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Abstract: Chest X-ray evaluation is challenging due to its high demand and the complexity of
diagnoses. In this study, we propose an optimized deep learning model for the multi-label classifica-
tion of chest X-ray images. We leverage pretrained convolutional neural networks (CNNs) such as
VGG16, ResNet 50, and DenseNet 121, modifying their output layers and fine-tuning the models.
We employ a novel optimization strategy using the Hyperband algorithm to efficiently search the
hyperparameter space while adjusting the fully connected layers of the CNNs. The effectiveness
of our approach is evaluated on the basis of the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) metric. Our proposed methodology could assist in automated chest radiograph
interpretation, offering a valuable tool that can be used by clinicians in the future.

Keywords: chest X-ray; multi-label classification; convolutional neural networks; deep learning;
Hyperband optimization; VGG; ResNet; DenseNet; AUC-ROC
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1. Introduction

The chest radiograph (CXR) is one of the most common medical imaging examinations
in the world. Using only a small dose of radiation, this examination has the potential to
discover conditions that require urgent care, e.g., pneumothorax and pneumonia, which
can be fatal in children in developing countries and in older patients in developed countries.
According to the WHO, four million people die from pneumonia each year, representing
a mortality rate of 0.88% of the 450 million annual pneumonia cases [1]. Although the
mortality rate may seem low, it is alarming to note that pneumonia is responsible for 7% of
deaths from all causes.

Meanwhile, the number of radiologists is increasing year by year in the US [2]; how-
ever, there are countries, for example, Liberia, where the shortage of radiologists is severe,
with only two active radiologists for four million people being reported in 2015 [3].

Emergency departments (EDs) are prominent places for radiographic chest examina-
tions, with a reportedly being used in 34.4% of ED visits [4]. There was a significant rise
in the use of radiology in the diagnosis of pneumonia during the COVID-19 pandemic.
However, the number of healthcare providers, such as radiologists, is not scalable. Human
resource limitations cannot be quickly resolved during a crisis due to the years of training
required for these professions. The increasing use of imaging in ED services has become
a critical problem due to the costs and human resources required. The use of artificial
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intelligence in the evaluation of X-ray images can help to decrease the cost and staffing
issues, while further decreasing the turnaround time for reports.

Another condition in which timely diagnosis is important is pneumothorax (PTX).
PTX is a condition in which air enters between the two layers of the pleura, resulting in
partial or complete collapse of the lung, which subsequently causes breathing difficulty
or even respiratory failure. PTX can develop spontaneously or due to trauma of the chest
cavity, both posing significant health burdens. Spontaneous pneumothorax has an annual
incidence of 18–28 and 1.2–6 cases per 100,000 men and women, respectively, mainly
affecting the young and elderly populations. In a bid to reduce the time to diagnosis, chest
ultrasound (CUS) is becoming a more popular choice of test, even though the diagnostic
yield of CUS largely depends on the operator’s expertise. An automated immediate
evaluation for the presence or absence of PTX on a chest X-ray could significantly improve
health outcomes and decrease human resource needs [5].

Diagnosing the diseases mentioned above as soon as possible could save millions of
lives annually. Chest X-rays account for more than 40% of all X-rays. Of these millions of
X-rays taken, more than one million are interpreted visually by radiologists. This proce-
dure requires a high degree of concentration and experience. There is a need to develop
computer-aided diagnostic algorithms and methods to reduce physicians’ workloads and
improve diagnostic accuracy. The emergence of deep learning in recent years has opened
up new ways to solve several previously time-consuming problems.

Computer-based medical image processing is based on the extraction of features.
Building an efficient algorithm using traditional techniques requires close collaboration
with radiologists, who provide us with various parameters of a given lesion, such as the
shape, size, or color (i.e., the density), to build a criterion-based decision tree. This technique
requires only a few samples but adequate medical and image-processing expertise [6–8].
This tree is often replaced or supplemented by a machine learning algorithm. This pro-
cedure requires fewer hours of input from a physician during the development process.
However, the process requires many correctly annotated images to apply a supervised
learning approach to the problem [9].

Alternatively, deep learning techniques can be used to automate feature extraction,
but this requires a large number of annotated images and hardware resources. The drastic
drop in the price of graphics cards has alleviated resource problems. Furthermore, sev-
eral large-sample chest X-ray databases have been made available for use. The current
paper focuses on a deep learning alternative with automated feature extraction. Other
publications are available addressing the use of deep learning for multi-label chest X-ray
classification: Wang et al. [10] described the use of classical deep learning architectures
for chest radiographs. Another research group, Rajpurkar et al. [11], used the well-known
architecture, DenseNet121, for the backbone and changed the last fully connected layer.
Some others use additional data for labeling; Wang et al. [12] used external radiology
reports to improve performance, and Tang et al. [13] identified disease categories using
severity levels extracted from radiology reports. Yao et al. [14] also used DenseNet; how-
ever, they used it for the encoder and combined it with Long Short-Term Memory as a
decoder. Guan et al. [15] used ResNet as the backbone and implemented category-wise
attention learning. Wang et al. [16] also used DenseNet 121 for their research to create
complex triple-attention learning for this problem; the three modules are channel-, element-,
and scale-wise attention learning.

