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Abstract

The potential effects of conservation actions on threatened species can be predicted using

ensemble ecosystem models by forecasting populations with and without intervention. These

model ensembles commonly assume stable coexistence of species in the absence of avail-

able data. However, existing ensemble-generation methods become computationally ineffi-

cient as the size of the ecosystem network increases, preventing larger networks from being

studied. We present a novel sequential Monte Carlo sampling approach for ensemble gener-

ation that is orders of magnitude faster than existing approaches. We demonstrate that the

methods produce equivalent parameter inferences, model predictions, and tightly con-

strained parameter combinations using a novel sensitivity analysis method. For one case

study, we demonstrate a speed-up from 108 days to 6 hours, while maintaining equivalent

ensembles. Additionally, we demonstrate how to identify the parameter combinations that

strongly drive feasibility and stability, drawing ecological insight from the ensembles. Now, for

the first time, larger and more realistic networks can be practically simulated and analysed.

Author summary

Mathematical models can be used to predict the potential effects of human actions on an

ecosystem. Even without data, information from food webs and ecological theory has

been used to build ecosystem models; but the current methods for generating them are

slow, making analysis only practical for small, simple, food webs. We used a statistical

method from the field of approximate Bayesian inference to speed up the process of

model generation, so that we can study larger and more complex food webs. Using ecosys-

tem case studies and randomly generated food webs, we show that our method can pro-

duce equivalent models and prediction in a fraction of the time. When tested on a large

reef food web, the existing method was not fast enough to generate models within a rea-

sonable time, but this is now possible with our new method. Hence, we can now analyse

the large and complex ecosystems that exist in nature without needing to simplify our

knowledge to save computation time.
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Introduction

Conservation actions aim to help preserve the populations of threatened species, and more

generally maintain the health of an ecosystem. However, it can be challenging to foresee the

effects of an intervention across the whole ecosystem, leaving the potential for unintended

consequences [1–4], such as a shift in predation to increased consumption of a species of inter-

est (e.g., Roemer et al., 2002 [5]). Quantitative models can provide critical insights for ecosys-

tem management by forecasting species populations into the future, or in response to both

anthropogenic and natural perturbations [6–8]. However, parameterising these models is

challenging.

There is typically limited information about the model parameters prior to any analysis [9]

due to the difficulty, speed, cost, and uncertainty of expert elicitation and field experiments

[10–12]. Consequently, estimates of model parameters necessary to simulate the ecosystem are

often poorly constrained and subsequently yield inconclusive forecasts [13].

Since time-series abundance data is often lacking for model calibration [14, 15], parameters

can be constrained based on desired features of the ecosystem; two common expected features

are feasibility (also referred to as coexistence or persistence) and stability [16]. Ensemble eco-

system modelling (EEM)—an extension of qualitative modelling methods [3, 10, 17]—is a

method used to generate an ensemble of plausible ecosystem models by randomly sampling

parameter values and retaining those that yield feasible and stable ecosystems [18]. Many stud-

ies have used similar methods to simulate ecosystem properties such as these and investigate

relationships between network structures, interaction strengths, and ecosystem properties [16,

19–22]. While studies investigating ecological theory could benefit from new parameterisation

regimes, we focus on EEM because of its suitability in conservation planning under limited

information. In practice, EEM has been used to assess the indirect consequences of species

reintroductions [18, 23, 24], invasive species management [25], habitat restoration [26], popu-

lation controls such as baiting [26], and assisted migration [27].

Predictions from EEM can inform conservation decisions in the all-too-common situation

of limited data availability; however, the process of parameterising the ensemble becomes

increasingly computationally intensive as the size of the ecosystem network increases. There

can be a very low probability of randomly sampling feasible and stable systems [28]; for exam-

ple, Peterson and Bode [27] reported fewer than 1 in 1, 000, 000 parameter sets were both feasi-

ble and stable for an ecosystem of 15 species. These constraints are even less likely to be

satisfied for larger and more complex networks [19, 29].

Due to the low probability of generating ecosystem models in which all species stably coex-

ist, much theoretical literature, starting with the classic work of May [16, 19, 20, 29], suggests it

is unlikely for complex ecosystems to exist in nature, whereas others have recently proposed

explanations for why they do exist—such as natural selection [30, 31]. In order to explore these

ecological theories and to build decision-making tools, it is beneficial to model feasible and sta-

ble ecosystems—especially in the absence of time-series data. Yet in practice, this becomes

computationally impractical via random sampling as the food web increases in size [27].

In this paper, we exploit established efficient parameterisation methods within Bayesian sta-

tistics to present and demonstrate a new method for efficiently generating an ensemble of

parameter sets that define feasible and stable ecosystem models, inspired by sequential Monte

Carlo approximate Bayesian computation (SMC-ABC) [32, 33]. Promisingly, when this new

method is compared to the original method proposed by Baker et al. [18]—hereby referred to

as SMC-EEM and standard-EEM, respectively—the computational efficiency is increased by

several orders of magnitude for larger systems, whilst retaining similar predictions. We dem-

onstrate that SMC-EEM, yields consistent ensembles of ecosystem networks to the standard-
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EEM method using two common comparisons (parameter inferences and model forecasts) as

well as via analysis of model sloppiness [34]—a novel model analysis tool [35] that has only

recently been applied for comparison of model ensembles [36]. Additionally, we demonstrate

how this analysis of sloppiness could identify the key parameter combinations driving feasibil-

ity and stability, drawing ecological insight from the obtained ensembles. Therefore, the meth-

ods presented here unlock the capabilities of ensemble ecosystem models for representing in,

and forecasting for, the complex ecosystem networks that exist in nature.

Methods

Ecosystem network modelling

An ecological community of interacting organisms and their physical environment can be

represented as an ecosystem network or food web [37]. Ecosystem networks represent the

interactions between individual species or groups of species (often referred to as nodes),

characterising relationships such as predator-prey, host-parasite, competitive or mutualist

[37, 38]. An interaction matrix is used to characterise positive and negative interactions

between species that represent a beneficial or detrimental effect on the abundance of the

affected species [9]. By characterising the direct effects of one population on another, the

indirect effects that propagate through an ecosystem can be understood and modelled [39].

These interaction networks have been analysed both qualitatively [10, 40–42] and quantita-

tively [6, 9, 13, 18, 43] in order to forecast ecosystem population trajectories and predict

responses to disturbances.

Ecosystems can be quantitatively modelled in many ways—such as non-parametric meth-

ods [44], empirical dynamic modelling [45, 46] or stochastic autoregressive models [43] (see

[12] for an overview). Here, we focus on the common quantitative approach of using the gen-

eralised Lotka-Volterra equations for forecasting change in ecosystem node abundances over

time [6, 9, 47],

dni
dt
¼ ri þ

XN

j¼1

ai;jnjðtÞ

" #

niðtÞ; 8i ¼ 1; . . . ;N; ð1Þ

where ni(t) is the abundance of the ith ecosystem node at time t, ri is the growth rate of the ith
ecosystem node, N is the number of ecosystem nodes being modelled, and αi,j is the per-capita

interaction strength characterising the effect of node j on node i.
If there is no known effect of species j on species i, the parameter αi,j = 0. However, relation-

ships between species can be prescribed via the sign of the interaction strength parameters. For

example, a mutualist relationship would require that both αi,j and αj,i are positive. Hence, con-

necting these Lotka Volterra equations to an ecosystem network informs ecosystem-specific

information about the interaction strength parameters αi,j in the model. In this work, we limit

consideration to identifying suitable parameter values for a known model structure, rather

than identifying appropriate model structures or networks.

The system represented in Eq (1) can be equivalently expressed in a vector form as

dn

dt
¼ ½rþAn� � n; ð2Þ

where n = {ni : i = 1, . . ., N} is the vector of species abundances, r = {ri : i = 1, . . ., N} is the vec-

tor of species growth rates, A = {αi,j: i, j = 1, . . ., N} is the N ×N interaction matrix of per-capita

interaction strengths between ecosystem nodes, and � is the Hadamard or element-wise

product.
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Feasibility and stability constraints

The EEM method generates an ensemble of plausible parameter sets for the generalised Lotka-

Volterra model where there is limited data. To do this, it uses two constraints on the behaviour

of the whole ecosystem: feasibility and stability [18].

