynamic nature of the time series. Typically, the intersection nodes carrying a heavy
traffic volume have a stronger traffic timing than the nodes carrying a light traffic volume;
during peak hours, the interaction between the nodes on certain roads is stronger than
during the rest time. For example, the change of node Ptr2 at the previous moment t − 1
and the next moment t is more significant compared with Ptr1.
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Figure 1. Spatial and temporal relationships of road network nodes. (i) Correlation in space. The flow of
a node (e.g., Ptr2) at the moment is influenced by the flow of its upstream node (Ptr1) before the moment,
and also affects the flow of the downstream nodes (Ptr3, Ptr5) after the moment. (ii) Temporal correlation.
The flow of a node at the moment is correlated with its own state before the moment.

From a macro perspective, early methods used traditional time series [10,11] or ma-
chine learning models [12] to perform forecasting tasks. These techniques have poor
prediction accuracy and are unable to capture detailed, unpredictable spatio-temporal
connections [13]. Convolutional Neural Networks (CNNs) [14,15] and Recurrent Neural
Networks (RNNs) [16] are two illustrations of deep learning models that have success-
fully predicted spatio-temporal correlations and have surpassed typical methods in recent
years. CNNs cannot be applied to graph-based structured data, which includes traffic
network flow prediction; therefore, this is a shortcoming of these means of communication.
Recently published studies have targeted traffic prediction as a graph modeling problem,
exploiting graphs that represent spatial correlations between nodes and capturing spatio-
temporal interactions in traffic networks. The successful application of Graph Convolution
Networks (GCNs) in graph processing illustrates how to utilize GCNs in constructing pre-
diction models that perform very well in terms of prediction accuracy. GCNs work mainly
by modeling the correlation of the traffic nodes to extract the traffic flow of spatio-temporal
features [17]. The adjacency matrix is used in traditional GCNs to simulate the spatial
cooperation between multiple nodes. Rather than using the generalized adjacency matrix,
a number of investigators have found that the physical characteristic of distance between
nodes more accurately reflects the physical distribution of the nodes [18,19]. Despite being
extensively used to construct GCNs and their variations, the two referred-to matrices that
take node connections into account still have two weaknesses: static feature extraction
and short-term feature temporal extraction. Although traffic nodes reside across the road
network, there is a stressful logical mapping between the data stored on different nodes.
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It is possible to lose the dynamic connection between the nodes when dealing with confus-
ing traffic data if the adjacency matrix or the distance matrix serve to symbolize the complex
relationship. In addition, the complex spatial relationship between traffic nodes in different
regions not only depends on the distance between the nodes, but also on the external multi-
factors that have the same influence on the spatial relationship, such as weather [20,21],
POI [22], and social events [23]. Moreover, the time-dependent relationship may not only be
associated with a fixed periodicity; the weather factors also exist in the temporal sequence,
and this fitted sequence of features has the same effect on the time-dependence of traffic.
It becomes difficult to represent the interactions involving nodes as outside forces in the
prediction model using purely the traditional adjacency matrix [19]. Therefore, the deep
spatio-temporal relationship characteristics embedded in the external factors can be used
to dissect the complexity of the transportation road network at a fine-grained level, thus
improving the comprehensiveness of traffic forecasts.

Accurate traffic forecasting allows city managers to better plan resource allocation for
road development and safety, saving commuters valuable time. To overcome these limitations
and accomplish a dynamic and thorough spatio-temporal dependency extraction, we propose
a weather interaction-aware spatio-temporal attention network (WST-ANet), in which we
integrate feature models and dynamic graph modules in the encoder and decoder, and use a
spatio-temporal weather interaction perception module for prediction. In particular, the model
can learn the spatio-temporal correlation between the meteorological and transportation nodes,
build a spatio-temporal feature and spatio-temporal attention multi-graph network model
based on meteorological data sensing, and extract the relevant features using the channel
attention mechanism. Meanwhile, we built a spatio-temporal dynamic spatial network that can
effectively extract deep dynamic spatial dependencies by repeatedly updating the relational
connections. Furthermore, by employing spatio-temporal attention to capture spatio-temporal
dependencies, we can apply the attention mechanism to enhance the significance of spatio-
temporal information and improve prediction outcomes. The main contributions of this paper
are summarized as follows:

• We utilized the proposed the WST-ANet model, which consists of a spatio-temporal
attention module for weather interaction sensing and a cross-attention mechanism.
The model adaptively simulates the complex spatio-temporal interdependencies be-
tween weather and traffic using an encoder–decoder architecture, with an attention
mechanism to achieve dynamic spatio-temporal and complex-dependent traffic predic-
tion incorporating weather factors. This allows the model to adaptively focus on the
spatial and temporal characteristics of the region, realizing the capture of the dynamic
spatial and temporal characteristics of the road network, thus improving the accuracy
of the prediction.

• We designed a new DGM, a dynamic graph module that adaptively captures the
connectivity relationships of road networks on a spatial level, mines the adaptive
graph for hidden information, and extracts the spatial correlations among the nodes
step by step in depth. This method updates the adjacency matrix and iterates the
aggregation of features to better fit the dynamic scenarios of urban road networks,
thus improving the robustness of the prediction.

• We constructed an interactive perception fusion method of weather features and
spatio-temporal features. The vector embedding was utilized to fuse temporal fea-
tures, spatial features, and weather attributes to generate contextual semantics on
exogenous weather-driven multimodal feature embedding. This spatio-temporal
scenario synergizes weather changes to learn the multimodal urban road network
characteristics and comprehensively grasp the weather and spatio-temporal interactive
fusion of the traffic conditions in the city.

• In order to validate the effectiveness of the proposed model, we conducted compre-
hensive comparison experiments and prediction validation with 14 baseline models
on two datasets.
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The rest of the paper is organized as follows: Section 2 describes the progress made during
the different phases of traffic prediction research; Section 3 details the proposed model, as well
as the components; Sections 4 and 5 conduct experiments using real traffic data to evaluate
the performance of the model and the analysis of results; Section 6 concludes the paper and
summarizes the plans for further work in the future.

