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Abstract

Prokaryotic viruses, also known as bacteriophages, play crucial roles in regulating microbial

communities and have the potential for phage therapy applications. Accurate prediction of

phage-host interactions is essential for understanding the dynamics of these viruses and

their impacts on bacterial populations. Numerous computational methods have been devel-

oped to tackle this challenging task. However, most existing prediction models can be con-

strained due to the substantial number of unknown interactions in comparison to the

constrained diversity of available training data. To solve the problem, we introduce a model

for prokaryotic virus host prediction with graph contrastive augmentation (PHPGCA). Spe-

cifically, we construct a comprehensive heterogeneous graph by integrating virus-virus pro-

tein similarity and virus-host DNA sequence similarity information. As the backbone encoder

for learning node representations in the virus-prokaryote graph, we employ LGCN, a state-

of-the-art graph embedding technique. Additionally, we apply graph contrastive learning to

augment the node representations without the need for additional labels. We further con-

ducted two case studies aimed at predicting the host range of multi-species phages, helping

to understand the phage ecology and evolution.

Author summary

Prokaryotic viruses, which specifically target and infect bacteria, are highly prevalent in

various ecosystems, establishing a dynamic relationship with their bacterial hosts. As the

most abundant biological entities on Earth, phages are present wherever bacteria coexist.

Therefore, accurately predicting phage-host interactions is of great significance. However,

most existing prediction approaches primarily focus on learning sequence-based features

for host prediction, disregarding the valuable information inherent in virus-virus and

virus-prokaryote interactions. In this study, we propose a novel method, enabling accurate

prediction of phage hosts. The model surpasses state-of-the-art methods in terms of host

prediction performance across three benchmark datasets. Furthermore, it demonstrates

the capability to predict the host range of multi-species phages, thus facilitating their prac-

tical application in various domains.
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Introduction

Prokaryotic viruses, including phages and archaeal viruses, play a crucial role in diverse eco-

systems such as limnetic, marine, and soil systems [1–4]. Viruses represent the most extensive

group of organisms harboring unexplored genetic diversity. The application of metagenomic

techniques has facilitated a rapid surge in the identification of novel viruses. Among them,

phages, which are integral components of the human microbiota, have been shown to exert

influence on gut health and the development of certain diseases. [5] Furthermore, the escalat-

ing challenge of combating antibiotic resistance in bacteria poses a serious threat to the effec-

tive control of bacterial infectious diseases [6], phages are also used as therapy for treating

diseases caused by bacteria [7]. As viruses are unable to survive independently, investigating

their host is crucial. Prokaryotic viruses typically have specific hosts and inject their genetic

material into host cells, utilizing low-molecular substances to propagate. Despite the recogni-

tion among researchers of the significance of the interaction between prokaryotic viruses and

hosts, traditional laboratory culture experiments are time-consuming and expensive [8]. More

critically, less than 1% of microbial hosts have been cultivated in the laboratory [9, 10]. Hence,

there is a pressing need to develop computational tools for accurately identifying prokaryotic

virus hosts. In recent times, various computational approaches have been employed for host

prediction, which can be broadly categorized into two groups: alignment-based methods and

alignment-free methods. Alignment-based methods rely on sequence similarity between

viruses and prokaryotes, as gene fragments may be shared between them. Such gene fragment

sequences are from the spacer sequences for the CRIPSR [11] system. These sequences are

obtained from DNA fragments of viruses that have previously infected the prokaryotes. When

these viruses with recorded sequences attack again, the prokaryotes can employ CRISPR-based

mechanisms to destroy the viral DNA and protect themselves. Thus, CRISPR can be consid-

ered as compelling evidence of virus-prokaryote interactions, owing to its infection and pro-

tection mechanism. However, the use of CRISPR-based evidence to identify interactions

between viruses and prokaryotes is limited, as only 40%-70% of prokaryotes encode a CRISPR

system [11], and many lack spacer sequences from viruses. BLAST [12] is another widely used

alignment-based method for predicting the host of viruses. It identifies short, similar segments

between the query and database sequences, and provides information on similarities and dif-

ferences between the two sequences. Compared to the CRISPR-based approach, the BLAST-

based approach generally exhibits lower accuracy but can be applied to a wider range of

viruses. However, even though some sequences may have exact matches, they may fail to pro-

vide information for host prediction, such as conserved sequences around integration sites

[13, 14].