Since there cannot be negative populations, a feasible ecosystem is one in which equilibrium

populations of all species are positive [21]. This feasibility condition is met if n∗i > 0 for all i,
where n∗i is the equilibrium population abundance for node i, which is the solution to

dn∗i
dt
¼ rin

∗
i þ n

∗
i

XN

j¼1

ai;jn
∗
j ¼ 0; 8i ¼ 1; . . . ;N: ð3Þ

Following Eq (2), this condition can be rewritten conveniently as

n∗ ¼ � A� 1r; ð4Þ

where n* is the vector of equilibrium population abundances n∗i for all species.

A stable ecosystem is one which can recover after small perturbations of species abundances

away from equilibrium [22]. Specifically, local asymptotic stability (Lyapunov stability)

requires that the dynamic system returns to the vicinity of the equilibrium point following a

perturbation [21]. To determine if the stability constraint is met the Jacobian matrix Jmust be

evaluated at equilibrium n*, such that

Jij ¼
@fi
@nj

�
�
�
�
n¼n∗

ð5Þ

is the (i, j)th element of the Jacobian matrix J, and fi is the change in abundance for the ith
node represented by Eq (1). Eq (5) indicates that the elements of this Jacobian matrix approxi-

mate the effect of species j on species i when the system is close to equilibrium [22]. The

dynamic system is considered locally asymptotically stable if the real part of all eigenvalues (λi)
of the Jacobian matrix J are negative, i.e. Rflig < 0; 8i ¼ 1; . . . ;N. For the generalised

Lotka-Volterra equations, the elements of the Jacobian matrix evaluated at equilibrium can be

calculated as

Ji;j ¼ ai;jn∗i : ð6Þ

Ensemble ecosystem modelling

Ensemble ecosystem modelling (EEM) aims to produce an ensemble of parameter sets that yield

feasible and stable ecosystems for a given ecosystem network structure. The standard approach

to EEM, introduced by Baker et al. [18], is to randomly search a pre-defined parameter space

for possible intrinsic growth rate parameters ri and interaction strengths αi,j that together yield a

feasible and stable ecosystem. Specifically, the model parameters θ� {αij, ri}i,j=1,. . .,N are first

sampled from a pre-specified probability distribution which characterises any prior beliefs

about the parameter values; this is the prior distribution π(θ). Next, any sampled parameter sets

θ which lead to feasible and stable ecosystems are added to the ensemble of plausible models,

creating an ensemble of parameter sets from the target distribution π(θ|s) that have the desired

system features s. Throughout this manuscript, we refer to this random sampling process for

generating an ensemble of feasible and stable ecosystems—described in Algorithm 1—as the

standard-EEM method. After solving each system of Lotka-Volterra equations, the forecasts are

combined to produce an ensemble that can simulate the multitude of potential effects of
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conservation actions on each of the species within the ecosystem [18, 23–27]. A summary of the

EEM process is depicted in Fig 1.

Algorithm 1: The standard-EEM algorithm proposed by Baker et al. [18].
while the ensemble is not sufficiently large do
Propose parameter values using any prior beliefs θ* * π(θ)
if the model using θ* meets the feasibility and stability constraints

then
Save parameter values θ* to the ensemble

Forecast using the ensemble of ecosystem models

While the standard-EEM method can produce a representative ensemble of feasible and sta-

ble ecosystems, in practice it is too computationally intensive to be practical for large or dense

ecosystem networks. We show here that the efficiency of EEM can be greatly improved by

exploiting efficient sampling methods developed for Bayesian statistics, such as sequential

Monte Carlo-approximate Bayesian computation (SMC-ABC). To explain this, we first dem-

onstrate the connection between EEM and approximate Bayesian computation (ABC).

Approximate Bayesian computation

ABC is a statistical inference technique used to estimate the parameters of complex models by

comparing simulated data to observed data [48–51]. The technique involves simulating data

from the model using prior information about the model parameters θ as specified by the

prior distribution π(θ). The simulated data ŷ (from the model specified by θ) is then compared

to the observed data y via a summarisation function S that reduces the full dataset to a set of

summary statistics. A discrepancy function rðSðyÞ; SðŷÞÞ is used to measure the similarity

between the simulated and observed datasets [50], and if the simulated data closely matches

the observed data, the parameter values are accepted as plausible. The target (posterior) distri-

bution, which is a distribution of the parameters conditional on the available data π(θ|y), can

then be approximately sampled using ABC accept-reject [52], or more efficient methods [48]

such as Markov chain Monte Carlo ABC (MCMC-ABC) [53, 54] or sequential Monte Carlo

ABC (SMC-ABC) [55, 56]. For the interested reader, helpful reviews on approximate Bayesian

methods can be found in Beaumont et al., [51], Drovandi [57], or Sisson et al., [49].

Connections between approximate Bayesian computation and ensemble

ecosystem modelling

While similarities have been drawn between ABC and EEM [18, 26], this connection has not

been exploited in the literature to our knowledge. Where ABC uses summary statistics to

Fig 1. Overview of the ensemble ecosystem modelling (EEM) process. In the present work, we present the

SMC-EEM method and compare it to the standard-EEM method [18]. The inputs and outputs of the EEM process are

the same regardless of the parameterisation method (SMC-EEM or standard-EEM) used.

https://doi.org/10.1371/journal.pcbi.1011976.g001
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capture key information in the observed data, EEM applications have no abundance data and

instead assume that ecosystems are observably feasible and stable. While we suggest that EEM

is not an ABC approach in the statistical sense, we propose to frame these system features as

summary statistics and adopt ABC-based sampling methods. In this way, the output of EEM

should instead be considered a constraint-informed prior, rather than a posterior distribution

—as feasibility and stability are not directly observed. However, by placing EEM within an

ABC framework, the vast literature on efficient sampling methods developed for ABC can be

used to efficiently generate an ensemble of plausible ecosystem networks.

There are many different ABC methods available [49], and the simplest is accept-reject

ABC. Table 1 reveals that the steps of the standard-EEM method (Algorithm 1) are exactly

analogous to the ABC accept-reject method [58]. Through both methods, the model parame-

ters θ = {αij, ri: i, j = 1, . . ., N} are calibrated using prior information about the parameters and

summaries of the data (feasibility and stability).

In the ABC accept-reject method depicted in Table 1, the aim is to minimise the discrep-

ancy (ρ) between the modelled and observed data so that they match as much as possible, such

that ρ< � where the target discrepancy � is small. Equivalently, in the standard-EEM method,

the aim is for the features of modelled ecosystems to match what is assumed to be true for a

real ecosystem of coexisting species—feasibility and stability.

Hence, ABC can be mathematically matched to EEM by introducing a discrepancy function

ρ that becomes equal to a target discrepancy of zero (� = 0) when the modelled ecosystem is

feasible and stable. To this end, we define a discrepancy function ρ(θ) for an ecosystem repre-

sented by parameters θ = {ri, αi,j: i, j = 1, . . ., N}, as

rðθÞ ¼ vf ðθÞ þ vsðθÞ; ð7Þ

vf ðθÞ ¼
XN

i¼1

jminf0;n∗i ðθÞgj; ð8Þ

vsðθÞ ¼
XN

i¼1

jmaxf0;Rfliggj; ð9Þ

Table 1. Placing EEM within an ABC framework.

Step Standard-EEM method [18] ABC accept-reject method [58]

1 Generate parameter values {αij, ri: i, j = 1, . . ., N}

independently from distributions.

Sample parameter values from the prior distribution,

θ** π(θ).

2 Calculate equilibrium abundances n∗i for all species,

from the parameter values generated in step 1 (Eq

(4)), and calculate the eigenvalues of the Jacobian

matrix λi (Eq (5)).

Simulate data from the model ŷ , using the drawn

parameter values θ*.