2. Related Work

Traffic prediction studies are important and instructive in the broader field of trans-
portation and urban planning. The methods used for traffic prediction are endless, from
the initial use of statistical methods for time-series prediction, to the later use of neural
network models for spatial feature prediction, and now, the integration of deep learning
techniques for spatio-temporal prediction, which is more mature.

2.1. Time-Series Traffic Forecasting

The emergence of data streams in the past century has led to rich and extensive re-
search work by researchers on time-series prediction [24]. This temporal characterization
of data is applicable to several domains, such as finance, healthcare, and stocks. In par-
ticular, the application of such time-series characterization research methods is maturing
in the field of traffic prediction [25]. Traditional traffic prediction methods are model-
driven, based on the use of linear pure control system theoretical approaches, such as
vector auto-regression (VAR) [10], historical averaging models (HAs) [26], autoregressive
integrated moving average models (ARIMAs) [27], and Kalman filtering techniques [28].
Usually, these modeling assumptions require the stability of the target data; therefore, this
stable structured state cannot effectively manage nonlinear data. In the traffic prediction task,
the traffic state of the road network had both temporal and spatial dependencies; moreover,
there were complex dynamic spatio-temporal dependencies in the traffic data. Traditional
model-driven methods cannot describe the spatio-temporal nature of traffic scenarios.

In addition, deep learning techniques de-constructed through neural network structures,
such as recurrent neural networks (RNNs) [16], long short-term memory (LSTM) [29], and
gated neural units (GRUs) [30], have shown superior performance in capturing the correlation
of temporal units. However, the common problem of these research works is that they only
consider the time series and ignore the spatial information on traffic features. Therefore, the
single consideration of the temporal sequence of traffic has significant limitations in predicting
the wholeness and completeness of the traffic characteristics of a road network. This limitation
fundamentally stifles the application of global road networks in transportation.

2.2. Space–Time Traffic Forecasting

With the concept of spatio-temporal features, graph topology modeling for trans-
portation research has become a research point of growing interest. The non-Euclidean
structure of urban road networks is modeled through edges and nodes, and these upstream
and downstream node relationships enable the effective representation of convolution
operations on unstructured nonlinear spatial data. Taking the graph convolution network,
GCN [17,31], as an example, this spatial convolutional layer utilizes Fourier transform or
Laplace transform for feature aggregation and extraction, and the attention mechanism [32]
is added on top of the GCN to generate a constrainable graph attention network GAT [33].
In addition, Guo et al. [34] combined the attention mechanism with spatio-temporal graph
convolution using a spatio-temporal graph convolutional network of attention, to construct
a convolutional model capable of capturing spatio-temporal features and spatio-temporal
dynamic correlations. Song et al. [35], Luo et al. [36], and Li et al. [37] performed research
work based on the ASTGCN model. Cirstea et al. [38] proposed a spatio-temporal percep-
tual attention network (ST-WA), which randomly encoded time series to generate location-
specific and time-varying model parameters to better capture spatio-temporal dynamics.
Bai et al. [39] proposed an adaptive graph convolutional recursive network (AGCRN) to
capture spatio-temporal dynamics through adaptive graph generation and node-adaptive
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parameter learning, to augment traditional graph convolution and incorporate it into a neu-
ral network with recurrent operation to capture more complex spatio-temporal correlations.
Wu et al. [40] proposed a Graph WaveNet combining diffusion convolution and extended
stochastic convolution. Zhao et al. [41] considered spatio-temporal depth relations mining
at the location level. Bao et al. [42] characterized dynamic spatio-temporal features by
constructing complex correlation matrices through multi-feature and attention mechanisms,
based on spatio-temporal complex graph convolutional networks. However, these investi-
gations only assessed distance and disregarded the spatio-temporal structure of the graph,
as well as the impact of the surroundings components on traffic flow, resulting in the
inability to make accurate traffic predictions.

2.3. Spatio-Temporal Traffic Prediction with Embedded Factors

Traffic situations face different variations along with the presence of multi-source het-
erogeneous environmental factors, such as points of interest (POIs) [22], social events [23],
and weather [21,43,44]. Embedding these factors into the traffic scenarios, the spatio-
temporal model driven by environmental factors is more relevant to urban traffic, and at
the same time, there is an improvement in stability. For example, Geng et al. [45] used POI
information to predict spatial features. Zheng et al. [46] constructed a Graph Multi-Man
Attention Network (GMAN) using an encoder–decoder structure, which consisted of a
module with multiple spatio-temporal attention blocks that simulated dynamic spatial and
temporal connections by utilizing attention in the procedures. Zou et al. [47] combined
GMAN to conduct a large number of prediction studies. Zhang et al. [48] used one-hot
coding and combined temporal information with weather for prediction. Wang et al. [49]
constructed a graph attention network that effectively extracted weather-driven spatio-
temporal features by convolving weather with spatio-temporal feature modules. However,
exploring the dynamic spatio-temporal dependency between traffic and weather, the model
of utilizing this complex dependency in traffic prediction remains unresolved effectively.

3. Methodology
3.1. Problem Description

The basic case of traffic forecasting is to make scientifically sound predictions of future
traffic conditions based on historical data. Traffic flow can be quantified to reflect the
complexity between roads, relying on the basic theory of graphs, and traffic prediction,
by considering the city as a network structure. Therefore, the traffic road network can be
symbolized as an undirected graph, G = (V, E, A), where V = {v1, v2, . . . , vN} denotes the
collection of road nodes in the road network structure, and N denotes the number of road
nodes. E denotes a collection of edges connecting the different sensors, which can reflect
the association between the road network sections. All the connectivity information is
stored in the abstract primitive adjacency matrix, A ∈ RN×N , which is used to measure the
spatial correlation dependency between several nodes. The corresponding element in the
adjacency matrix is 1 when nodes i and j are adjacent to each other, and the corresponding
element in the adjacency matrix is 0 when nodes i and j are not adjacent to each other.
The traffic condition at time step, t, is represented as the graph signal, Xt ∈ ℜN×C, on the
graph, G, where C is the number of characteristics of the road condition to be reviewed (e.g.,
traffic flow, traffic speed). In the present research, only the traffic flow was investigated.