Alignment-free approaches are more flexible as they do not rely on direct sequence

comparison. One commonly used approach is the utilization of k-mers, which are short

subsequences of fixed length (k) that can be used to identify similar sequences or character-

ize the composition of a new sequence [15]. K-mer-based methods are computationally

efficient and can be applied to a wide range of sequence data, including viruses and pro-

karyotes, without the need for sequence alignment. They are particularly useful for identi-

fying similarities and patterns in large datasets and can be utilized in host prediction

algorithms as a feature extraction technique. VirHostMatcher (VHM) [16], Phage-Host

Interaction Search Tool (PHIST) [17] and prokaryotic virus host predictor (PHP) [18] are

based on k-mer features to predict the virus hosts. VHM predicts the putative host of each

input virus by leveraging similarity in oligonucleotide frequency patterns between the

virus and potential hosts, and selecting the one with the smallest dissimilarity. On the other

hand, PHIST predicts prokaryotic hosts of viruses by identifying exact matches between
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viral and host genomes using the Kmer-db tool and PHP employs k-mer features to train a

Gaussian mixture model for host prediction. Deep learning-based approaches integrate the

information of sequences and artificial neural networks like convolutional neural networks

(CNNs) [19] to make predictions. For example, DeepHost [20] applies CNN architecture

and treats the host prediction task as a multi-classification problem. The VHM-net [21]

constructs a network containing heterogeneous features between viruses and prokaryotes

and uses the Markov random field to predict the virus-host interactions. Both HostG [22]

and CHERRY [23] construct knowledge graph and apply graph convolutional neural net-

works (GCNs) [24] for prediction. HostG also regards the prediction task as a multi-classi-

fication problem while CHERRY utilizes graph autoencoder architecture and considers the

prediction task as link prediction task which take the host with the highest predicted score

as the result.

In this study, we propose a novel method called PHPGCA where we approach the host pre-

diction task as a recommendation task, aiming to recommend the host with the highest proba-

bility for specific viruses. Recognizing that traditional supervised-learning formulations may

suffer from the lack of labeled interactions between viruses and hosts, we leverage the implicit

information from unlabeled interactions to solve the host prediction task. Moreover, we intro-

duce an auxiliary self-supervised task to further enhance the robustness of our model. This

auxiliary task generates multiple representation views with noise, maximizing the consistency

between different perspectives of a particular node compared to those of other nodes with

graph contrastive augmentation. To optimize both the semi-supervised and self-supervised

tasks, we employ a multi-task training strategy. Our approach is compared with state-of-the-

art methods, and the results demonstrate the superior performance of our model in host pre-

diction accuracy.

Materials and methods

Datasets

The evaluation of the performance of different methods is conducted on CHERRY dataset

[23]. We download the viruses and prokaryotes from the github repository, containing 1875

viruses. The CHERRY dataset can be split into training and testing data according to the pro-

vided raw files, encompassing 1260 positive pairs for training and 615 positive pairs for testing.

The training dataset comprises viruses from 174 distinct species, whereas the testing dataset

encompasses viruses from 88 distinct species. Notably, there is an overlap of 56 species

between the training and testing datasets.

PHPGCA model

In the following sections, we will explain our framework in meticulous detail. Our framework

is bifurcated into three distinct components. The first part entails the construction of a phage-

prokaryote heterogeneous graph, while the second part involves the utilization of graph

encoder to encode the embeddings of nodes. The final component of our framework revolves

around the application of a multi-task training strategy. This strategy involves training the

model using multiple tasks, combining semi-supervised learning and self-supervised learning

techniques. Through this training process, we enhance the model’s ability to predict the host

of phages accurately. Fig 1 provides a visual depiction of the framework, serving as an illustra-

tive guide to its underlying structure and processes.

Construction of the heterogeneous graph. As the initial step in our framework, we focus

on the construction of a heterogeneous graph that incorporates both viruses and prokaryotes.