3 Reject model if it is not feasible and stable, i.e. if the

model does not satisfy n∗i > 0 and Rflig < 0 for all

i = 1, . . ., N.

Reject the parameter values if the discrepancy

between modelled and observed data is too large,

such that θ* is rejected if rðSðŷÞ; SðyÞÞ > � for some

tolerance �.

4 Repeat steps 1–3 until the ensemble is sufficiently

large.

Repeat steps 1–3 until a sufficiently large ensemble is

obtained.

A comparison of the steps in the standard-EEM method and the ABC accept-reject method shows that the two

methods are analogous.

https://doi.org/10.1371/journal.pcbi.1011976.t001
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where vf(θ) is a measure of infeasibility of all ecosystem nodes (the negativity of equilibrium

populations n∗i ), and vs(θ) is a measure of instablility of all ecosystem nodes (the positivity of

the real parts of the Jacobian eigenvalues λi). Using the discrepancy function ρ(θ) defined in

Eqs (7)–(9), a feasible and stable ecosystem possesses ρ(θ) = 0; however, any infeasibility or

instability will result in ρ(θ)> 0.

Sequential Monte Carlo-approximate Bayesian computation

By placing EEM within an ABC framework we can take advantage of advanced ABC sampling

methods beyond ABC accept-reject sampling. Within the ABC framework, there is a large

suite of methods for sampling from the approximate posterior—such as ABC accept-reject,

MCMC-ABC and SMC-ABC [51]—which each present different advantages and disadvan-

tages. In the present work, we used SMC-ABC for sampling because it can be more efficient

for applications with a low probability of randomly sampling acceptable parameter values [59]

and this is the key computational bottleneck in ecosystem generation for large and complex

networks. Hence, in the remainder of this section, we provide a brief overview of SMC-ABC as

it pertains to ecosystem generation.

SMC-ABC works by moving an ensemble of parameter sets through a sequence of distribu-

tions, ending at the target distribution [55]. Typically starting with an ensemble drawn from

the prior distribution p0, these parameter sets are manipulated to become representative of the

next distribution in the sequence p1 and this process is repeated until the ensemble is represen-

tative of the target distribution pT. In SMC-ABC, the sequence of distributions t = 0, . . ., T is a

sequence of decreasing maximum discrepancies �, such that the tth distribution is pt(θ|ρ(θ)�

�t), where �t� �t−1. This sequence, whether prespecified or adaptively selected within the algo-

rithm, commonly progresses the ensemble from the prior (maximum discrepancy �0 =1) to

some target discrepancy (maximum discrepancy �T). In this way, SMC-ABC breaks up the

sampling problem into a series of simpler problems [60]. Provided that the sequence of distri-

butions is chosen sensibly so that the effective sample size throughout the algorithm is main-

tained at a reasonable level, the sequence itself does not affect the target distribution, merely

the speed that the target distribution is obtained.

In SMC, a distribution in the sequence is characterised by many independent and weighted

parameter sets referred to as ‘particles’. The weight attributed to each particle is determined by

both the prior density and the discrepancy of the parameter set. As such, each particle θi con-

tains a proposed value for all model parameters and a weighting, and subsequently an ensem-

ble ofM particles make up an empirical approximation of the distribution pt.
Each distribution in the sequence, pt, can be approximated by manipulating the ensemble

characterising the previous distribution pt−1, using importance sampling and MCMC-ABC

techniques [33]. To progress the particles from one distribution to the next, three steps are iter-

atively applied: reweighting, resampling and moving [48, 56].

1. Reweighting: The prior density and discrepancy for all particles is calculated and used to

weight the particles. This ensures parameter sets that create outputs similar to the observa-

tions are more highly weighted.

2. Resampling: Particles are resampled according to their weight, such that high-weighted

particles are duplicated and low-weighted particles are eliminated. This focuses the particles

into areas of the parameter space that can yield low discrepancies.

3. Moving: MCMC-ABC [54] is used to move the particles according to the current distribu-

tion in the sequence pt(θ|ρ(θ)� �t). This diversifies the ensemble (avoiding duplicates) by

jittering each parameter set relative to its current values.
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By iterating through these three steps, the cluster of weighted particles can progress through

the sequence of distributions to the target distribution. Algorithm 2 shows a summary of an

adaptive SMC-ABC method [55], adapted to the EEM context by building on Drovandi and

Pettitt’s implementation [33]. Further details of this algorithm are provided in S1 File.

Algorithm 2: Overview of the SMC-EEM method (see S1 File for full details)
INITIALISE
Generate an ensemble of M particles fθig

M
i¼1

from the prior distribution,
π(θ)
REWEIGHT
Evaluate the discrepancy for all particles, ρ ¼ frðθiÞg

M
i¼1

Set the discrepancy threshold �t
while there are infeasible or unstable models in the ensemble, max(ρ)

> 0 do
RESAMPLE
Replace all particles with a discrepancy greater than the tolerance,
ρ(θi) � �t, by duplicating particles with discrepancies below the
tolerance
MOVE
while there are many duplicate particles do
for each particle that was replaced do
Propose a new set of parameter values θ∗i from a proposal
distribution
Evaluate the discrepancy and prior density, rðθ∗iÞ and πðθ∗iÞ
Accept or reject θ∗i based on a Metropolis-Hastings ratio

REWEIGHT
Lower the discrepancy threshold, �t

We can think of the ABC accept-reject method (standard-EEM) as “uninformed”: we reject

models that do not fit the constraints, without learning from them. Instead, a more informed

sampling method, such as SMC-ABC, utilises information from rejected models. SMC-ABC

methods use a sequence of decreasing tolerances, so that parameter values are proposed from

an iteratively more “informed” distribution, rather than the prior [60]. As a result, SMC-ABC

can perform more efficiently than ABC accept-reject for simulating rare events (when the

prior and target distributions are very different) [51]. S1 Video shows a visual comparison of

the ABC accept-reject and SMC-ABC methods in two dimensions.

Analysis of model sloppiness

To compare the ensembles produced by standard-EEM and SMC-EEM, an analysis of model

sloppiness can be used. Analysis of model sloppiness is a data-informed sensitivity analysis

[61–63] that has recently been shown to provide useful insights for biological and ecological

models parameterised using Bayesian inference [34–36]. In the context of ecosystem genera-

tion, analysis of model sloppiness can be used to provide a comparison of the model ensembles

generated via different Bayesian methods.

Whilst ensembles can (and should) also be compared based on the estimated marginal

parameter distributions, this method can be misleading when individual parameter values are

unconstrained. Complementarily, analysis of model sloppiness can be used to compare tightly

constrained parameter combinations (e.g. products and ratios of parameters) between differ-

ent ensembles, to indicate their similarity even when individual parameter values are relatively

unconstrained [36].

The analysis of model sloppiness uses an eigendecomposition of a parameter-data sensitiv-

ity matrix to identify the directions in parameter space, with associated magnitudes, that are

most informed by the data [34, 61]. Here the “data” refers to the feasibility and stability
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constraints. We use the posterior covariance sensitivity matrix—the inverse of the empirical

covariance matrix of the logarithmically transformed ensemble [34, 35]—to capture how

tightly constrained parameters are after parameterisation. Hence, using this analysis on an

ensemble generated via standard-EEM yields the directions in parameter space that are impor-

tant for obtaining feasible and stable systems.

These important directions can be expressed as parameter combinations [34], known as

eigenparameters ŷ j:

ŷ j ¼ y
vj;1
1 y

vj;2
2 � � � y

vj;np
np ; ð10Þ

where vj ¼ ½vj;1; vj;2; . . . ; vj;np � is the jth eigenvector of the sensitivity matrix, np is the number

of model parameters, and θi is the ith parameter in the model [35, 62]. Using a logarithmically

transformed ensemble allows this eigenparameter to be expressed as a product (as in Eq (10))

rather than a sum, which is common in the literature [34, 35, 61]. Each eigenparameter has a

corresponding eigenvalue λj that indicates how tightly constrained the parameter combination

is, such that the largest eigenvalue (λ1) corresponds to the most sensitive eigenparameter ŷ1.