Given the traffic network, G, the historical traffic flow, χh = [XH+1 , · · · , XH+P] ∈
ℜP×N×C, predicts the future traffic flow, χ̂p = [XH+P+1 , · · · , XH+P+Q] ∈ ℜQ×N×C,
with time step TP on the basis of the time step, TH , of the given traffic network, G. This
prediction process was reflected by a certain mapping function relation, f . The mapping
relation was expressed by the following equation:

χ̂p = f (χh, G) (1)
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3.2. Framework Overview

Figure 2 shows the structure of our proposed WST-ANet model, which is considered
to take an encoder–decoder structure. Both the encoder and decoder were constructed
from the L-layer Weather Spatio-Temporal Attention Block (WSTA Block) and the Dynamic
Graph Module (DGM). Since different methods are needed to extract the spatio-temporal
features perceived by weather data, we designed the embedding pattern to introduce the
weather data and realize the fusion of weather and spatio-temporal features. For each
Attention block, there is a spatial weather attention, a temporal weather attention, and a
dynamic graph module (DGM). To diminish the implications of error propagation, Cross-
Attention was divided between the encoder and decoder for traffic speed and conditions at
preceding and future time steps. The characteristics of these blocks are described below.
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3.3. Feature Embedding Module

Since changes in traffic road conditions are constrained by the original road network
and likewise by the weather, it is of great importance to consider road spatio-temporal
information and weather drivers in forecasting.

In order to capture the features of the road network, the node2vec method [50] was
used to learn the vertex representation, convert the graph nodes (i.e., traffic sensors) into
feature embedding, and introduce a spatial embedding module to convert the spatial
sensor data into vectors. These vectors then provided information in a two-layer fully
connected neural network (FC) to generate spatial embedding, eSE

vi
∈ ℜD, where the

sensor nodes vi ∈ V. To facilitate connectivity, all layers produced D-dimensional outputs.
The embedding stage goes through the Fully-Connected neural network to achieve a
learnable spatial embedding and allow data to flow more easily across the model.

The current state of traffic fluctuates across time, and a single spatial embedding is
static and insufficient to reflect the dynamic changes in traffic conditions. Therefore, we
designed a time embedding module to construct the time information into vectors using
solo thermal coding. The encoding principle divides a day into T time steps, and uses
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independent heat encoding to encode every single day of the entire week and every other
step of the day as ℜ7 and ℜT , respectively. The two were connected into a whole vector,
ℜT+7, and the vector, ℜT+7, was input into the FC to obtain the time domain embedding
eTE

tj
∈ ℜD, where tj ∈ {t1, . . . , tP} was used as a floating window for each time series,

containing the past time steps in length.
Influenced by weather perception, weather factors cause the subjective traveling and

driving behavior of people, which can have different impacts on traffic. For example,
drivers tend to increase their speed on sunny days, while they tend to decrease their
speed in heavy rainstorms, snow, and other weather. Combining this property of weather-
driven transportation, we present a weather-embedding module that uses weather data
from Weather Spark and encodes the weather information into vectors that adapt to the
precise location of each sensor using solo thermal coding. Finally, we applied FC to these
vectors to obtain the weather embedding, where eWE

vi ,tj
∈ ℜD, vi ∈ V,tj ∈ {t1, . . . , tP}.

Traffic characteristics in spatial scenarios are affected by weather factors. To capture
the impacts of changes in the weather on space transportation, we constructed Spatial
Weather Embedding (SWE), in which the weather–space module fuses spatial traffic flow
features with weather characteristics to generate a spatial traffic flow feature with weather
awareness. For example, the spatial weather embedding feature of the spatial node, vi,
where sensor i is located at time step tj can be expressed as eSWE, as follows.

eSWE
vi ,tj

= eSE
vi

+ eWE
vi ,tj

(2)

where, vi ∈ V, tj ∈
{

t1, . . . , tP, . . . , tP+Q
}

, and eSWE ∈ ℜ(P+Q)×N×D denote the SWE of
traffic road network nodes in the process of time step P + Q. To accurately replicate
the geographical link between weather and traffic, the SWE features were input into the
weather space attention for adaptive feature mining.

Due to the existence of explicit temporal features between both time and weather,
the embedded traffic conditions and weather conditions vary over time. Therefore, we
designed the Time-Weather Embedding (TWE), where the time–weather module fuses the
temporal features of the traffic flow with the weather features to form a time-series traffic
feature structure that includes weather awareness. At time step, tj, the temporal weather
embedding feature of the spatial node v where sensor i is located was expressed as eTWE,
as follows.

eTWE
vi ,tj

= eTE
tj

+ eWE
vi ,tj

(3)

where, vi ∈ V, tj ∈
{

t1, . . . , tP, . . . , tP+Q
}

, eTWE ∈ ℜ(P+Q)×N×D denotes the TWE of the N
traffic road network nodes in the process of time step P + Q. In order to effectively simulate
the spatial relationship between weather and traffic, the TWE features were input into the
Temporal Weather Attention for adaptive feature mining.

In order to obtain dynamic adaptive spatio-temporal weather changes, the above
embedding module was subjected to spatio-temporal weather embedding to form the
Spatio-temporal Weather Embedding Module (STWE), which fused the spatio-temporal
traffic features of weather. When the time step was tj, the temporal weather embedding
feature of the spatial node vi where sensor i is located was expressed as eSTWE.

eSTWE
vi ,tj

= eTE
tj

+ eSE
vi

+ eWE
vi ,tj

(4)

where, vi ∈ V, tj ∈
{

t1, . . . , tP, . . . , tP+Q
}

, eSTWE ∈ ℜ(P+Q)×N×D.
Combining the input features, χh and eSTWE

h , the final input embedding feature E was
as follows.