This graph serves as a representation of the potential topology and relationships between
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viruses and prokaryotes, allowing us to capture comprehensive features. To be more precise,

the heterogeneous graph G = (O, E) is composed of nodes oi 2 O, where i = 1, 2, . . ., M. Each

edge between oi and oj is denoted as a tuple (oi, oj) 2 E. The graph consists of two types of

nodes: viral nodes vi 2 V and prokaryotic nodes pi 2 P.

Fig 1. Overall framework illustration of our proposed PHPGCA. (A) Construction of the heterogeneous graph, containing virus-virus and virus-

prokaryote edge construction. (B) The architecture of Light Graph neural network with contrastive augmentation. (C) Model training and host range

prediction by ranking the scores in descending order.

https://doi.org/10.1371/journal.pcbi.1011671.g001
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The connections between viruses and prokaryotes are the main links in the virus-prokary-

ote heterogeneous graph. We adhere to the graph construction method outlined in CHERRY

[23] to construct the heterogeneous graph. Fig 1A provides an illustration of the components

involved in building the heterogeneous graph.

(1)Edge construction of virus-virus

Protein plays a pivotal role in the biological composition of organisms and serves as a cru-

cial benchmark for assessing functional similarity among different species. Following the

approach in [23] and [22], we establish connections between different viruses. Given two

viruses, denoted as A and B, the probability of these viruses sharing at least c common protein

clusters is calculated using Eq (1).

P � cð Þ ¼
Xmin a;bð Þ

i¼c

a
i

� �
n � a
b � i

� �

n
b

� � ð1Þ

a and b are the numbers of proteins contained in A and B. Based on the assumption that A and

B share c common protein clusters with different hosts, the probability P is hoped to be smaller

than a cutoff and we followed [23] to link two viruses if the probability is smaller than τ1:

virus � virus ¼
1 if P < t1

0 otherwise

(

ð2Þ

(2)Edge construction of virus-prokaryote

We then construct the virus-prokaryote edges with three different types of links: CRISPR,

BLAST and the established interactions derived from training data. The parameter selection

aligns with the methodology described in CHERRY [23].

Eq (3) represents the formulation of edge construction for virus-prokaryote connections in

the heterogeneous graph. Based on the three types of links (CRISPR-based, BLASTN-based,

and known dataset-based), the edges between specific viruses and prokaryotes are created in

the graph.

virus � prokaryote ¼

1 if CRISPR alignment

1 if BLASTN Evalue < t2

1 if Known interaction

0 otherwise

8
>>>><

>>>>:

ð3Þ

Light graph neural network with contrastive augmentation. We utilize the virus-pro-

karyote heterogeneous graph constructed above to predict the host using the graph contrastive

learning model. The main task pipeline involves parameterizing the two distinct types of

nodes, viruses and prokaryotes, as embeddings. These embedding parameters are learned

using traditional machine learning techniques or deep learning methods. The learned embed-

dings are then utilized to compute the scores through dot product. In our proposed approach,

we utilize a graph convolutional encoder to obtain embeddings for the virus and prokaryote

nodes in the heterogeneous graph. During the model parameter learning process, contrastive

learning aids in augmenting the available data without requiring additional labels. Subse-

quently, embeddings for all nodes in the graph are learned, enabling calculation of prediction

scores between a specific virus and all prokaryotes.

(1)LGCN Encoder
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Graph neural networks(GNNs) are powerful architectures for semi-supervised learning on

graph-structured data. The basic idea of GNNs is to learn the representations for nodes by

aggregating the information of nodes. Almost all variants of GNNs include neighborhood

aggregation operation:

hðkþ1Þ
v ¼ AGGRðhðkÞv ; h

ðkÞ
p : p 2 N vÞ ð4Þ

where hðkÞv and hðkÞp denote the representation of the nodes after k layers propagation in the

graph. N v denotes the set of nodes that are interacted with node v. The AGGR function con-

trols how to utilize the representations. For example, the most prevalent GNN model Graph

Convolutional Network(GCN) summarizes the features of neighbors and transforms them by

weight matrices and nonlinear activation to obtain the new representation of a target node.

However, not all applications require complex GNN model and the simplified model

LightGCN(LGCN) [25] is chosen to be the backbone of our model.