Our comprehensive review of current state-of-the-art architectures reveals a predom-
inant focus on modifying the feature extraction layers of the well-known convolutional
neural networks (CNNs). Although these approaches advance the field in certain ways,
our review of the literature indicates that significant changes in the classifier component of
these networks represent an underexplored area of research.

Previously, we created a new CNN for X-ray evaluation from scratch [17], which
proved to be more efficient but not more accurate than the developments of other research
groups. In our current work, our aim was to achieve better accuracy over efficiency and
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create a new method for chest radiography classification. For that, we used well-known
networks as a starting point and developed only a new top block with the power of transfer
learning. As the first step, Phase 1, we conducted a high-level test of some well-known
architectures on a small portion of the MIMIC-CXR dataset. These cores were developed
for the ImageNet image classification dataset. However, our case was slightly different: we
had to analyze the learning capabilities of the CNNs selected on this special type of image.
After this, we selected the best configuration and trained it on the MIMIC-CXR dataset in
Phase 2 to create our pre-trained model for the further phases. However, in Phase 3, we
used the same type of images, but the labels in the datasets were different, so we had to
make changes on the top block. We removed the whole top block of the model and built a
new one from scratch using hyperparameter optimization techniques on a small portion of
the Chest X-ray14 dataset in Phase 3. In this phase, we also used the pre-trained weights
from Phase 1. Finally, in Phase 4, we trained the newly developed architecture with the
pre-learned weights from Phase 2 on the official split of Chest X-ray14 to compare our
method with the methods of other researchers. The entire pipeline is shown in Figure 1.

Our contributions in this study aim to advance the field of chest radiograph labeling
through innovative methodologies. First, we propose a new multiphase optimization
method that takes advantage of two different datasets and creates a new classification head
for the transfer of knowledge from the larger datasets to improve and obtain an optimal
model specifically adapted for chest X-ray labeling. This approach ensures that the model
is robust and performs well on various data characteristics. Secondly, we introduce a
technique that employs Hyperband algorithms as a top builder. By utilizing the Hyperband
algorithm, we are able to more efficiently search the hyperparameter space, resulting in
faster convergence to optimal model configurations. Lastly, we present a comprehensive
evaluation of our methods on the widely recognized Chest X-ray14 dataset.

Figure 1. Flowchart of the experiment.

2. Materials and Methods

In this section, we present the datasets that were used for this experiment. We provide
an overview of the medical background of these lesions. We introduce the methods of the
research and present the well-known backbones, activation, and loss functions, and the
hyperparameter optimization method in detail.

2.1. Datasets

Several chest radiograph datasets are available for research purposes. Only datasets
that were publicly available, or to which we could easily obtain access, that contained at
least 5000 images in total were selected. Another criterion was to be multi-labeled, so we
filtered three pneumonia datasets. The last criterion was that the images needed to be
available in JPEG or PNG format because DICOM (Digital Imaging and Communications
in Medicine) images have very large file sizes; in our case, this was unnecessary because
we worked with 224 × 224 size images (Table 1). Unfortunately, in most databases, report
parsing methods are used for structured annotations; thus, errors may occur. Therefore,
training and testing were performed on two independent databases, Chest X-ray14 and
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MIMIC-CXR. We chose these sets as they had adequate labels and an official JPEG or
PNG version.

In our study, we used two databases. Chest X-ray14 [10], released by the National
Institute of Health (NIH), contains 112,120 frontal CXR images labeled for 14 disease mani-
festations. MIMIC-CXR [18] was collected by the Massachusetts Institute of Technology
(MIT), containing 368,960 images, of which 248,020 are frontal, 120,795 are lateral, and 145
are other types. These images came from 222,758 studies of 64,586 patients. The MIMIC-
CXR [18] is originally in DICOM format and is accessible through PhysioNet [19]. Due to
its extremely large size of 4.6TB, we used the official converted JPG files [20]. This dataset
is a restricted-access clinical database; it is only available for use after completing a training
program in human research with HIPAA regulations. The recommended program is the
Data or Specimens Only Research by the Collaborative Institutional Training Initiative
(CITI). We completed this program on 14 February 2019. The two selected datasets do not
have all of the same labels; however, they do overlap, as shown in Table 2 (bold denotes
the common findings).

Table 1. Overview of chest X-ray datasets.

Dataset Patients Images Labels Type Size

Chest X-ray14 [10] 30,805 112,120 14 PNG 1024 × 1024
MIMIC-CXR [18,20] 65,383 371,920 14 DICOM, JPEG 3520 × 4280, 1377 × 1153
CheXpert [11] 65,240 224,316 14 DICOM Not available
PLCO [21] 56,071 185,421 12 DICOM Not available
PadChest [22] 67,525 160,868 193 Not available Not available
Ped-pneumonia [23] Not available 5856 2 Not available Not available
RSNA-Pneumonia [24] Not available 30,000 1 DICOM Not available
BIMCV [25] 9129 25,554 1 DICOM Not available

Table 2. Overview of label counts in the Chest X-ray14 and MIMIC-CRX datasets.