E = Concat
(

χh, eSTWE
h

)
∈ ℜP×N×D (5)
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3.4. Dynamic Graph Module

In this part, we created a dynamic graph process module. This module aims to
generate an adaptive adjacency matrix, representing the iterative update of the dynamic
spatial correlation of the traffic road network by fusing the dynamic features extracted
from the road attributes by means of a fusion mechanism. This is used to symbolize the
weather-driven spatial characteristics of the road network in an immediate response in the
dynamic process. Because the dynamic spatio-temporal correlation depends mainly on the
real-time traffic state, it is necessary to simulate the dynamic spatial correlation by entering
the real-time traffic state. The goal of generating a dynamic feature matrix was to be
certain that each of the input dynamic, latent spatial, and temporal information was written
properly. To accomplish this, the nodes were first represented as embeddings, merging
the current traffic state, XSWE, at each time step, including time-of-day and time-of-week
embeddings. To extract the latent spaces of weather interaction properties between the
nodes even further, the features of the traffic state, Xt, were extracted using two nonlinear
fully connected layers and dimensionally transformed. At time step, t, two dynamic feature
matrices were generated and absorbed.

EDF = FC(XSWE) (6)

where EDF ∈ ℜP×N×D, FC(·) denotes the network of the two nonlinear fully connected
layers. Then, the parameters K, Q, and V of the self-attention were computed.

Q = EDFWQ, K = EDFWK, V = EDFWV (7)

where the learnable parameter WQ, WK, WV ∈ ℜD×D. Then, using the self-attention mecha-
nism, the dynamic feature matrix for the current time step was computed and publicized
as follows.

Ãt = So f tmax(
QKT
√

dh
). (8)

where Ãt ∈ ℜN×N denotes the correlation of the road nodes at the time step, thus allowing
each dynamic feature matrix to learn the neighboring features that reflect the traffic topology
after the input time step. For the continuous time intervals, a gating mechanism was used for
feature extraction, where spatial topology information was extracted using the current dynamic
feature matrix, Ãt, and the dynamic adjacency matrix, At−1, of the previous time step.

zt = sigmoid(ÃtWÃt
+ At−1WAt−1). (9)

where WÃt
, WAr−1 ∈ ℜN×N denotes the two learnable transformation matrices, which

ultimately results in a dynamic adjacency matrix, ASW . The metric was as follows.

ASW =

{
Ã0, t = 0
zt ◦ Ãt + (1 − zt) ◦ At−1, t > 0

(10)

where ◦ denotes the Hadamard product, i.e., the multiplication of the elements correspond-
ing to two matrices of the same dimension.

3.5. Temporal-Weather Interactive Module

In order to efficiently capture the spatio-temporal correlations of weather interaction
perception from traffic sequences, this paper proposes a WSTA block structure as shown in
Figure 3. Specifically, the coder–decoder for spatio-temporal weather interaction perception
includes a spatial weather transformer and a temporal weather transformer, as well as
a dynamic graph module for processing dynamic adaptive correlations. This process
features the inputs of spatial weather embedding and temporal embedding, respectively,
and ultimately iteratively updates to obtain dynamic spatio-temporal features, including



Buildings 2024, 14, 647 9 of 22

weather-driven features. The spatial weather transformer was used to capture the weather-
driven spatiality of the transportation road network. Within a transportation spatial
region, the traffic condition for a single road segment is influenced by the traffic patterns
of other road segments and operates with the dynamic structure of the road network.
Correspondingly, the weather in a region is also affected by conditions outside the region,
e.g., weather conditions between regions affect the traffic conditions. In order to utilize the
interactive features of space and weather, we provided the Spatial-Weather Attention (SWA)
framework to capture the correlation information between road sensors in a variable way.
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After obtaining the dynamic neighbor matrix features, the graph dynamic neighbor
matrix ASW was formed using distance construction and then input to the graph convolu-
tional neural network. The lth layer of the input was defined as H(l−1), where the hidden
state of vertex vi at time step tj was hl−1

tj
. By capturing the spatial features between the

nodes through their first-order neighborhoods, the GCN model was then built by stacking
many convolutional layers, each of which can be shown through the symbol as:

Ĥl
t = ΦGCN(ASW , H(l−1)) = σ(Λ̃− 1

2 (ASW + IN)Λ̃− 1
2 Hl−1

t θ(l−1)). (11)

where IN denotes the unit matrix, Λ̃ denotes the degree moment of the transportation road
network, H(l−1) denotes the output of layer l − 1, θ(l) denotes the hyperparameters of layer
l − 1, and σ(·) denotes the softmax activation function model.

Using the adjacency matrix of the dynamic graph module, the dynamic weights of the
spatial convolutional layer were expressed. These weights were then utilized to build the
weight summation function, and the fine-grained edge elements were expressed as:

hsl
vi ,t = ∑

v∈V
ϕvi ,v · hl−1

v,t
, ∑

v∈V
ϕvi ,v = 1 (12)

To capture the relationships between the surrounding vertices, we chose the Multihead
Attention score to assign φ. The correlation between vertices vi and v was computed using
the scaled dot product method and normalized using the activation function:

sk
vi ,v =

〈
f k
s,1(h

l−1
vi ,t ∥eSWE

vi ,t ), f k
s,2(h

l−1
vi ,t ∥eSWE

vi ,t )
〉

√
d

, (13)
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φk
vi ,v =

exp(LeakyReLU(sk
vi ,v))

∑
vi∈V

exp(LeakyReLU(sk
vi ,v))

. (14)

where φvi ,v denotes that V is the attention score that represents the correlation between the
vertex vi and v, || denotes the join operation, and ⟨·⟩ denotes the inner product operator.
The hidden state of each vertex was then updated at each time step as:

hsl
vi ,t = ∥K

k=1

{
∑

v∈V
ϕk

vi ,v · f k
s,3(h

l−1
v,t )

}
(15)

where f k
s,1(·), f k

s,2(·), and f k
s,3(·) denote the three different nonlinear projections:

f (x) = ReLU(xW + b) (16)

where W and b are the learnable parameters and ReLU is the activation function. Using
K-parallel computing, the learnable parameters for all vertices and time steps were shared.
Each head attention generated a d = D/K dimensional output.