These parameter combinations (expressed as in Eq (10)) can be directly analysed to identify

important mechanisms [34], or visually represented to identify parametric trends [35] that

drive the model to match the data (in this case feasibility and stability). For further information

about the analysis of model sloppiness method or interpreting eigenparameters, see Monsalve-

Bravo et al., 2022 [34] or Vollert et al., 2023 [35]. We applied this analysis to a case study to

demonstrate the process of identifying important mechanisms and parameter trends in feasi-

bility and stability constrained ecosystem models (see Case study 3: Great Barrier Reef

network).

Additionally, we can use this analysis of sloppiness to compare the similarity of ensembles

(standard-EEM and SMC-EEM) across important parameter combinations, comparing the

ensembles across many parameters simultaneously. For each eigenparameter j (as in Eq (10)),

the parameter values θ can be substituted in to yield a value for the parameter combination, ŷ j.

Repeating this process for all parameter sets in an ensemble therefore yields a distribution of

values representing the eigenparameter ŷ j. Hence, for each important parameter combination

ŷ j, we can produce and compare the distributions created by two different ensembles of

parameter sets, assessing the ensemble similarity across the important directions in parameter

space [36]. When applied to standard-EEM and SMC-EEM ensembles, this analysis reveals

whether the important parameter combinations for feasibility and stability are similar between

the two methods, indicating ensemble similarity even if individual parameters are uncon-

strained. Hence, the analysis of model sloppiness here provides a critical assessment of the sim-

ilarity of the ensembles produced by the two different methods of ecosystem network

generation (standard-EEM and SMC-EEM).

Case studies

The standard-EEM and SMC-EEM methods were compared in two ways. Firstly, the two

methods were compared generally across many randomly generated ecosystem network struc-

tures (referred to as the “simulation study”). Secondly, the methods were compared via three

case studies representing natural ecosystems. An ecosystem network representing semiarid

Australia—originally used by Baker et al. [18] to introduce EEM—was investigated as an

example network where standard-EEM is practical for ecosystem generation within a reason-

able computation time. A network of Phillip Island, Australia [25] was used to showcase an
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example where SMC-EEM is much faster than standard-EEM for ensemble generation.

Finally, a coral reef food web network proposed for the Great Barrier Reef [64] was investi-

gated as an example of interest where the standard-EEM method is computationally impracti-

cal. For the simulation study and the three case studies, the computation times and the

resulting ensembles produced by each method were compared.

Simulation study. To generally test the two methods, many ecosystem networks were

simulated. Following the practice of May [19] (later replicated by many other studies, e.g., Alle-

sina and Tang [28]), a random matrix theory approach was used, whereby the sign structure of

an interaction network was randomly assigned, as follows.

A network of S species requires a S × S interaction matrix. The diagonal elements of the

matrix (the effect of a species on itself) are negative so that the species populations are self-reg-

ulating. Each off-diagonal element of the matrix was treated independently via a two-step pro-

cess. Firstly, the interaction was made non-zero with a probability c—this connectance

parameter specifies the probability of direct interaction between two species [28]. We focused

our results on ecosystems generated with a connectance probability of c = 0.5; however, we

also explored varying this probability to c = 0.25 and c = 0.75. Secondly, each non-zero element

was allocated either a positive or negative interaction with probability p = 0.5 (such that there

was an equal probability of positive or negative interactions). Network structures consisting of

between 3 and 15 species (inclusive) were generated with this approach.

For each randomly generated network structure of 3–15 species, 1000 feasible and stable

parameterisations were found using the ensemble generation methods discussed previously

(standard-EEM and SMC-EEM). We aimed to generate and simulate 1000 ecosystems of each

size. However, due to the computational burden of the experiment, we were unable to simulate

this many large networks. Instead, there are a minimum of 100 ecosystems simulated for each

network size. For each ecosystem network considered in this work (both simulated and natural

case studies) the parameterisation used prior distributions of jai;jj � Uð0; 1Þ, and ri � Uð0; 5Þ
following Baker et al., 2017 [18].

Case study 1: Semiarid Australia network. The two ensemble generation methods (stan-

dard-EEM and SMC-EEM) were then applied to an eight-node ecosystem network represent-

ing semiarid Australia (see Figure 1b of [18]). This ecosystem network was previously used to

introduce the standard-EEM method and to evaluate the plausible consequences of dingo rein-

troduction to a national park in Australia [18].

Since standard-EEM has been previously applied to this case study it serves as a useful test

case where both methods are expected to generate an ensemble within a practical time

frame. In this network, interaction matrix elements that do not represent direct effects of

species on each other are set to zero and thus do not require sampling; if this were not the

case then ecosystem generation for this (eight-node) network would require sampling of 72

parameters (total 64 interaction matrix elements αi,j and 8 growth rates ri). Instead, this

eight-node network has 33 parameters when represented as a generalised Lotka-Volterra

model, which is small compared to other ecosystem networks observed in nature that have

been quantitatively investigated (e.g. Booderee National Park represented as 20 nodes and

163 parameters [9]).

Case study 2: Phillip Island network. Next, we generated an ensemble of ecosystem

models using both standard-EEM and SMC-EEM for a 22 node network which represents

Phillip Island, Australia (see Figure 2 of [25]). This network is considerably larger and more

complex than the semiarid Australian network—there are 110 parameters to be estimated

when represented as a Lotka-Volterra system—such that the SMC-EEM method is expected to

generate an ensemble faster than the standard-EEM method.

PLOS COMPUTATIONAL BIOLOGY Rapid parameterisation of feasible and stable ecosystem networks
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Case study 3: Great Barrier Reef network. Lastly, we demonstrate the benefits of the

SMC-EEM method using a case study where it is impractical to use standard-EEM. Rogers

et al. [64] produced a conceptual 16-node coral reef food web from the literature which depicts

a Great Barrier reef ecosystem (see Figure 1 of [64]). In addition to being a large, this ecosys-

tem network is also densely connected, resulting in an extremely low probability of sampling a

feasible and stable model.

Results

Simulation study

Our new SMC-EEM method is orders of magnitude faster than the standard-EEM method for

larger ecosystems when compared generally across many randomly generated ecosystem net-

work structures (Fig 2). We observe that for smaller ecosystems the standard-EEM method

may be more computationally efficient due to the additional computational processes required

by the SMC-EEM method. This key result also holds for different connectance probabilities c
(S1 Fig).

More generally, the computation time of the standard-EEM method scales linearly with the

probability of randomly selecting parameter values that are feasible and stable (Fig 3). This

probability—known as the acceptance rate—is an emergent property of the model, prior and

constraints, and can be estimated as the proportion of tested parameter sets that were accepted

using standard-EEM. In our simulation study, the SMC-EEM method was computationally

more efficient for ecosystems with an estimated acceptance rate smaller than 0.005 (vertical

dashed line in Fig 3), such that less than 1 in 200 proposed systems are feasible and stable.

Here, the SMC-EEM method is faster than the standard-EEM method because fewer

Fig 2. Ensemble generation times for different network sizes. The computation time required to parameterise an

ensemble of 1000 feasible and stable ecosystem models using both the standard-EEM and SMC-EEM methods. This

figure shows the medians (dots) and 7.5–92.5% quantiles (error bars) of computation times. Note, the computation

time for any one ecosystem network was capped at 104 seconds due to the computational burden of the simulation

study.

https://doi.org/10.1371/journal.pcbi.1011976.g002

PLOS COMPUTATIONAL BIOLOGY Rapid parameterisation of feasible and stable ecosystem networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011976 March 14, 2024 11 / 29

https://doi.org/10.1371/journal.pcbi.1011976.g002
https://doi.org/10.1371/journal.pcbi.1011976


parameter values need to be trialled (S2 Fig), making the SMC-EEM method more statistically

efficient. Though standard-EEM can outperform SMC-EEM at high acceptance rates, both

methods were computationally inexpensive in these scenarios. In our simulation study, ensem-

bles of 1000 feasible and stable ecosystems could be generated in less than 12 seconds via either

method in networks with an acceptance rate greater than 0.005.