Label Name Chest X-ray14 MIMIC-CRX

Airspace opacity N 55,660
Atelectasis 8280 49,638

Cardiomegaly 1707 48,899
Consolidation 2852 11,734

Edema 1378 29,390
Effusion 8659 N

Emphysema 1423 N
Enlarged cardiomediastinum N 7868

Fibrosis 1251 N
Fracture N 5018
Hernia 141 N

Infiltration 13,782 N
Lung Lesion N 7003

Mass 4034 N
Nodule 4708 N

Pleural effusion N 58,734
Pleural other N 2137

Pleural thickening 2242 N
Pneumonia 876 18,330

Pneumothorax 2637 11,610
Support Devices N 74,247

2.2. Medical Background of the Labels

To provide an insight into the imaging results for the included diseases and conditions,
we include a high-level description of the specific findings that human radiologists look for
and that AI may detect and use in its evaluation.
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Pulmonary infiltrate is a non-specific term for any accumulated abnormal substance in
the lungs; further differentiation is needed for pneumonia, atelectasis, hemorrhage, edema,
fibrosis, etc. In Figure 2, we show selected X-rays for preview. Air spaces may be filled with
fluid, pus, or cells, causing increased whiteness due to increased attenuation of the X-rays,
called consolidation. The accumulation of fluid in the lungs in pulmonary edema has
multiple signs, including pleural effusion, air space opacification in a batwing distribution,
and enlargement of the heart (cardiomegaly).

The expansion of the lungs may be incomplete for various reasons. Atelectasis is
the incomplete expansion of some regions of the pulmonary tissue, while pneumothorax
(PTX) is complete lung collapse due to air entering the plural places. On plain radiographs,
PTX can be identified by the visible visceral pleural edge, which appears as a thin sharp
white line with no lung markings peripheral to this line, and we can detect nodules and
masses that are abnormal growths in the lung, which may represent tumors. Malignant
conditions may have other signs, such as thickening of the pleura. Inflammatory con-
ditions, e.g., pneumonia, have distinctive signs as well, including patchy or large areas
of consolidation.

(a) (b)

(c) (d)

Figure 2. Chest X-ray images with findings: (a) hernia; (b) atelectasis, cardiomegaly, edema, effusion,
and infiltration; (c) cardiomegaly, consolidation, effusion emphysema, infiltration, pleural thickening,
and pneumothorax; (d) no findings.

2.3. Methodology

In this work, we used some well-known traditional categorical image classification
architectures as a base for multi-label classification. This subsection starts by summarizing
the most relevant information about backbones in our context. In the rest of this subsection,
we explore the activation and loss functions used in detail and, finally, give a brief overview
of hyperparameter optimization.

2.3.1. Backbones

Transfer learning is a technique in machine learning to reuse knowledge that is learned
elsewhere, even on massive datasets with limitless resources. This technique transfers
knowledge from the source domain to the target domain [26]. The most commonly used
transfer learning method is to use complete CNN architectures with pre-trained weights
and continue the training with this prior knowledge. Depending on the source domain,
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it is also possible to freeze the entire feature extraction part and only retrain the top of
the network. Nevertheless, some of the features can be locked either arbitrarily or just
the low-level features (edges and blobs) can be locked, with the rest being taught. In our
study, as seen in Figure 1, we chose to completely rebuild the fully connected part of the
architecture using the hyperparameter technique.

VGG Architecture

At first glance, VGG seems to be a basic and simple architecture; however, it was an
important step forward in the evolution of computer vision. It is a CNN model created
by K. Simonyan and A. Zisserman [27]. The name VGG originates from the department
(Visual Geometry Group) in which it was developed. The VGGNet architecture has two
types of configuration, VGG16 and 19; the numbers in the name refer to the depth of the
networks. These two networks have small parameters without the fully connected block
(in the original setup, they have two dense layers with 4096 units each), so we have a lot of
freedom to develop the top layers. In the work, we used a 16-depth configuration.

Residual Neural Network

ResNet, short for Residual Network, is a groundbreaking type of neural network
architecture in the field of deep learning. Before ResNet, traditional neural networks had a
limitation: the more layers they had, the harder it was for them to learn. This was mainly
due to a problem known as ‘vanishing gradients’, where the signals used to train the
network became so small over many layers that the learning actually stopped. To overcome
this, ResNet introduced a novel concept. Instead of learning entirely new representations
at every layer, it focused on learning the differences, or ‘residuals’, of the previous layer.
This approach was inspired by the principles of Highway networks and Long Short-Term
Memory (LSTM) networks, which also aim to preserve information over many layers [28].

The architecture of ResNet is characterized by its ‘shortcut connections’. These shortcuts
allow the network to skip over some layers, passing information directly to later layers.
This not only helps in combating the vanishing gradient problem but also allows for the
successful training of networks with hundreds of layers, which is much deeper than was
previously possible.