The temporality of the weather-driven traffic road networks was captured using
temporal weather transformers. Traffic and weather patterns alter throughout time. We
proposed Time-Weather Attention (TWA) to adaptively simulate weather and time-traffic
correlations between distinct time steps in order to capture these connections. We calculated
the attention score of vertex, vi, between time steps tj and t, and then normalized it using
softmax, which was expressed using the following equation:

uk
tj ,t =

〈
f k
s,1(h

l−1
vi ,tj

∥eTWE
vi ,tj

), f k
s,2(h

l−1
vi ,t ∥eTWE

vi ,t )
〉

√
d

, (17)

γk
tj ,t =

exp(LeakyReLU(uk
tj ,t))

∑
tj∈Ntj

exp(LeakyReLU(uk
tj ,t))

. (18)

where utj ,t denotes the correlation between time step tj and t, γ denotes the attention score
of the kth head of the importance of time step t for tj, and Ntj denotes the set of time steps
before tj. Given the obtained attention score γk, we computed the hidden state as:

htl
vi ,t = ∥K

k=1

{
∑

v∈V
γk

tj ,t · f k
s,3(h

l−1
v,t )

}
(19)

where f (·) has the same meaning as above.
The temporal weather features and spatial weather features were obtained by calculat-

ing the spatial and temporal effects of the weather, which were fused adaptively according
to each vertex and time step. Denoting the outputs of SWA and TWA as Hl

SW and Hl
TW ,

respectively, the entanglement, g, as well as the fused feature result, H, were obtained
using a linear model with S-type activation:

g = δ(HSWWSW + HTWWTW + bg). (20)

H = g ◦ HSW + (1 − g) ◦ HTW . (21)

where WSW ∈ ℜD×D, WTW ∈ ℜD×D denotes the learning parameters, δ denotes the sigmoid
activation function, and ◦ denotes the Hadamard product, i.e., the multiplication of the
elements corresponding to two matrices of the same dimension.
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3.6. Cross-Attention

The cross-attention mechanism [51] is a method of weighting different positions in the
input sequence to extract key information using a self-attention mechanism. In contrast to
recurrent neural networks, which process the input sequence sequentially and step-by-step,
Transformer instead pays attention to the information at all positions simultaneously using
the self-attention mechanism, which greatly reduces the time complexity of processing long
sequences. A frequent method in sequence prediction challenges is to predict sequences one
step at a time, using the result of the previous step as the input for the following prediction.
However, this approach can cause errors in accumulation between different prediction steps in
long-term prediction [39,46,52]. We proposed a cross-self-attention module between the encoder
and the prediction decoder to solve this limitation. The cross-attention module symbolizes the
link between each historical time step and all future predicted time steps directly.

Formally, given the history time step tP
j ∈ {t1, . . . , tP}, the future prediction time step

tF
j ∈

{
tP+1, . . . , tP+Q

}
, and the sensor v, the history step P and the future step Q are denoted

as Eh = eSWE[vi, :] + eTWE
h and EF = eSWE[vi, :] + eTWE

F , respectively. The dimensional
reconstruction was carried out, and the reconstructed data of the two features were lost to
the cross-attention mechanism for computation to obtain the following:

CrossAttention(Eh, EF) = so f tmax(
〈

EhW1, (EFW2)
T〉

√
D

)EFW3 (22)

where W1 ∈ ℜP×D, W2 = W3 ∈ ℜQ×D is the learned projection matrix.

3.7. Loss Function

In this study, we utilized the Huber loss function [53] to train the model, such that the
prediction results were as near to the actual traffic situation as feasible. As a result, the goal
of the loss function was to reduce the prediction error. Considering the prediction process,
the long process prediction had the risk of multi-source error accumulation; therefore,
in this paper, the length of the prediction window was set to P. The prediction result
was denoted as Ŷpre = [X̂H+P+1, . . . , X̂H+P+Q] and the real result was denoted as Ytrue =
[XH+P+1 , · · · , XH+P+Q]. The loss function was denoted as:

loss(Ŷpre, Ytrue) =

{
1
2 (Ŷpre − Ytrue)

2 ∣∣Ŷpre − Ytrue
∣∣≤ 1∣∣∣Ŷpre − Ytrue

∣∣∣− 1
2 otherwise

(23)

4. Experimentation

In this section, in order to verify the validity and generalizability of the model,
we conducted experiments on two public datasets generated in real traffic scenarios.
Before the experiments, we first describe the experimental setup, including the datasets
used, the parameter settings, the baseline comparisons, and the evaluation metrics.
We then present a series of studies, including ablation experiments, to illustrate the impact
of the model components on the overall results. Finally, we present a detailed analysis and
interpretable representation of the experimental results.

4.1. Experimental Datasets

In this study, traffic data from two regions, PeMS04 and PeMS08, were used
(http://pems.dot.ca.gov, accessed on 1 July 2023). The PeMS data were located on the
freeways of major metropolitan areas in California, and the traffic information of the city was
obtained from the deployed traffic detectors. The detailed statistics are shown in Table 1.

The acquired data needed to be preprocessed, and the processing method was consistent
with Bi-STAT [54]. The Z-score standard method was applied to normalize the data stream,
and the goal of normalization was to uniformly map the data to be studied between the

http://pems.dot.ca.gov
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one-dimensional intervals [0, 1], which unified the data of different magnitudes to the same
magnitude and ensured comparability among the data. The formula used is as follows.

xnew =
x − µ

π
(24)

where x is the original series data, µ is the sample mean, and π represents the standard
deviation of the data, which becomes 0 for the mean and 1 for the variance after normalizing
the data.

Table 1. Dataset statistics.

Datasets Nodes Edges Time Interval Duration Time Steps Length

PeMS04 307 340 5 min 1 January 2018~28 February 2018 16,992
PeMS08 170 296 5 min 1 July 2016~31 August 2016 17,856

4.2. Parameter Settings

The experiments set the target time step, Q, and the historical time step, P, to
12 (indicating a time span of 60 min). After several training steps, the model framework
hyperparameters were finalized. The dataset was divided according to three parts: the
training set, the validation set, and the test set, where the proportions were 60%, 20%, and
20%, respectively. The range of hyperparameters was set manually based on experience:
the learning rate included 0.01, 0.005, 0.001, and 0.0005; the dropout included 0.0, 0.1, 0.2,
0.3, 0.4, and 0.5; and the decay rate included 0.99, 0.95, 0.90, and 0.85. The effect of each
different parameter combination was tried by loop traversal, and the hyperparameters
with the best performance on the validation dataset were finally selected as the execution
results. For these consecutive hyperparameter values, the sampling was performed at equal
intervals. For each set of hyperparameters, the optimal parameter was determined using
the minimum MAE of the validation set, and specific processing was performed.