Additionally, we find that the ensembles of ecosystem models produced by the standard-

EEM and SMC-EEM methods are consistent with each other in their estimated parameter dis-

tributions, eigenparameter distributions, and time-series predictions (Fig 4). For example, for

a randomly sampled interaction structure (Fig 4a), the SMC-EEM method replicates the out-

puts of the standard-EEM method in terms of predicted model parameter distributions (blue

and red densities in Fig 4b). Additionally, from an analysis of model sloppiness, the stiffest

eigenparameters (i.e. parameter combinations corresponding to the largest eigenvalues of the

sensitivity matrix, see Eq (10) and surrounding text for more information) also correspond

extremely well between the SMC-EEM and standard-EEM methods (blue and red densities in

Fig 4c). Finally, time-series forecasts of these ecosystems from a common randomly chosen

Fig 3. Ensemble generation times for different acceptance rates. The parameterisation computation times of Fig 2

with respect to the acceptance rate of the standard-EEM method—an estimation of the probability of randomly

sampling a feasible and stable system given a network with a pre-specified structure. Acceptance rates are

logarithmically displayed from 100% acceptance (left) to very small percentages (right). Note that the computation

time for any one ecosystem network was capped at 104 seconds to maintain practical computations in the simulation

study.

https://doi.org/10.1371/journal.pcbi.1011976.g003
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initial condition are virtually indistinguishable between the methods (blue and red shaded

regions in Fig 4d).

Case study 1: Semiarid Australia network

For both SMC-EEM and standard-EEM methods, it took less than a minute to generate a

10,000 model ensemble for the semiarid Australia network, though the standard-EEM method

was faster (Table 2). These computation times are consistent with our previously observed

relationship between acceptance rate and computation time (Fig 3), as the estimated accep-

tance rate for this network is 0.11, which is much larger than 0.005. As the acceptance rate for

the semiarid Australia network is high, only two SMC-ABC iterations were required to gener-

ate the ensemble, making the SMC-EEM method statistically inefficient. For this eight-species

ecosystem network, with connectance c = 0.39, the standard-EEM method would be the best

choice of method, as it is faster and easier to implement.

For this network (Fig 5a), we found that the SMC-EEM method produced consistent esti-

mated distributions of equilibrium abundances to the standard-EEM method (Fig 5b). We

also observe similar estimated parameters (S3 Fig), stiff eigenparameters (S4 Fig), and time-

series predictions (S5 Fig) for the standard-EEM and SMC-EEM produced ensembles.

Case study 2: Phillip Island network

The standard-EEM method required 108 days to generate 100,000 ensemble members for the

Phillip Island network; however, SMC-EEM completed this task in under 6 hours (Table 3). (It

should be noted that these computational exercises were performed in parallel on 12 cores.)

The SMC-EEM method produced the ensemble in 0.22% of the time required by standard-

EEM because it required 0.13% of the simulations. This massive computational saving is con-

sistent with the results presented in Fig 3, as the acceptance rate for the Phillip Island network

was 1.7 × 10−6. The SMC-EEM method is thus the only practical option, out of the two meth-

ods, for this 22-species network.

Additionally, the outputs of SMC-EEM and standard-EEM are consistent. The distributions

of equilibrium abundances computed for each parameterised ensembles are consistent (Fig

6b) and both methods produce comparable estimated marginal parameter distributions (S6

Fig), stiff eigenparameter distributions (S7 Fig) and population forecasts (S8 Fig), indicating

that the information gained about the parameters is consistent between methods.

Case study 3: Great Barrier Reef network

Parameterising the Great Barrier Reef network [64] for 100,000 ensemble members took 21

hours for the SMC-EEM method (Table 4) and could not be practically computed using the

standard-EEM method. Based on a preliminary analysis of 20 ensemble members, it took

approximately 40 hours to generate a single ensemble member using standard-EEM with an

acceptance rate of Oð10� 9Þ, hence an ensemble of this size would take years to produce (esti-

mated 450 years). The SMC-EEM method is thus the only practical option, out of the two

methods, for this 16-species network.

Since we cannot produce a standard-EEM ensemble, instead we compared the outputs of

two independently obtained SMC-EEM ensembles to assess their reproducibility. This indi-

cates if SMC-EEM can adequately sample the parameter space to produce a representative

ensemble. The two independent SMC-EEM ensembles of 100,000 yield consistent results

when comparing the predicted equilibrium abundances (Fig 7b). Additionally, the ensembles

have comparable estimated marginal parameter distributions (S9 Fig), stiff eigenparameter

distributions (S10 Fig), and time-series forecasts (S11 Fig), indicating that the information
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Fig 4. Outputs of a simulated network. Example outputs from a randomly chosen ecosystem simulated in Fig 3 using ensembles obtained

from the prior distribution (grey), standard-EEM method (red) and SMC-EEM method (blue). In each case, notice that the standard-EEM

method and SMC-EEM method produce consistent results that are significantly different to the prior: (a) A six-species ecosystem network

generated using c = 0.5. This example ecosystem has 27 parameters and a 0.037 probability of randomly selecting feasible and stable

parameter values. (b) Estimated marginal parameter distributions estimated via both methods and compared to the prior distribution. (c)

Marginal distributions of the nine stiffest eigenparameters for each ensemble obtained from an analysis of model sloppiness. (d) The

distribution of equilibrium population abundances predicted for each ensemble. Note that the x-axes have been limited to visualise the

distribution peaks, however the range of equilibrium populations for the prior distribution was Oð104Þ, so is very diffuse (and hence barely
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gained about the parameters is consistent across independent runs. Such a result is very

encouraging given that, for this case study, we have yielded a representative approximation of

118-dimensional space with 100,000 parameter sets each.

Once an ensemble is obtained, a data-informed sensitivity analysis—such as the analysis of

model sloppiness—can be used to identify the important parameter combinations for achiev-

ing feasibility and stability. For this Great Barrier Reef ecosystem network, each of the five

most tightly constrained parameter combinations focuses on balancing the positive growth

rates of basal species, or the self-regulation of top predators (see S12 and S13 Figs).

For example, using the information in S12 Fig, the first eigenparameter can be expressed as

ŷ1 ¼
rTA � a0:1

MA;MA � a
0:1
MA;C � a

0:1
MA;D

r0:6
MA � a

0:1
TA;U � a

0:1
TA;MA � a

0:1
TA;D
�

rTA
ffiffiffiffiffiffiffirMA
p ;

where ri is the positively constrained intrinsic growth rate for species i, αi,j is the interaction

parameter for the effect of species j on species i, and the relevant species for this equation are

represented as TA for turf algae,MA for macroalgae, C for coral, D for detritus and U for

urchins. This eigenparameter describes the balance between the proliferation of turf algae and

the negative impacts on its abundance: mainly competition with macroalgae (including the

proliferation rate of macroalgae), but also other lower trophic species including detritus, coral

and urchins. Similar relationships can be seen for the five most influential parameter combina-

tions (S12 Fig).

This could indicate that given growth rate parameters are constrained to be only positive,

and self-interactions between species are constrained to be only negative (self-regulating), the

most important features for parameterising feasible and stable ecosystems are a high abun-

dance of basal species and limited populations of top-predators. This well-observed result,

while not a surprising insight, indicates how this analysis could be used to identify key drivers

for developing feasible and stable ecosystems.

Discussion

In this work, we have presented and demonstrated a method that, for the first time, can rap-

idly generate ensemble ecosystem models for higher dimensional ecosystem networks. This

new method, which we call the SMC-EEM method, can generate consistent ensembles to

the current gold-standard method—standard-EEM—whilst being orders of magnitude

faster for large and densely connected networks. On a Phillip Island case study [25]

SMC-EEM reduced the computation time from 108 days to 6 hours, with indistinguishable

visible in these plots) compared to the ensemble-predicted distribution abundances. (e) Time-series predictions of population abundances

for each ensemble of ecosystem models using randomly chosen initial conditions (median population prediction and 95% credible intervals

shown).

https://doi.org/10.1371/journal.pcbi.1011976.g004

Table 2. Computational requirements for the semiarid Australia network.