One popular variant of ResNet is ResNet50V2. In this version of the network, the 50 lay-
ers are organized into five blocks, each containing several layers with these shortcut connec-
tions. This structure has made ResNet50V2 widely used in various applications, from image
recognition to advanced computer vision tasks.

Dense Convolutional Network

This type of network is similar to the residual neural network, with some differences.
DenseNet uses all the outputs as input for all the above layers in the network by matching
the output–input dimensions [29]. All of these configurations have four dense blocks; the
only difference is the number of convolution blocks inside the dense blocks. After all the
dense blocks, there is a transition block. The number of convolutional blocks is as follows:
DenseNet-121 (6, 12, 24, 16), DenseNet-169 (6, 12, 32, 32), and DenseNet-201 (6, 12, 48, 32).
In this paper, we use the 121 version of DenseNet.

2.3.2. Activation Functions and Losses

Most image-based classification problems are binary or categorical, not multi-label
classification. So, the main frameworks do not have unmistakable documentation for
multi-label problems. The first two types are clear:

Binomial or binary classification is a method of classifying elements into two dis-
tinct groups. These models have to use sigmoid (1) for the final activation and binary
crossentropy (BCE) for the loss.

f (si) =
1

1 + e−si
(1)
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BCE is a widely used loss function for binary classification tasks. It measures the
difference between two probability distributions, the true distribution and the predicted
distribution. The BCE loss for a single data point is given by:

LBCE = y log(ŷ) + (1 − y) log(1 − ŷ), (2)

where y is the true label (0 or 1), and ŷ is the predicted probability of the class label being 1.
On the other hand, a categorical classification problem is the task of putting elements

into N non-overlapping groups. Categorical models must use softmax (3) as the final
activation function and categorical cross-entropy (CCE) for loss.

f (si) =
esi

∑C
j esj

(3)

The CCE is a commonly employed loss function for multi-class classification tasks.
Similar to the BCE, it serves to quantify the dissimilarity between two probability distri-
butions; that is, the true distribution representing the actual class labels and the predicted
distribution generated by the model. The CCE loss for a single data point can be expressed
as follows:

LCCE =
C

∑
c=1

yc log(ŷc) (4)

Here, C denotes the number of classes, yc represents the true probability distribution
for each class, and ŷc signifies the predicted probability of the data point belonging to
class c. The CCE is a valuable tool in training models for tasks involving more than two
distinct classes, providing a means to assess and refine the predictive performance in a
multi-class context.

As mentioned earlier, the current context is a multi-label classification of X-ray images.
This is a special field of binary classification. If we have an N labels, this means that every
image has an N-independent label. In multi-label classification, we represent a target with
an N-dimensional vector T = [t1, t2, ..., tn], where N denotes the number of labels and
tn denotes

tn =

{
1, if n-th label is present on the image
0, if n-th label is not present on the image

. (5)

Some special cases are considered: First, ∑N
i=1 ti = 0 indicates that none of the labels

persist in the image; ∑N
i=1 t1 ≥ 1 implies that at least one label persists in the image; and

∑N
i=1 ti = N means that all the labels persist in the image.

In multi-label classification, each instance can belong to multiple classes simultane-
ously. So, we used a modification of the BCE loss. In this modification, we applied the
loss function independently to each label. This independent treatment allows the model
to learn each label as a separate binary classification problem. The adapted BCE loss for
multi-label classification is computed as follows:

LBCE−Multi =
1
N ∑N

i=1 [yi log(ŷi) + (1 − yi) log(1 − ŷi)]. (6)

Here, N is the number of labels, yi is the true label for the ith label (0 or 1), and ŷi is
the predicted probability for the ith label being 1. The loss is averaged over all labels to
account for the varying number of labels per instance.

This adaptation enables the use of BCE in multi-label scenarios, making it a versatile
tool for handling a wide range of classification tasks.

Thus, we can see from Equation (5) that this classification problem can be represented
as an independent binary classification for each label; we have to use sigmoid.
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Another loss used in this paper is the sigmoid focal loss function. This function,
Equation (7), is an adaptation of the standard binary cross-entropy loss. It is particularly
useful for addressing class imbalance in datasets. The sigmoid focal loss function is defined as

L f ocal = −αt(1 − pt)
γ log(pt), (7)

where pt is the model’s estimated probability for the class with label y = 1, and αt is
a weighting factor for the class, typically set to balance classes. The γ is the focusing
parameter, adjusting the rate at which easy examples are down-weighted. The function
dynamically scales the cross-entropy loss based on the confidence of the predictions. It
reduces the loss for well-classified examples and focuses more on the difficult misclassi-
fied examples.

2.4. Hyperparameter Tuning

For Phase 3, as shown in Figure 1, we used hyperparameter optimization methods to
build a new top block above the pre-trained CNN. Hyperparameter tuning or optimization
(sometimes called HPO) is a method to determine the optimal parameters from the potential
optimal parameter set. Machine learning is a widely used technique to optimize parameters
that are related to the learning process, e.g., batch size, learning rate, etc. In contrast, in this
study, we tried to use it to build the whole fully connected block for some well-known
architectures. In the current work, we used Keras Tuner [30].