For our WST-ANet model, the following settings were found to work best: set the
dropout to 0.5, the decay rate to 0.99, and the learning rate to 0.001. When the prediction
performance of the prediction model on the validation set was optimal, all the samples in
the test set were iterated, and after several parameter adjustments and experiments, the
training process ended to obtain the prediction results. The experiments were performed
using the Windows operating system. The system was configured using Intel(R) Xeon(R)
Gold 6226R CPU @ 2.90GHz, GPU: NVIDIA GeForce RTX 3090, compiled under PyCharm
IDE, and based on the PyTorch framework and Python3.11 to realize the training and
prediction of the model; the same framework was used for the comparison of the baseline
experiments. The baseline experiments were also realized using the same framework.

4.3. Baselines

(1) HA [26]: Prediction of traffic flow in future time slots by averaging a sequence of a
fixed number of terms computed from the historical traffic flow.

(2) LSTM [29]: Long Short-Term Memory Network, a special RNN model that processes longer
sequences of signal data through input gates, output gates, and forgetting gates.

(3) GRU [30]: Gated Recurrent Unit Network, a special RNN model that optimizes the
parameter structure within the network to improve the convergence performance of
processing sequence data.

(4) GCN [31]: Graph Convolutional Network, which abstracts the traffic road network
as a graph structure, aggregates the feature information between neighboring nodes
through the graph convolution mechanism, and realizes feature update of traffic data
between domains.

(5) GAT [32]: Graph Attention Network, based on (3), the attention mechanism is intro-
duced between nodes, so that each node can be adaptively weighted according to
the features of its neighboring nodes; this adaptation can effectively aggregate and
process the complex feature relationships between traffic data nodes.
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(6) DCRNN [36]: Bidirectional spatio-temporal adaptive transformer, which adopts
encoder–decoder architecture and an adaptive mechanism to construct a spatio-
temporal feature information extraction structure.

(7) AGCRN [38]: Adaptive graph convolution recurrent network that enhances traditional
graph convolution through adaptive graph generation and node-adaptive parameter
learning, integrating into recurrent neural networks to capture more complex spatio-
temporal correlations.

(8) ST-CGCN [41]: A spatio-temporal complex graph convolutional network based on
constructing complex correlation matrices through multi-feature and attention mecha-
nisms to characterize dynamic spatio-temporal features.

(9) GMAN [45]: Employs an encoder–decoder structure containing multiple spatio-
temporal attentional blocks that use attentional mechanisms to model dynamic spatial
and temporal correlations.

(10) ST-WA [37]: A spatio-temporal perceptual attention network that randomly encodes
time series to generate site-specific and time-varying model parameters to better
capture spatio-temporal dynamics.

(11) STPGCN [40]: A Spatio-Temporal Location-aware Graph Convolutional Network,
which adaptively infers the correlation weights of three important spatio-temporal
relationships through a spatio-temporal location-aware relationship inference module,
aggregating and updating the node features to capture node-specific model features
guided by location embedding.

(12) ASTGCN [33]: Attention-based spatio-temporal graph convolutional network, com-
bining the attention mechanism and spatio-temporal graph convolution to construct
a convolutional model capable of capturing the spatio-temporal features to capture
spatio-temporal dynamic correlations.

(13) STSGCN [34]: A graph convolution spatio-temporal network based on a road network
structure, using a graph convolution method to capture complex local spatio-temporal cor-
relations, modeling spatio-temporal heterogeneity for mutually independent components.

(14) AFDGCN [35]: A novel dynamic graph convolutional network with attention fusion
functionality, which jointly models synchronous spatio-temporal correlations through
a dynamic graph learner and a GRU.

4.4. Evaluation Metrics

This experiment used mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE) to evaluate the prediction performance of the
model, and demonstrate the quality of the prediction effect by comparing the MAE, RMSE,
and MAPE results. MAE, RMSE, and MAPE assess the accuracy of traffic flow prediction
from different perspectives, integrating the magnitude, distribution, and relative value of
prediction errors; therefore, they are widely used.

RMSE measures the dispersion of an observation and its true value by averaging the
sum of the squares and then taking the square root of the two. The formula is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (25)

MAE is expressed through the mean of the absolute errors, which better reflects the
prediction value errors. The formula is as follows:

MAE =
1
n

n

∑
i=1

|ŷi − yi| (26)
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MAPE is used as a relative measure to compare the accuracy of model predictions
using absolute values to avoid positive and negative errors canceling each other out.
The formula is as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (27)

where yi denotes the observed true value at time step i, ŷi denotes the model predicted
value at time step i, and n denotes the number of time steps.

5. Analysis of Results
5.1. Performance Analysis

After studying the different model algorithms, it was found that, among the models
listed in Table 2, the HA model performed lower than the other benchmark models, reflect-
ing the difficulty of urban traffic flow prediction in the long term, which also reflects the
fact that deep learning methods perform better than statistical methods. For example, in
the PeMS04 dataset, the MAE of LSTM, GRU, GCN, GAT, DCRNN, AGCRN, ST-CGCN,
GMAN, ST-WA, STPGCN, AFDGCN, STSGCN, ASTGCN, and WST-ANet was lower than
HA by 23.981%, 36.76%, 8.388%, 10.018%, 34.457%, 46.989%, 45.341%, 48.961%, 49.382%,
49.093%, 30.450%, 44.097%, 41.703%, and 51.124%, respectively, which indicates that the
performance evaluation indexes of HA, MAE, RMSE, and MAPE performed the worst.
In addition, the MAE of GRU was 16.811%, which was 7.430% lower than that of LSTM in
the PeMS04 and PeMS08 datasets, indicating that GRU is better than LSTM in capturing
temporal correlation. This is because the HA processing performance is limited by the
structure when dealing with nonlinear time series, and these deep learning methods are
more suitable for extracting the correlation between nonlinear traffic data. The MAE and
RMSE of the GAT model on the PeMS04 dataset were 1.780% and 3.557% lower than that
of the GCN model, and the MAE and RMSE were 0.856% and 2.219% lower than the GCN
model, respectively. As a result, GAT added an attention technique to aggregate feature
information in graph topologies and outperformed GCN in prediction performance. How-
ever, the GCN and GAT models can only capture the spatial correlation of traffic flow data,
and learning characteristics in the time dimension is problematic. To learn the temporal
correlation of traffic flow data, the GCN and GAT models must be paired with a temporal
prediction model or a temporal feature learning module.