Standard-EEM SMC-EEM

Computation time (sec) 5.9 32.4

Simulations (number) 8.7 × 104 10.3 × 104

Computation time and the number of simulations required to generate an ensemble of 10,000 models using both the

standard-EEM and SMC-EEM methods for the semiarid Australian ecosystem network.

https://doi.org/10.1371/journal.pcbi.1011976.t002
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time-series predictions, estimated distributions of model parameters and model parameter

combinations. For a Great Barrier Reef network, we showed that standard-EEM was not

capable of producing a large ensemble, such that SMC-EEM was the only practical option.

This new method permits large and complex ecosystems—as observed in nature—to be

practically simulated and analysed.

The best ecosystem generation method depends on the properties of the

ecosystem network

Both the standard-EEM method and our introduced SMC-EEM method have advantages and

disadvantages, depending on the ecosystem being modelled. SMC-EEM is expected to be more

computationally efficient for ecosystems comprised of 7 or more species (result obtained for a

connectance probability c = 0.5 as in Fig 2; see S1 Fig for results with other values of c), or if

Fig 5. Equilibrium abundances for the semiarid Australia network. Ensemble ecosystem modelling for an ecosystem network representing semiarid

Australia parameterised using standard-EEM and SMC-EEM methods. (a) The semiarid Australian ecosystem network [18] consisting of eight nodes

and 33 parameters when represented as a Lotka-Volterra system. (b) Distributions of equilibrium abundances from the prior distribution (grey),

standard-EEM (red) and SMC-EEM (blue) ensembles of ecosystem models. Note that the x-axes have been limited to visualise the distribution peaks,

however the range of equilibrium populations for the prior distribution is very diffuse (and hence barely visible in these plots) compared to the

ensemble-predicted distribution abundances. Here the blue and red densities match almost exactly, demonstrating that the outputs of the standard-

EEM and SMC-EEM methods are consistent.

https://doi.org/10.1371/journal.pcbi.1011976.g005

Table 3. Computational requirements for the Phillip Island network.

Standard-EEM SMC-EEM

Computation time (sec) 9.3 × 106 2.1 × 104

Simulations (number) 5.8 × 1010 7.8 × 107

Computation time and the number of simulations required to generate an ensemble of 100,000 models using

standard-EEM and SMC-EEM for the Phillip Island ecosystem network.

https://doi.org/10.1371/journal.pcbi.1011976.t003
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Fig 6. Equilibrium abundances for the Phillip Island ecosystem network. Ensemble ecosystem modelling for an

ecosystem network representing Phillip Island parameterised using standard-EEM and SMC-EEM. (a) The Phillip

Island ecosystem network [25] consists of 22 nodes, with connectance c = 0.18, and 110 parameters when represented

as a Lotka-Volterra system. (b) Distributions of equilibrium abundances from the prior distribution (grey), standard-

EEM (red) and SMC-EEM (blue) ensembles of ecosystem models. Note that the x-axes have been limited to visualise

the distribution peaks, however the range of equilibrium populations for the prior distribution is very diffuse (and

hence barely visible in these plots) compared to the ensemble-predicted distribution abundances. Here the blue and

red densities match almost exactly, demonstrating that the outputs of the standard-EEM and SMC-EEM methods are

consistent.

https://doi.org/10.1371/journal.pcbi.1011976.g006
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less than 1 in 200 parameter values are feasible and stable when sampled using standard-EEM

(acceptance rate of 0.005; Fig 3). While the acceptance rate of an ecosystem network, which

encapsulates both the number of species and connectance, is a better predictor of computation

time than the number of species in the system (see Figs 2 and 3), the number of species is a

much more intuitive measure and does not require prior calculations to estimate, unlike the

acceptance rate.

When considering the eight-species semiarid Australian ecosystem network (with c = 0.39),

based on the number of species it would be unclear beforehand whether SMC-EEM or stan-

dard-EEM would be faster (Fig 2). However, by estimating the acceptance rate as 0.11 (roughly

1 in 9 parameter sets tested were feasible and stable), Fig 3 clearly shows standard-EEM is

expected to outperform SMC-EEM for this network. Practically, both standard-EEM and

SMC-EEM are acceptable choices for this case study as they both generated the model ensem-

ble within a minute; however, we must acknowledge that standard-EEM is a simpler process

(making it more straightforward to implement in computer code) and generated the ensemble

faster (Table 2).

In contrast, for the 22-species Phillip Island case study (with c = 0.18) and an acceptance

rate of 1.7 × 10−6 (roughly 1 in 600,000 parameter sets tested were feasible and stable), it is

clear from both Figs 2 and 3 that SMC-EEM will be significantly faster. When applying stan-

dard-EEM to this system, we found it would take 108 days to generate the ensemble (Table 3),

making SMC-EEM the only practical option of the two methods.

Lastly, the 16-species Great Barrier Reef network (with c = 0.4) and an acceptance rate of

Oð10� 9Þ (roughly 1 in a billion parameter sets tested were feasible and stable) is expected to be

orders of magnitude faster according to the trends shown in Figs 2 and 3, and the observed

computation times (Table 4) were within the credible ranges indicated by these trends. Here

we note that the acceptance rate for this network is considerably smaller than for the Phillip

Island network, and this could be due to being more densely connected, or the structure of the

network itself [65, 66].

Comparing the ensembles generated by the two methods

In this work, we used the estimated parameter distributions and time-series predictions to

compare ensembles produced using the two methods. Additionally, the distributions of the

stiff eigenparameters, obtained using an analysis of model sloppiness, provided an additional

diagnostic comparing the similarity of the ensembles. The analysis of model sloppiness can

indicate how similar the ensembles are, whilst accounting for parameter interdependencies

[34, 36]—a perspective not easily observed via the estimated marginal distributions, quantities

of interest, or via time-series predictions. We, therefore, encourage the comparison of Bayesian

inference method-generated ensembles via comparison of eigenparameter distributions along-

side a comparison of marginal parameter distributions, as this provides a more comprehensive

Table 4. Computational requirements for the Great Barrier Reef network.

Standard-EEM SMC-EEM

Computation time (sec) Oð1010Þ 7.6 × 104

Simulations (number) Oð1013Þ 1.5 × 108

Computation time and the number of simulations required to generate an ensemble of 100,000 models using

SMC-EEM for the Great Barrier Reef ecosystem network. The standard-EEM results are estimated using the results

for 20 samples, as the method could not generate an ensemble of this size within a practical time-frame.

https://doi.org/10.1371/journal.pcbi.1011976.t004
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comparison. For the ensembles tested in this work, the eigenparameter distributions did not

indicate any substantive differences (Fig 4, S4 and S10 Figs).

To our best knowledge, the SMC-EEM method outputs match those produced by the stan-

dard-EEM method (Figs 4–7, and S3–S10 Figs). However, users should be cautious when

selecting the ensemble size for SMC-EEM. While standard-EEM always randomly samples

from the parameter space to propose new values, SMC-EEM proposes new values relative to

current values in the ensemble (via the multivariate Gaussian proposal distribution centered

on the current parameter value within the MCMC algorithm). Hence, if there are not enough

particles to cover a high-dimensional parameter space, the SMC-EEM method may not suffi-

ciently explore the parameter space, thereby creating an ensemble that is not representative

and is different to the distribution of ensembles produced by standard-EEM. This difference

in ensembles occurred when using only 10,000 ensemble members for both the Phillip Island

and Great Barrier Reef case studies; however, the ensembles were found to be consistent for

100,000 ensemble members.