One key component of our methodology is the incorporation of the Hyperband
algorithm, a powerful multi-fidelity optimization method, in our model’s training process.
Hyperband operates as an efficient extension of successive halving algorithms, which are
conceptually rooted in the effective use of a pre-defined computational budget [31].

Given the complexity and scale of the multi-label problem in chest X-ray labeling,
Hyperband’s ability to process multiple configurations concurrently and quickly zero in on
the promising ones is crucial. This approach allows us to navigate the extensive hyperpa-
rameter space effectively, and the parallel processing capability dramatically accelerates
the optimization process. These benefits make Hyperband a suitable choice for this task.

There are several other hyperoptimization frameworks available. One of the most
remarkable is Optuna [32]. Optuna offers more flexibility and features than Keras Tuner,
such as pruning and a user-friendly interface, which may make it preferable for scenarios
in which the algorithmic efficiency of Hyperband is less critical than other factors.

3. Results

This study aimed to optimize the multi-label classification of chest radiographs using
advanced deep learning techniques. Our research focuses on the use of two robust and
independent datasets, MIMIC-CXR and Chest X-ray14, without any non-image features or
other added information.

3.1. Phase 1

Our method uses deep learning models specifically designed to handle the complex-
ities and nuances inherent in chest X-rays. These models are not just classification tools
but are also sophisticated systems capable of detecting subtle patterns and variations in
medical imaging that are essential for accurate diagnosis.

We used three well-known convolutional neural network (CNN) architectures: Dense
Net121, ResNet50V2, and VGG16. Each model was chosen for its unique structural properties
and proven efficiency in image classification tasks. DenseNet121 is known for its densely
coupled layers, which facilitate feature reuse and reduce model complexity. ResNet50V2
stands out for its residual couplings that address the problem of vanishing gradients in deep
meshes, and VGG16 is known for its simplicity and depth, making it a solid benchmark. For
these models, we used the official TensorFlow implementation without tops with the built-in
ImageNet weights and added a Dense Layer with sigmoid activation as a final layer with
13 units to fit the MIMIC-CXR labels. For the ImageNet weights, we had to use three-channel
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images 224× 224. First, we extended the gray image to a three-channel image after resizing
all images to 256× 256 from 1377× 1153 in the case of MIMIC-CXR (1024× 1024 in the case of
Chest X-ray14), randomly cropping to 224× 224 for the training images and center cropping
for the validation and testing images. For image augmentation, we used random flip and
random rotation between −0.4 and 0.4 rads.

The first phase (Figure 1) of our process was the high-level quick tests, created using
a very small amount of MIMIC-CXR data (training: 8000, validation: 1500, testing: 2500).
The optimization experimented with different batch sizes of 16, 32, and 64 and different
optimizers, namely Adam, Stochastic Gradient Descent (SGD), and RMSprop, Table 3.
These elements were key in fine-tuning the models, as batch size affects the generalization
ability of the model, while optimizers play a key role in the speed and stability of the
learning process. We used a fixed 10 epochs and 0.001 learning rate because the current
aim of this phase was only to obtain a high-level analysis of the learning capabilities of
the architectures.

We employed them in their most widely used basic configurations. We used the
default configuration of optimizers; in the case of Adam, we used β1 = 0.9 and β2 = 0.999,
and for RMSprop and SGD, we used momentum = 0.

Table 3. Models’ performance on high-level quick tests.

Network Trainable
Param. Batch Optimizer AUC

ResNet50V2 23.5M 16 SGD 0.727 ± 0.005
DenseNet121 6.9M 16 SGD 0.726 ± 0.002

VGG16 134.3M 32 SGD 0.723 ± 0.001
VGG16 134.3M 16 SGD 0.720 ± 0.001

ResNet50V2 23.5M 32 SGD 0.713 ± 0.003
DenseNet121 6.9M 32 SGD 0.711 ± 0.005
DenseNet121 6.9M 64 Adam 0.710 ± 0.008
ResNet50V2 23.5M 64 Adam 0.709 ± 0.010

VGG16 134.3M 64 SGD 0.707 ± 0.001
DenseNet121 6.9M 64 SGD 0.699 ± 0.003
ResNet50V2 23.5M 64 SGD 0.698 ± 0.002
DenseNet121 6.9M 32 Adam 0.696 ± 0.011
DenseNet121 6.9M 64 RMSprop 0.688 ± 0.024
ResNet50V2 23.5M 32 Adam 0.682 ± 0.014
ResNet50V2 23.5M 32 RMSprop 0.678 ± 0.008
ResNet50V2 23.5M 16 RMSprop 0.677 ± 0.004
ResNet50V2 23.5M 64 RMSprop 0.676 ± 0.008
ResNet50V2 23.5M 16 Adam 0.675 ± 0.007
DenseNet121 6.9M 16 RMSprop 0.674 ± 0.007
DenseNet121 6.9M 32 RMSprop 0.665 ± 0.019
DenseNet121 6.9M 16 Adam 0.640 ± 0.067