Table 2. Comparison of the average performance of different models on PeMS04 and PeMS08.

Module
PEMS04 PEMS08

MAE RMSE MAPE (%) MAE RMSE MAPE (%)

HA 38.03 59.24 27.88% 34.86 52.04 24.07%
LSTM 28.91 37.93 33.31% 23.15 34.46 21.86%
GRU 24.05 35.51 24.88% 21.43 25.58 21.59%
GCN 34.84 51.43 25.45% 35.14 49.12 22.26%
GAT 34.22 50.99 25.07% 33.89 48.03 23.32%

DCRNN 24.93 36.38 15.48% 17.86 27.84 11.46%
AGCRN 20.16 32.12 11.42% 16.77 27.28 11.99%

ST-CGCN 20.79 33.62 14.21% 17.84 26.43 11.37%
GMAN 19.41 31.06 13.55% 14.51 24.68 10.45%
ST-WA 19.25 28.54 13.05% 14.44 23.61 11.32%

STPGCN 19.36 30.97 11.75% 14.53 24.62 9.94%
AFDGCN 26.45 37.50 14.46% 19.09 31.01 12.62%
STSGCN 21.26 33.68 13.96% 17.44 26.82 11.01%
ASTGCN 22.17 35.69 16.45% 18.88 29.17 11.34%
WST-Anet

(ours) 18.59 30.03 11.79% 13.92 24.04 10.39%
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Spatio-temporal correlation is an important factor in traffic prediction. The prediction
accuracy of GCN and GAT is lower than that of DCRNN, AGCRN, ST-CGCN, GMAN,
ST-WA, STPGCN, AFDGCN, STSGCN, ASTGCN, and WST-ANet because these models
only consider spatial correlation and ignore the influence of the spatio-temporal features
of traffic data. DCRNN combines GCN-based diffusion convolution with GRU to build a
diffusion convolution gating unit that learns the temporal correlation of traffic flow data
and outperforms AFDGCN in prediction performance. Compared with DCRNN, ST-CGCN
and WST-ANet add robust factors to constrain the robustness of the model, and obtain
a better prediction performance. The impact of considered spatio-temporal features on
traffic flow was investigated in terms of deep fine-grained spatio-temporal dependence and
dynamic aggregation by AGCRN, ST-WA, STSGCN, ASTGCN, STPGCN, and WST-ANet.
As shown in Figure 4, for example, in the PeMS08 dataset, WST-ANet improved the MAE
of AGCRN, ST-WA, STSGCN, STPGCN, and ASTGCN by 20.47%, 4.07%, 3.74%, 4.38%,
18.94%, and 26.68% than that of AGCRN, ST-WA, STSGCN, STPGCN, and ASTGCN, which
suggests that our proposed model was relatively good in terms of performance.
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5.2. Analysis of Predicted Results

Different models differ in the short-term prediction and long-term prediction processes.
The spatio-temporal-dependent models based on GATs and attentional mechanisms include
ASTGCN, ST-WA, and AFDGCN. Compared with ST-WA, the prediction accuracies of
ASTGCN and AFDGCN are lower at 12 prediction steps due to the non-Euclidean structure
of the highway traffic data. In addition, the coupled mode of spatial correlation and
temporal dependence may lead to the better prediction performance of STPGCN than
ASTGCN. Compared with the baseline model, the WST-ANet model in this paper took
into account the drive of external weather factors on the basis of the existing spatio-
temporal dependence correlation. It learnt the more pertinent and deeper dependence of
the traffic nodes in terms of spatial distances, adaptive dynamics changes, and weather
interaction sensing relationships, while utilizing spatio-temporal feature embedding and
spatial attention mechanisms to capture the dynamics between nodes.

Therefore, the WST-ANet model predicts better than the baseline model in the short
time-series prediction process. For example, in the traffic flow prediction task for the
PeMS04 dataset in Figure 5 at the 6th prediction step (30 min ahead), the MAE predicted
by WST-ANet was compared with the AGCRN, ST-WA, STSGCN, STPGCN, and AST-
GCN models, increased by 18.949%, 8.598%, 27.389%, 5.326%, and 13.505%, respectively.
RMSE increased by 16.194%, 7.699%, 20.446%, 2.986%, and 8.836%, respectively, and MAPE
was different in the first eight prediction steps. With the degree of improvement, starting
from the 9th prediction step, the performance of ST-WA was better than that of WST-ANet



Buildings 2024, 14, 647 16 of 22

in this article. Similarly, in the PeMS08 dataset, the same problem existed. Starting from
the 6th prediction step, the MAPE of ST-WA was a bit better than that of WST-ANet.
Overall, the WST-ANet model proposed in this paper integrates weather factors with
spatio-temporal features interactively sensed. The short-term traffic prediction considering
the exogenous factors of weather is more conducive to practical applications, e.g., the
more relevant short-term traffic prediction can inhibit the accumulation of the error in
the long-term traffic process, enabling the transportation agencies to optimize the traffic
scheme based on the prediction more accurately.
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5.3. Ablation Study

This section investigates the contribution of each component to the model in PeMSD8,
prescribing the following WST-ANet variables. In order to verify the validity of the
proposed model components, this section performs an ablation study of the different
modules of the model. Each component of the model has an irreplaceable role in extracting
the spatio-temporal dependencies, so this section investigates the contribution of each
component to the model in PeMSD8:

• W/O DGM: indicates the removal of the dynamic graph structure module. The spatial
convolutional layer of the graph is constructed using directly introduced spatial
feature structures.