For ecosystem networks that are not overly complex, it is possible to assess whether there

are enough parameter sets by comparing the results of SMC-EEM and standard-EEM. But for

high-dimensional ecosystem networks, it will not be practical to compare outcomes since the

latter will have impractically high computational costs (as for the Great Barrier Reef case

study). We therefore recommend multiple independent runs of the SMC-EEM method and a

visual assessment of whether the ensemble is reproducible (through the estimated parameter

distributions, stiff eigenparameter distributions, and time-series predictions), especially if the

ecosystem network is as large as the Great Barrier Reef network explored here (see Fig 7).

Hence, while the foundational analysis presented here demonstrates that the SMC-EEM

method finally unlocks analysis of higher-dimensional networks, its accuracy will be limited

primarily by the size of the ensemble.

Implications for ecosystem network generation in nature

While the main motivation behind SMC-EEM was to maximise the capabilities of the conser-

vation tool, this parameterisation regime could also be of use for drawing theoretical insights.

There is substantial debate in the literature regarding which features of natural ecosystems

make them more likely to be stable and feasible (e.g., [28, 67, 68]). Some literature suggests

that larger and more connected networks are less likely to be feasible and stable [16, 19, 28]

because there is a lower probability of randomly sampling parameter values to satisfy these two

constraints. However, treating the probability of generating a feasible and stable system

through random sampling as a proxy for the likelihood of these systems developing in nature

creates a disparity: complex food webs are actually observed in nature, yet are perceived theo-

retically as highly unlikely.

Interactions in ecosystems have been shaped by processes such as co-evolution, niche parti-

tioning, and resource competition [69], making it unlikely that interactions in ecological net-

works are random. Additionally, the “community assembly” hypothesis [70] suggests that the

development and persistence of large food webs may be the result of natural selection of spe-

cies survival (from an even larger pool of initial species) whose interaction strengths possess

particular statistical properties [30, 31]. These theories imply that the probability of randomly

sampling independent parameter values to satisfy feasibility and stability does not indicate the

probability of the ecosystem existing in nature.

Thus, instead of being limited by the conceptual argument that the inability to efficiently

generate plausible ecosystems via random sampling suggests these ecosystems cannot exist in

practice, a key implication of the community assembly hypothesis is that we can instead take
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Fig 7. Equilibrium abundances for the Great Barrier Reef network. Ensemble ecosystem modelling for an ecosystem

network representing the Great Barrier Reef parameterised using standard-EEM and SMC-EEM. (a) The Great Barrier

Reef ecosystem network [64] consists of 16 nodes, with connectance c = 0.4, and 118 parameters when represented as a

Lotka-Volterra system. (b) Distributions of equilibrium abundances from the prior distribution (grey), and two

independent SMC-EEM ensembles (light blue and dark blue) of ecosystem models. Note that the x-axes have been

limited to visualise the distribution peaks, however the range of equilibrium populations for the prior distribution is

very diffuse (and hence barely visible in these plots) compared to the ensemble-predicted distribution abundances.

Here the independent SMC-EEM ensembles are consistent, demonstrating reproducibility.

https://doi.org/10.1371/journal.pcbi.1011976.g007
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advantage of the full suite of Bayesian approaches (as performed here) to identify an ensemble

of parameters that can plausibly generate large ecosystems in a computationally efficient man-

ner. The SMC-EEM method also has the potential (beyond specific case studies) to broadly

explore the consequences of community assembly on the general properties of ecosystem net-

works that form in nature [30].

Now that we can quickly produce large ensembles of parameter values that match ecological

theory, insights can be drawn from the results. This method could be used to compare the rela-

tive difficulties in obtaining models that meet different constraints; for example, is there a

lower probability of obtaining feasible ecosystem models, or stable ecosystem models? Alterna-

tively, practitioners could compare the estimated parameter values, or values of interest—such

as abundance correlations between species—across ensembles parameterised using different

ecological theories.

In our implementation, we assumed parameters were independent in the prior distribution;

however, SMC-EEM can accommodate other prior choices (e.g., prior parameter dependen-

cies such as a trophic transfer efficiency constraint [18] or intraspecific density dependencies

[71] can be implemented using conditional distributions). However, assuming prior parameter

independence does not prevent dependencies from being inferred when fit to the constraints.

By analysing the covariance of the parameters once incorporating the constraints (using a

method such as the analysis of model sloppiness), the parameter combinations that are impor-

tant for feasibility and stability could be assessed, as we have shown in our analysis.

When we applied this analysis to the Great Barrier Reef case study, it suggested that high

populations of basal species and low populations of top predators were the most important fac-

tors for achieving the constraints. While this result is unsurprising, it is also somewhat unin-

sightful. This is likely due to the relatively uninformed prior distributions used in the analysis

(following those of Baker et al., [18]) that forced intrinsic growth rate parameters to be positive

and had equal magnitude across all species. Growth rate prior distributions with negative val-

ues, or other prior distributions, could easily be used within SMC-EEM instead. However, any

effect of these prior distributions on the ensemble would in turn affect this analysis, such that

we recommend testing various prior specifications to assess its impact.

Computational efficiency unlocks new opportunities for improving

ecosystem model realism

In the present analysis, we considered ecosystem networks generated by generalised Lotka-

Volterra equations—as this is the mathematical model that EEM has been thus far applied to

[18]—however, alternative models have been proposed to offer more complex representations

of ecosystem interactions in nature, such as different functional responses [72], or more

recently, higher-order (i.e. beyond pairwise) interactions [73]. The generalised Lotka-Volterra

model is computationally convenient for EEM because the equilibrium feasibility and stability

conditions are readily computable via algebraic formulae (Eqs (4) and (5)). A different choice

of model or constraints could be much more computationally expensive to simulate and

include many more parameters for calibration—e.g., models with predator learning or prey

saturation [72], or constraints on ecosystem dynamics outside of the system equilibrium [74].

The statistical efficiency of the SMC-ABC-based approach underlying our SMC-EEM method

therefore offers a significant advantage over standard-EEM if other (potentially more realistic)

model types and constraints are used. We surmise that the computational gains shown in the

present work are expected to extend beyond the generalised Lotka-Volterra models, and feasi-

bility and stability constraints considered here.
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Within our SMC-EEM method, the choice of discrepancy function drastically reduced the

computation time in comparison to the standard-EEM method for larger networks (Fig 3).

We used a simple discrepancy function to indicate a measure of how infeasible and unstable

an ecosystem parameterisation is (Eq (7)); however, there may be better choices for the dis-

crepancy function which further improve the efficiency of the method—such as replacement

of the sums and absolute values in Eq (7) with other distance measures like the Euclidean

norm, or weighting the infeasibility and instability sums differently. We leave these investiga-

tions for future work, especially as the results regarding the “best” discrepancy function may

be highly model and constraint-specific.

When additional constraints are imposed on the ensemble—which further reduces the

acceptance rate—maintaining computational efficiency carries even greater importance than

seen here. Case studies in the literature have considered constraints in addition to feasibility

and stability, including feasibility and stability for subsets of the ecosystem [18, 24], randomly

assigned species interactions [25, 27] and additional constraints on combinations of parame-

ters (e.g. trophic energy transfer constraints) [18, 24]. While the inclusion of such additional

constraints in the SMC-EEM method is possible, it can require more careful algorithmic pro-

gramming than the standard-EEM method.

Additional data on population estimates, where available, should be used to inform the

model parameters further. Since the constraints we used to parameterise SMC-EEM are not

directly observable, we can consider the resulting ensemble as a constraint-informed prior

distribution [75] which can then be updated to incorporate any available time-series data in

a subsequent Bayesian analysis. Furthermore, it would be interesting to analyse the effects

on population forecasts of the constraint-informed prior compared to the relatively unin-

formed prior. Alternatively, the constraints within the discrepancy function could be rede-

fined where additional information about species abundance estimates is available (see e.g.,

Neutel et al [76]). Parameter sets with equilibrium abundances near the estimates could be

given a lower discrepancy according to a Gaussian distribution, or equilibrium abundance

limits could be defined—as in the feasibility constraint (see Eq (8))—to avoid unreasonable

population sizes. Though connecting these data with feasibility and stability constraints, we

hope that ensemble ecosystem modelling can be more accurate for conservation decision-

making.