VGG16 134.3M 64 Adam 0.621 ± 0.062
VGG16 134.3M 32 Adam 0.609 ± 0.064
VGG16 134.3M 16 Adam 0.530 ± 0.060
VGG16 134.3M 64 RMSprop 0.500 ± 0.000
VGG16 134.3M 16 RMSprop 0.500 ± 0.000
VGG16 134.3M 32 RMSprop 0.500 ± 0.000

DenseNet121, ResNet50V2, and VGG16 showed consistent performance across differ-
ent batch sizes. Remarkably, the decrease in AUC was minimal as the batch size increased,
suggesting that these models maintain their efficiency even when processing larger batches.
We see in Figure 3 that the SGD optimizer was consistently better than the others.

The standard deviations were generally low, indicating consistent performance across
different runs of the models. However, with the Adam optimizer, a significant increase
in the standard deviation was observed, especially for VGG16, which may indicate a less
stable performance in these configurations.
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Figure 3. Quick test chart.

3.2. Phase 2

For the second phase, as shown in Figure 1, we used ResNet50V2 exclusively for
further experimentation. This decision was based on a confluence of factors, including the
computational efficiency and simplicity of the model. Transfer learning, the cornerstone
of our methodological framework, involves training a model on a large dataset and then
adapting it to another, often smaller, dataset. This approach is particularly beneficial in
medical imaging, where large annotated datasets are rare. Using the knowledge gained
from one task, transfer learning improves the efficiency and generalization of learning on
another task. In our study, we first trained ResNet50V2 on the entire MIMIC-CXR dataset,
which provided a wide range of chest radiograph images. Learning from this dataset
enables the base model to create a new promising model on Chest X-ray14. In this phase,
we used 198,628 MIMIC-CXR images for training and 49,657 for validation. We trained for
50 epochs and chose the best checkpoint, according to the validation AUC.

3.3. Phase 3

In the third phase, as shown in Figure 1, we used ResNet50V2 without the top block
and transferred the weights from Phase 2. It was used as a starting point in our Hyper-
band algorithm. In this phase of our deep learning model development, we focused on
hyperparameter optimization to improve the performance of the model on our specific
task. Hyperparameter optimization is crucial, as it involves tuning the model settings that
are not learned from the data; however, these can significantly impact the learning process
and the accuracy of the final model.

We identified several key hyperparameters for optimization: loss functions, optimizer
settings, and learning rates. The choice of the loss function is particularly critical in defining
how the model interprets the difference between the predicted and actual values during
training. For our model, we considered two types of loss function: binary cross entropy
(BCE) and sigmoid focal loss (SFL). SFL comes with additional parameters, namely alpha
and gamma, that require fine-tuning. The optimizer chosen for this phase was stochastic
gradient descent (SGD). We also optimized the momentum parameter, which is known for
its effectiveness in navigating the parameter space; the momentum term helps accelerate
the optimizer in the right direction.

The learning rate is one of the most important hyperparameters in neural network
training. The aim is to determine the step size at each iteration while moving toward the
minimum of the loss function. We experimented with various learning rates of 0.1, 0.01,
0.001, and 0.0001 to identify the optimal rate for our model.
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After these settings, which affect the training process, we needed to build a new top
block for ResNet50V2. The only mandatory layer was the last; we had to use a Dense
Layer with 14 units and a sigmoid function for the activation. Nevertheless, we had the
freedom to develop a new top between the end of the convolution part and this layer. The
following table summarizes the hyperparameters (Table 4) and their respective ranges
or values that we explored in our optimization process. The first and second columns
show the parameters and the ranges involved in hyperparameter optimization. Hyperopt1,
Hyperopt2, and Hyperopt3 showed some promising configurations of the process. These
were retrained for the whole dataset in Phase 4. The Froze until parameter denotes how
many blocks of ResNet50V2 were frozen. Dense 1,2 (the number means the units, and it
uses the ReLU activation function) and Dropout 1,2 (the number means the dropout rate)
denote the extra layers added for the classification part of the model. The loss, optimizer,
and learning rate had their own ranges. In this phase, we used five-fold cross validation
with only 0.2 of the Chest X-ray14 images, which was trained on 13,843 images and
validated on 3461 images. We optimized over 15 epochs with a patience of five for the early
stop on Hyperband.

Table 4. Hyperparameter optimization settings.