• W/O TWE: denotes that the WST-ANet model removes the sequence feature embed-
ding of temporal weather interactions.

• W/O SWE: denotes that the WST-ANet model removes the positional feature embed-
ding of spatial weather interactions.

• W/O CrossAtt: indicates that the WST-ANet model removes the cross-attention
mechanism module that connects the encoder and decoder
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The MAE and RMSE prediction errors of WST-ANet and its variants for PeMS04 and
PeMS08 are shown in Figure 6. It is clear that the model with missing feature components
did not predict as well as the complete model in terms of prediction accuracy. W/O DGM,
W/O TWE, and W/O SWE had similar variations in the two data sets, i.e., the magnitude
of the variation differences was small relative to the complete model. For example, in
the PeMS04 dataset, the MAE accuracies of W/O DGM, W/O TWE, and W/O SWE were
3.21, 2.58, and 2.85 lower than those of the intact WST-ANet, and the RMSE was 3.20, 2.14,
and 2.68 lower than that of the intact WST-ANet. The MAE and RMSE showed an overall
steady-state trend of change.
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However, the accuracy of the MAE and RMSE of the model with the removal of the
cross-attention mechanism component varied more, decreasing by 5.15 and 6.34, respec-
tively. This was mainly due to the fact that the cross-attention mechanism enabled the
decoder to focus on the output of the encoder to obtain the encoder information related to
the current decoding position, which had a certain convergence effect on the accurate gen-
eration of the output sequence. Similarly, the PeMS08 dataset exists in the ablation analysis
results with the above; therefore, it will not be repeated here. In summary, the complete
model structure of WST-ANet outperformed the other models with missing components in
terms of prediction accuracy, suggesting that WST-ANet can capture complex correlations
driven by weather complexities, and that the inclusion of such weather features improves
prediction accuracy to some extent.

5.4. Visualization Results

There was variability in the prediction accuracy caused by different weather drivers.
For example, the prediction of data in the PeMS04 dataset in Figures 7a and 8a revealed that
sensor 117, with a prediction step of 6 (i.e., 30 min), predicted a better fit in the morning of
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February 27 in the three time periods of 0:00–2:00, 8:00–12:00, and 16:00–20:00 compared
with February 20, due to the fact that the 27th fell under a heavy rainy day, while the
20th fell under a sunny day. This also demonstrated that our model was able to make
better predictions in non-sunny environments. Similarly, the results of the study of data
in the PeMS08 dataset showed that the non-sunny day prediction results had a better fit.
The results showed that WST-ANet captured the polymorphic traffic patterns at different
nodes under weather-driven conditions.
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Figure 8. (a,b) represents the PeMS04 dataset on 27 February 2018. Visualization of traffic flow in one
day at node 117.

To further visualize the understanding and evaluation of the model proposed in this
paper, we performed ground visualization displays of the predicted and true values (from
the test set) for different datasets. As an example, the predictions of the PeMS08 data are
shown in Figures 9 and 10, where Sensor 15 on PeMS08 predicts and displays the predicted
and true values (from the test set) for August 20, 2016 and August 27, 2016 for steps
6 and 12, respectively. The two time periods that were one week apart showed different
traffic patterns. From the results of the two datasets, it can be observed that the smaller
the prediction step size, the better the prediction accuracy the prediction shows; it can also
predict the fluctuation of the data more accurately. As the prediction step size increased,
the error accumulated throughout the period, resulting in a certain degree of decrease in
the prediction accuracy, but overall, it still better predicted the trend of the data.In addition,
we can observe that the surface traffic truth curve was very irregular and fluctuated a lot,
while our model effectively adapted to these sudden trend changes and made predictions
as close as possible to the real situation. From a planetary point of view, our proposed
WST-ANet model recognized weather elements interactively and completely learned the
traffic flow characteristics of the real road network.
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6. Conclusions and Future Work

In order to improve the accuracy of traffic prediction in complex scenarios, we pro-
posed a weather interaction-aware spatio-temporal attention network (WST-ANet) model
based on the interactive perception of weather. Compared with existing traffic predic-
tion models, the WST-ANet model interactively fuses the contextual semantics of traffic
flows using a feature-embedding module from the spatio-temporal and weather-driven
processes of the traffic road network, which is used to improve the deep adaptability of
the road network to weather-driven factors. Combined with the dynamic graph module
to provide the adjacency matrix for dynamic feature capture, the polynomial features in
the spatial graph convolutional layer were then dynamically adjusted by the attention
scores obtained from the encoder–decoder constructed by the WSTA Block to extract the
relevance of spatio-temporal feature aggregation in the urban road network. In addi-
tion, by weighting the aggregated encoder feature information through the cross-attention
mechanism and focusing on the spatio-temporal dependence constraint convergence, the ex-
traction efficiency after model feature learning was higher. Our experimental results in real
datasets show the superiority of WST-ANet over correlated baselines in traffic prediction.
Therefore, the relevant departments can consider the weather factor as a more refined way
of traffic forecasting, optimize the traffic signal control system more accurately according
to the forecast data on traffic flow, and adjust the control timing of the signals dynamically,
so as to improve the science and effectiveness of traffic management.

Our model has the following limitations: (1) only a single weather factor, tempera-
ture, was considered during the experiments and other important factors that may affect
traffic flow, such as rainfall, wind speed, and humidity, were ignored; (2) the validation
experiments only covered traffic flow as a pattern, and its broad applicability needs to be
further verified; and (3) the effects of weather and spatially unbalanced traffic variations
(e.g., the morning and evening rush hours) during special time periods were not considered
in detail.

In the future, we will investigate the relationships between traffic and weather, as well
as consider particular time periods for modeling and forecasting performance evaluation.
For example, the influence of severe weather conditions on traffic flow and the impact of
traffic congestion on weather pollution. Furthermore, we intend to further investigate and
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develop the deep learning models so that they may be used in a broader range of traffic
prediction domains.
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