LGCN is initially proposed to address the challenges in recommender systems by simplify-

ing the graph model architecture to alleviate training difficulties. In contrast to conventional

recommendation tasks that commonly utilize bipartite graphs, our graph encompasses a more

intricate structure by encompassing virus-virus connections in addition to virus-prokaryote

connections. This deliberate design choice enables us to comprehensively capture a broader

spectrum of relationships and interactions within the phage-host ecosystem, thereby advanc-

ing our understanding of its complexity. Light Graph Convolution(LGC) and Layer Combina-

tion are the key components of LGCN. LGC simplified the AGGR function of the

neighborhood by discarding sophisticated transformation and is defined as:

hðkþ1Þ
v ¼

X

w2N v2v
v

Normv2v
vw h

ðkÞ
w þ

X

p2N v2p
v

Normv2p
vp h

ðkÞ
p ð5Þ

hðkþ1Þ
p ¼

X

p2N p2v
p

Normp2v
pv h

ðkÞ
v ð6Þ

Normv2v
vw ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jN v2v
v j þ jN

v2p
v j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jN v2v
w j þ jN

v2p
w j

q
ð7Þ

Normv2p
vp ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jN v2p
v j þ jN

v2v
v j

q ffiffiffiffiffiffiffiffiffiffiffiffi

jN p2v
p j

q ð8Þ

Normp2v
pv ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffi

jN p2v
p j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jN v2p
v j þ jN

v2v
v j

q
ð9Þ

Where v and w are viral nodes, while p represents a prokaryotic node belonging to P. N v2v
v

indicates the neighbouring viral nodes connected with v. Similarly, N v2p
v refers to the neigh-

bouring prokaryotic nodes connected with v, and N p2v
p represents the neighbouring viral

nodes connected with p. The normalization term Norm helps to prevent the graph from scaling

via graph convolution operations. Due to the difference in the layer combination, LGC aban-

dons the operation of aggregating the target node itself. Instead of only using the embeddings

from the last layer, combining embeddings from each layers contains more information. The

trainable parameters are the embeddings of viruses and prokaryotes, which are used to be the
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embeddings at the 0-th layer. Once the initial embeddings are given, the embeddings of differ-

ent layers can be computed by the LGC. We obtain the final embeddings by aggregating each

layer and defined as:

hv ¼
1

K

XK

k¼1

hðkÞv ð10Þ

hp ¼
1

K

XK

k¼1

hðkÞp ð11Þ

Where K denotes the number of graph convolution layers.

The LGC can reduce the oversmoothing problem by simplifying the operation of aggregating

while the layer combination strategy can capture semantics from different layers, making the

representation more powerful. Considering the whole graph, the model of the matrix form can

extend from the message passing form. Let the virus-virus interaction matrix be Rvv 2 R
V�V

and virus-prokaryote interaction matrix be Rvp 2 R
V�P

, where V and P denote the number of

viruses and prokaryotes in the heterogeneous graph. The value of Rvw is 1 if there is a connec-

tion between virus v and w otherwise 0, while Rvp is 1 if virus v has interaction with prokaryote

p. The adjacency matrix of the heterogeneous graph can be denoted as:

A ¼
Rvv Rvp

RT
vp 0

 !

ð12Þ

Dii ¼
P

jAij ð13Þ

D is the degree matrix and Dii denotes the number of interactions of the node i calculated via

Eq (13). The matrix form of LGC can form as:

Hðkþ1Þ ¼ ðD�
1
2AD�

1
2ÞHðkÞ ð14Þ

Where the embedding matrix of 0-th layer Hð0Þ 2 RðVþPÞ�C. The final embeddding matrix can

be computed as:

H ¼
1

K
ð~AHð0Þ þ :::þ ~AKHð0ÞÞ ð15Þ

Where ~A ¼ D� 1
2AD� 1

2. We use Xavier uniform initialization [26] to randomly init the embed-

dings of virusesand prokaryotes nodes and set the dimension size to 128.

The LGCN encoder with perturbation introduces slight differences compared to the origi-

nal LGCN encoder. The perturbed version adds noise to each hidden layer, resulting in the

generation of different representation views for graph contrastive augmentation. The upcom-

ing section will provide a detailed description.