Hyperparameters Range Hyperopt1 Hyperopt2 Hyperopt3

Froze until block2, block3, block4, block5 none block 5 block3
Additional Block 1 Dense none, 64, 128, 512 128 512 128

Additional Block 1 Dropout 0.0–0.8 0.4 0.4 0.4
Additional Block 2 Dense none, 64, 128, 512 64 128 none

Additional Block 2 Dropout 0.0–0.8 0.5 0
Loss function BCE, SFL SFL (0.25, 2.0) BCE BCE

Optimizer SGD (momentum: wo, 0.5, 0.9, 0.99) 0.9 0.9 0.5
Learning rate 0.1, 0.01, 0.001, 0.0001 0.1 0.01 0.01

Total parameters 23,836,173 24,681,229 23,828,749
Trainable parameters 23,790,733 1,116,429 22,337,293

Non-trainable parameters 45,440 23,564,800 1,491,456

3.4. Phase 4

In the last phase, we trained the optimized network on the whole Chest X-ray14 dataset.
We used five-fold cross validation, with 69,219 training images and 17,305 validation images.
We ran all the training for 30 epochs and chose the best model using the validation algorithm.
All the model configurations presented in Table 5 were evaluated on the official Chest
X-ray14 testing set, which contains 25,596 images. We include some other models used
in this phase to show the evolution in the improvement (Table 5). The ImageNet transfer
column contains the best set from Table 3, which was run on the full Chest X-ray14 dataset
with only ImageNet weights; we only changed the last layer to fit the Chest X-ray14 data.
The MIMIC-CXR transfer column shows the pre-learned weights from Phase 2, with the
configuration inherited from Phase 1. We only changed the last Dense layer to the correct
number of labels. Hyperopt1, Hyperopt2, and Hyperopt3 show these configurations run on
the official split of Chest X-ray14.

3.5. Visual Representation

In this section, we present a visual interpretation of the learned features, using the
Gradient-weighted Class Activation Mapping technique (Grad-CAM) [33]. Grad-CAM
offers a technique to produce “visual explanations” for decisions from a broad array of
CNN-based models, enhancing their transparency and interpretability. Grad-CAM utilizes
the gradients of any target concept (e.g., ‘Effusion’ in the current context) flowing into
the final convolutional layer to generate a coarse localization map. This map highlights
the crucial regions in the image for predicting the concept [33]. Unlike prior methods,
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Grad-CAM can be applied to various CNN architectures without the need for re-training
or architectural modifications.

Table 5. Evaluation of different approaches on ChestX-ray14: individual and mean AUC scores across
14 conditions.

Imagenet Transfer 1 MIMIC-CXR
Transfer 1 Hyperopt1 Hyperopt2 Hyperopt3

Atelectasis 0.7632 ± 0.0115 0.8207 ± 0.0143 0.7604 ± 0.0076 0.8063 ± 0.0078 0.8287 ± 0.0023
Cardiomegaly 0.6781 ± 0.0396 0.7162 ± 0.0190 0.8761 ± 0.0031 0.8798 ± 0.0061 0.8914 ± 0.0024
Consolidation 0.7943 ± 0.0197 0.8200 ± 0.0161 0.7383 ± 0.0148 0.7920 ± 0.0011 0.8094 ± 0.0041

Edema 0.7829 ± 0.0220 0.8280 ± 0.0234 0.8340 ± 0.0072 0.8835 ± 0.0098 0.8995 ± 0.0044
Effusion 0.8725 ± 0.0037 0.9227 ± 0.0101 0.8229 ± 0.0053 0.8746 ± 0.0077 0.8931 ± 0.0002

Emphysema 0.7239 ± 0.0092 0.7919 ± 0.0290 0.8658 ± 0.0085 0.8577 ± 0.0079 0.8847 ± 0.0033
Fibrosis 0.5977 ± 0.0183 0.7243 ± 0.0307 0.8039 ± 0.0080 0.7871 ± 0.0161 0.8086 ± 0.0027
Hernia 0.5774 ± 0.0409 0.6709 ± 0.0664 0.7571 ± 0.0991 0.8338 ± 0.0542 0.8130 ± 0.0378

Infiltration 0.6528 ± 0.0118 0.6968 ± 0.0079 0.6968 ± 0.0039 0.6803 ± 0.0162 0.7047 ± 0.0023
Mass 0.7215 ± 0.0130 0.7704 ± 0.0181 0.7836 ± 0.0113 0.8258 ± 0.0210 0.8518 ± 0.0020

Nodule 0.6564 ± 0.0161 0.7232 ± 0.0155 0.7207 ± 0.0095 0.7356 ± 0.0174 0.7588 ± 0.0025
Pleural Thickening 0.7129 ± 0.0336 0.7925 ± 0.0038 0.7585 ± 0.0121 0.7840 ± 0.0179 0.8121 ± 0.0025

Pneumonia 0.7010 ± 0.0151 0.8027 ± 0.0227 0.7094 ± 0.0060 0.7156 ± 0.0138 0.7304 ± 0.0072
Pneumothorax 0.7478 ± 0.0143 0.8657 ± 0.0079 0.8512 ± 0.0073 0.8392 ± 0.0138 0.8646 ± 0.0012

Mean 0.7130 ± 0.0020 0.7819 ± 0.0047 0.7842 ± 0.0007 0.8068 ± 0.0027 0.8250 ± 0.0023
1 Stock ResNet50V2 with one Dense FC layer.