Conclusion

Through SMC-EEM we have unlocked ensemble ecosystem modelling for large and complex

networks. Increasing the computational efficiency means that users only need to wait hours,

rather than months, to analyse the risks and potential consequences of conservation actions in

remote and understudied ecosystems with limited data. Through drastically improved compu-

tational efficiency, SMC-EEM brings new opportunities to explore more realistic ecosystem

models and constraints to study the large and complex ecosystem networks that exist in

nature.

Supporting information

S1 Fig. Computation time required to generate an ensemble for various network connec-

tances. The computation time needed to generate an ensemble of 1000 feasible and stable eco-

system models using a connectance probability of c = 0.25 (left), c = 0.5 (middle) and c = 0.75

(right), for both the standard-EEM and SMC-EEM methods. This figure shows the medians

(dots) and 7.5–92.5% quantiles (error bars) of computation times for producing the results.

Note, the computation time for any one ecosystem network was capped at 104 seconds due to
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the computational burden of the simulation study. More densely connected ecosystems

(higher value of c) increase the computation time of both methods and decrease the network

size at which the SMC-EEM method becomes more computationally efficient than the stan-

dard-EEM method.

(TIF)

S2 Fig. The number of simulations required to generate an ensemble for various network

sizes. The number of parameter sets trialled to generate an ensemble of 1000 feasible and stable

ecosystem models using both the standard-EEM and SMC-EEM parameterisation methods.

This figure shows the medians (dots) and 7.5–92.5% quantiles (error bars) of simulation num-

bers for the models parameterised in Fig 2 of the manuscript. Note, the computation time for

any one ecosystem network was capped at 104 seconds due to the computational burden of the

simulation study.

(TIF)

S3 Fig. Parameter distributions for the semiarid Australia ecosystem network comparing

standard-EEM to SMC-EEM. Marginal parameter distributions estimated using both the

standard-EEM method (red) and the SMC-EEM method (blue). Species labels represent din-

goes (D), mesopredators (M), large herbivores (H), small vertebrates (V), grasses (G), inverte-

brates (I), fires (F) and soil quality (S). Notice that the blue and red densities match almost

exactly, demonstrating that the outputs of the standard-EEM and SMC-EEM methods are con-

sistent.

(TIF)

S4 Fig. Eigenparameter distributions for the semiarid Australia ecosystem network com-

paring standard-EEM to SMC-EEM. Marginal distributions of the nine stiffest eigenpara-

meters estimated via the prior (grey), standard-EEM (red) and SMC-EEM (blue) ensembles.

Notice that the blue and red densities match almost exactly, demonstrating that the outputs of

the standard-EEM and SMC-EEM methods are consistent.

(TIF)

S5 Fig. Time-series predictions for the semiarid Australia ecosystem network comparing

the prior, standard-EEM, and SMC-EEM. Time-series forecasts for the prior (grey), stan-

dard-EEM (red) and SMC-EEM (blue) ensembles simulated from a random initial condition.

Depicted are the median (think lines) and 95% credible intervals (thin dotted lines) for each

ensemble. Notice that the blue and red predictions are similar, demonstrating that the outputs

of the standard-EEM and SMC-EEM methods are consistent.

(TIF)

S6 Fig. Parameter distributions for the Phillip Island ecosystem network comparing stan-

dard-EEM to SMC-EEM. The estimated marginal distributions for each parameter within the

ecosystem model for the Phillip Island network were generated via the standard-EEM method

(red) and the SMC-EEM method (blue). Species labels represent parameters for the red fox

(RF), feral cat (FC), toxoplasmosis (T), black rat (BR), house mouse (HM), European rabbit

(ER), myxoma and calici (MC), little penguin (LP), short-tailed shearwater (STS), little raven

(LR), Cape Barren geese (CBG), raptors (R), woodland birds (WB), ringtail possum (RP),

brushtail possum (BP), swamp wallaby (SW), eastern barred bandicoot (EBB), soil inverte-

brates (SI), terrestrial invertebrates (TI), woodlands (W), grasslands (G), and herbfield (H).

(TIF)

S7 Fig. Eigenparameter distributions for the Phillip Island ecosystem network comparing

standard-EEM to SMC-EEM. Distributions of the nine most constrained parameter
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combinations (stiffest eigenparameters) determined by an analysis of model sloppiness of the

standard-EEM ensemble. Here we compare the values of the eigenparameters for the prior

(grey), standard-EEM (red) and SMC-EEM (blue) ensemble.

(TIF)

S8 Fig. Time-series predictions for the Phillip Island ecosystem network comparing the

prior, standard-EEM, and SMC-EEM. Time-series forecasts for the prior (grey), standard-

EEM (red) and SMC-EEM (blue) ensembles simulated from a random initial condition.

Depicted are the median (think lines) and 95% credible intervals (thin dotted lines) for each

ensemble. Notice that the blue and red predictions are similar, demonstrating that the outputs

of the standard-EEM and SMC-EEM methods are consistent.

(TIF)

S9 Fig. Parameter distributions for the Great Barrier Reef ecosystem network comparing

two independent SMC-EEM ensembles. The estimated marginal distributions for each

parameter within the ecosystem model for the Great Barrier Reef network were generated via

two independent runs of the SMC-EEM algorithm (black and blue). Species labels represent

parameters for large carnivores (LC), pelagic piscivores (PP), benthic piscivores (BP), meso-

carnivores (MC), invertivores (Iv), herbivore (H), detritivores (Dv), planktivores (Pv), coral

cryptics (CC), invertebrates (I), urchins (U), corals (C), macroalgae (MA), turf algae (TA),

detritus (D), and plankton (P).

(TIF)

S10 Fig. Eigenparameter distributions for the Great Barrier Reef ecosystem network com-

paring two independent SMC-EEM ensembles. Distributions of the nine most constrained

parameter combinations (stiffest eigenparameters) determined by an analysis of model sloppi-

ness of a SMC-EEM ensemble. Here we compare the values of the eigenparameters for the

prior distribution (grey), and two independent ensembles generated via the SMC-EEM algo-

rithm (black and blue).

(TIF)

S11 Fig. Time-series predictions for the Great Barrier Reef ecosystem network comparing

the prior and two independently generated SMC-EEM ensembles. Time-series forecasts for

the prior (grey), and two independently generated SMC-EEM (light and dark blue) ensembles

simulated from a random initial condition. Depicted are the median (think lines) and 95%

credible intervals (thin dotted lines) for each ensemble. Notice that the two blue predictions

are similar, demonstrating that the SMC-EEM ensembles are consistent.

(TIF)

S12 Fig. Five most tightly constrained parameter combinations for the Great Barrier Reef

ecosystem network. The eigenvector values for the first five eigenparameters, rescaled to be

between -1 and 1. These values are shaded such that the darker colours indicates a greater con-

tribution of the parameter to the important parameter combinations. The columns of this

table can be interpreted using Eq (10). Notice, that the most important parameters are all

growth rates for lower trophic species, and self-regulation for top predators.

(TIF)

S13 Fig. Eighty most tightly constrained parameter combinations for the Great Barrier

Reef ecosystem network. The eigenvector values for the first 80 eigenparameters, shaded such

that darker colours indicate a greater contribution of the parameter to the eigenparameter.

Each row represents an eigenparameter (ordered from most sensitive to least) and each col-

umn represents a model parameter (grouped by type). Note that beyond the first five
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eigenparameters, there are no clearly interpretable trends.

(TIF)

S1 File. Additional details of the SMC-EEM method. Additional details for implementing

the SMC-EEM method, adapted from Drovandi and Pettitt’s (2011) [33] implementation of

SMC-ABC.

(PDF)

S1 Video. Visualisation of the ABC accept-reject and SMC-ABC approaches. This video

shows a two-dimensional visualisation of the ABC accept-reject approach (left) and the

SMC-ABC approach (right). Each parameterisation approach aims to obtain samples from 0.3

� x� 0.4 and 0.8� y� 0.9 (grey-shaded region).

(MP4)
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