(2)Graph contrastive augmentation

Due to the issue of data sparsity in biological data, supervised learning methods may ignore

much of the information present in the raw data. Contrastive learning (CL) [27] can address

this limitation by extracting general representations from massive unlabeled data without

requiring annotations, thereby serving as an auxiliary technique to enhance existing models

and make them more robust. The core idea of CL is to augment data by leveraging representa-

tional invariances. In the case of GNN architectures, dropout of nodes or edges is commonly

used to create diverse graphs and improve the generalization capability of graph models.
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However, applying CL by perturbing the graph structure can be time-consuming and challeng-

ing to manipulate. In our approach, inspired by [28], we focus on the embedding space for

contrastive learning. Given a node v, different augmentation views of the node form as:

h
0

v ¼ hv þ c
0

v; h
00

v ¼ hv þ c
00

v
ð16Þ

where c
0

v and c
00

v are the different noise vectors. The noise vectors assigned to individual nodes

and layers are distinct, aiming to generate diverse noise and subsequently employ contrastive

learning to enhance the robustness of node embeddings. The modulus of the noise vectors

kψk2 = � controls the intensity. c ¼ �c � signðhiÞ;
�c 2 Rd

� Uð0; 1Þ controls the range of

augmented embeddings, which will not create much disturbance, remaining much informa-

tion from the origin embeddings. The final embeddings are computed as:

H
0

¼
1

K
ðð~AHð0Þ þ cð1ÞÞ þ :::

þð~AKHð0Þ þ ~AKc
ð1Þ
þ :::þ ~AcðK� 1Þ

þ c
ðKÞ
ÞÞ

ð17Þ

We follow [28] and skip the input embeddings H(0) to achieve better performance, The

operation of perturbing the origin embeddings from each layer is easier to manipulate than

dropping out nodes or edges from the graph.

Model training. We leverage a multi-task training strategy to jointly optimize the semi-

supervised learning task and self-supervised learning task, as defined in Eq (18)

L ¼ Lmain þ lLaux ð18Þ

Where Lmain refers to the training loss of the main task, while λ is a parameter that determines

the magnitude of the contrastive learning task. Additionally, Laux refers to the training loss of

the auxiliary task.

The host prediction for viruses serves as the main task, while the contrastive learning task is

utilized as an auxiliary approach to augment data. The trainable parameters of the graph

model are limited to the embeddings of viruses and prokaryotes in the 0-th layer. To optimize

these parameters, previous approaches typically treat it as a supervised learning task, where the

supervision signal is derived from the observed interactions or the linked edges in the graph.

We utilize the Bayesian Personalized Ranking (BPR) loss with negative sampling to opti-

mize the semi-supervised learning task. The BPR loss is commonly used in CF models, as it

encourages the prediction scores of observed interactions to be higher than those of unob-

served pairs:

Lmain ¼ �
PV

v¼1

P
p2N v2p

v
lnsðŷvp � ŷvqÞ ð19Þ

Where ŷvp ¼ hT
v hp is the preference score. σ(�) is the sigmoid function. q is the prokaryote

node sampled from the unobserved connection of virus node v. For the self-supervised auxil-

iary task, we do not require additional label annotations. Instead, we utilize the two views of

nodes in the heterogeneous graph. For the same node, we treat the views as positive pairs,

while negative pairs are formed with different nodes. The positive pairs encourage consistency

between different views of the same node with perturbation, while also strengthening the dis-

tinction between different nodes. Following the approach proposed in [28], we adopt the

InfoNCE Loss [29] to optimize the self-supervised augmentation task. This involves minimiz-

ing the agreement of negative pairs and maximizing the agreement of positive pairs, without
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the need for additional label annotations:

Laux ¼
X

i2N

� log
expðh

0
T
i h

00

i =rÞ
P

j2Nexpðh
0
T
i h

00

j =rÞ
ð20Þ

where N represents the node set of the heterogeneous graph, and ρ> 0 (e.g., 0.2) is the temper-

ature hyperparameter. We optimize the model using the Adam optimizer [30] with a learning

rate of 0.001. Following the approach proposed in [28], we choose the temperature ρ = 0.2,

which has been reported as the optimal hyperparameter for the contrastive augmentation task.