Figure 4 presents the default classifier head. In the first picture in the first row,
atelectasis was mistaken due to overlapping rib arches. Since the left hemidiaphragm was
obscured by the enlarged cardiac shadow, effusion in the fifth image in the first row is
marked below the expected level of the diaphragm (blue). In the sixth image in the first
row, emphysema was suggested, probably due to the significant difference in the overall
density of the lung bases. In the third picture in the second row, the enlarged aortic knob
was mistaken for a mass. In the seventh picture in the second row, pneumothorax was
suggested in the right apex. This area is often difficult to assess for junior radiologists; as
the bronchovascular pattern is faint, it can raise a false suspicion of pneumothorax.

Figure 4. Grad-CAM of model with the default classifer.

In Figure 5, we present a visual representation of our proposed enhanced model
wherein the pleural effusion is marked in the fifth image in the first row, confirmed by a
radiologist. In the second image in the second row, however, infiltration is falsely suggested,
and the aortic knob was marked instead (red). Infiltration is less likely but probable in
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the right lower lung area. Infiltration is also likely as an underlying factor for the effusion
on the left side; this was not suggested by the algorithm. Cardiomegaly was also not
suggested, although it can be visually confirmed.

Figure 5. Grad-CAM of our proposed model with enhanced classifier.

4. Conclusions

As presented, our proposed method shows a promising AUC ratio that outperforms
many competing models in this research area. Remarkably, only two models achieved
better AUC ratios than ours (Table 6); however, their methodologies differ significantly
from our approach. Yan et al. [34] used bounding boxes to focus on regions of interest
(ROIs), which undoubtedly aids the learning process. However, our study deliberately
focuses on minimizing human intervention. This approach is particularly important for
large datasets, where manual annotation of ROIs is not possible due to the significant time
and expertise required from already overloaded radiologists. Baltruschat et al. [35] used
additional non-image features. They added the patient’s gender and age as a feature into a
classifier that significantly improved lesions that depend on gender or age. Furthermore,
one better result came from a study published by Kufel et al. [36] on 22 September 2023,
which shows a remarkably high AUC; it is important to note that their results are based on
custom data splitting. This unique data management makes comparison impossible for
those who use the official one. The difference in data processing methods underscores the
importance of standardizing research protocols to ensure fair and meaningful comparisons
between studies. Our study provides an excellent base for future research in the field.
One possible path is to address and overcome hardware limitations. This opens the way
for experimentation with more computationally intensive models, such as ResNetV2 101
and 152 or creating higher hyperspace for the examinations. In addition, it opens another
segment of the research to develop hyper-optimal ensemble methods that add the strengths
of different network architectures. In summary, our research contributes to the current
understanding of and methods used in medical image analysis and sets the stage for
innovative future studies that may further push the boundaries of what is achievable in
this rapidly evolving field. For future research, we want to use this technique for COVID
CT images, in contrast to Chen et al. [37], and the long-term plan is to use this method in
brain signal research, based on Zang et al. [38]. We think that recreating the classifier parts
of well-known CNNs will open the door to several unexplored research fields.
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Table 6. Comparison of our results with various studies.

Wang et al.
[12]

Yao et al.
[39]

Shen et al.
[40]

Tang et al.
[13]

Guan et al.
[41]

Yan et al.
[34] 1

Baltruschat
et al. [35] 2

Kufel et al.
[36] 3 Ours

Backbone R50 R-50 R50

Atelectasis 0.700 0.733 0.766 0.765 0.792 0.792 0.763 0.817 0.8287
Cardiomegaly 0.810 0.856 0.801 0.887 0.879 0.881 0.875 0.911 0.8914
Consolidation 0.703 0.711 0.787 0.728 0.758 0.760 0.749 0.815 0.8094

Edema 0.805 0.806 0.820 0.848 0.850 0.848 0.846 0.908 0.8995
Effusion 0.759 0.806 0.797 0.819 0.824 0.842 0.822 0.879 0.8931

Emphysema 0.833 0.842 0.773 0.906 0.909 0.942 0.895 0.935 0.8847
Fibrosis 0.786 0.743 0.765 0.818 0.832 0.833 0.816 0.824 0.8086
Hernia 0.872 0.755 0.748 0.875 0.906 0.934 0.937 0.890 0.8130

Infiltration 0.661 0.673 0.751 0.689 0.694 0.710 0.694 0.716 0.7047
Mass 0.693 0.718 0.760 0.814 0.831 0.847 0.820 0.853 0.8518

Nodule 0.669 0.777 0.741 0.755 0.766 0.811 0.747 0.711 0.7588
Pleural

Thickening 0.684 0.724 0.759 0.765 0.778 0.808 0.763 0.812 0.8121

Pneumonia 0.658 0.684 0.778 0.729 0.726 0.740 0.714 0.769 0.7304
Pneumothorax 0.799 0.805 0.800 0.850 0.858 0.876 0.840 0.898 0.8646

Mean 0.745 0.760 0.775 0.803 0.814 0.830 0.806 0.838 0.8250

1 They use a bounding box of interest region. 2 They use additional non-image features. 3 They use a non-official
data split.
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