Once the model is trained, each node in the heterogeneous graph is assigned a final embed-

ding. These embeddings capture the representations of the nodes in a lower-dimensional

space, encoding their characteristics and relationships. To predict virus-host interactions, we

calculate the scores between the test virus nodes and all prokaryote nodes using a dot product

operation, as described in the model training section. These scores reflect the similarity or

affinity between the viruses and prokaryotes. By sorting the scores in descending order, we can

identify the top scoring pairs, which correspond to the most likely virus-host interactions.

Results

Evaluation criteria

To compare our model with state-of-the-art methods, we use the accuracy metric to evaluate

the performance which is shown as Eq (21):

Accuracy ¼
number of correct predictions
number of prediction samples

ð21Þ

The host prediction for the specify virus is correct if the taxon of predicted prokaryote is

same as the known interaction.

Performance comparison of different neural network-based methodologies

In the host prediction experiment, we use the CHERRY dataset mentioned above to evaluate

the performance of our model and compare it with other state-of-the-art host prediction tools,

containing PHIST [17], PHP [18], DeepHost [20], VHM-net [21], CHERRY [23], ranging

from species to family level. For DeepHost and PHP, we retrain the models using the given

hyperparameters in their respective papers to adapt to the datasets. For CHERRY, we recon-

struct the knowledge graph and retrain the model. As for other learning methods, since they

are difficult to retrain, we use their pre-trained models to evaluate their performance. As

shown in Fig 2, our approach outperforms other state-of-the-art methods on CHERRY dataset,

from family level to species level. In the case of the CHERRY dataset, PHPGCA outperforms

the second-best method, CHERRY, by a margin of 2%. It is observed that the prediction accu-

racy improves as we move from family to species level, as features with more information from

higher taxonomic rankings are easier to distinguish.

Performance on different similarity between training and testing set. We employ the

dashing [31] algorithm to compute the similarity between the training set and the testing set.

For each test virus, we calculate the similarity between all the training viruses and select the

maximum similarity value as an indicator of how closely the test virus resembles the training

set. Subsequently, we segment the test viruses into different similarity threshold categories and

evaluate accuracy on the species level. Fig 2B depicts the outcomes, revealing that as the simi-

larity between the training and testing sets becomes more pronounced, the performance of all
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methodologies exhibits an upward trend. Importantly, PHPGCA continues to demonstrate

superior performance in comparison to other methods.

Performance on different length contigs. Initially, we undertake the creation of contigs

of varying lengths by randomly segmenting viral contigs into three specific lengths: 1kbp,

2kbp, and 5kbp. For every test virus across each length category, we carry out a randomized

division of the contigs of the specified lengths. This process is reiterated ten times to ensure

robustness. In the case of 1kbp and 2kbp conditions, a cumulative sum of 6150 contigs is gen-

erated, whereas the 5kbp condition yields 6140 contigs due to certain virus sequences in the

testing set being insufficient to meet the 5kbp criterion. We proceed to juxtapose our method

with PHIST, DeepHost, CHERRY, and VHM-net, all of which possess the capability to predict

hosts at the species level. The outcomes, illustrated in Fig 2C, indicate a discernible trend

wherein the performance of all methods improves as the contig length increases. Remarkably,

PHPGCA continues to outperform other methods across various contig lengths.

Performance comparison on human gut phage dataset

Bacteriophages are plentiful in the human gut. As predators of bacteria, phages have a signifi-

cant impact on both the composition and function of the human gut microbiome. Further-

more, the use of phage isolates targeted towards gut bacteria has shown promise as a powerful

tool for manipulating the microbiome. In several cases [32–34], the application of specific

phages has proven effective in eliminating pathogens, leading to favorable outcomes. These

successful interventions highlight the feasibility of utilizing phages for engineering the gut

microbiome. Nevertheless, the lack of universally applicable marker genes and the significant

sequence variation observed among phage genomes pose challenges. Consequently, a large

proportion of potential bacterial phage sequences identified from metagenomic data obtained

from the human gut (ranging from 75% to 99%) cannot be taxonomically classified or associ-

ated with specific microbial hosts [35]. In a recent publication by Shen et al. [36], they intro-

duced a comprehensive collection of gut phage isolates known as the Gut Phage Isolate

Collection (GPIC). This collection was established through the utilization of the soft agar over-

lay method, which enabled the successful isolation and purification of phages. Remarkably, the

authors were able to isolate phages that specifically targeted 42 different bacterial species found

in the human gut. These bacterial species encompassed a diverse range, including 15 species

from the Bacteroidetes phylum, 19 species from Firmicutes, 4 species from Actinobacteria,

Fig 2. Performance on CHERRY dataset. (A) The results on CHERRY dataset, from the species level to the family

level, are presented from left to right. (B) Performance of different similarity between training set and testing set at tht

species level. X-axis: dashing similarity threshold. Left Y-axis: number of test viruses under given threshold. Right-axis:

Accuracy at species level. (C) Performance evaluation of contigs of varying lengths at the species level. X-axis: length of

contigs. Y-axis: Accuracy on species level.

https://doi.org/10.1371/journal.pcbi.1011671.g002
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and 4 species from Proteobacteria. This achievement highlights the significant progress made

in understanding the phage-bacteria interactions within the human gut ecosystem. Combining

with the prokaryotes from the supplementary data and CHERRY database, we extracted 144

phages to validate the performance of our model. Fig 3A shows the ditribution of phage target

host on species level. We compared the performance of PHPGCA with state-of-the-art meth-

ods using the 144 phages extracted from GPIC, and found that PHPGCA still outperformed

other methods. In fact, it achieved 6%, 9%, and 3% higher accuracy than the second-best

method CHERRY at the levels of species, genes, and family, respectively.

Host prediction on metagenomic data

In this section, we validate the performance of our model in host prediction for putatively

novel viruses identified from metagenomic data. Since metagenomic data can contain numer-

ous distinct species or components, it is essential to use prokaryotic virus identification tools

to screen viral contigs from metagenomic data before applying our model for host prediction.

As an example, widely used tools such as Metaviral spades [37], Seeker [38], and VirSorter [39]

can be employed for virus identification.

In our experiment, we utilize MetaHiC [40], a method that detects interactions between

phages and assembled bacterial genomes in human gut samples. MetaHiC captures

DNA-DNA collisions that occur during phage replication inside bacterial cells, providing a

high-quality benchmark for host prediction. We use the phage-bacteria interactions provided

by MetaHiC as the ground truth to evaluate the performance of current state-of-the-art meth-

ods at the species level. To obtain the necessary data for our evaluation, we use the supplemen-

tary data from MetaHiC, which provides bins or contigs and their corresponding taxonomy

information. However, it should be noted that only 62 bins have species taxon annotations

available. Therefore, we extract contigs from these bins to train and test our model. As shown

in Fig 4, our approach still behaves competitive on metagenomic data compared to the state-

of-the-art methods. PHPGCA achieved an accuracy rate of 46%, surpassing PHIST by 2%.

Multi-host prediction

Determining whether phages have the ability to infect multiple hosts is important for various

reasons, including guiding phage therapy, aiding bacterial identification, understanding phage

Fig 3. The experimental result on the GPIC dataset. (A): The distribution of different species. (B): Performance of host

prediction compared with the state-of-the-art methods from family to species level.

https://doi.org/10.1371/journal.pcbi.1011671.g003

PLOS COMPUTATIONAL BIOLOGY Graph-based Prokaryotic Virus Host Prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011671 December 1, 2023 11 / 19

https://doi.org/10.1371/journal.pcbi.1011671.g003
https://doi.org/10.1371/journal.pcbi.1011671


ecology and evolution, and facilitating biotechnological applications. It provides valuable

information for the field of phage research and has practical applications in various fields,

including medicine, microbiology, ecology, and food safety.

Case study one: Multi-host prediction of bacteriophage phi92. Bacteriophage phi92 is a

large, lytic myovirus that was initially isolated from pathogenic Escherichia coli strains carry-

ing a polysialic acid capsule in 1983. However, further investigation showed that its host range

is not limited to polysialic acid-encapsulated E. coli strains, but also includes various labora-

tory strains of E. coli and many Salmonella strains. In a study by Schwarzer et al. [41], the host

specificity of phi92 was re-examined by testing it on multiple bacterial strains, including labo-

ratory strains of E. coli and a wide range of Salmonella strains. The results demonstrated that

bacteriophage phi92 can infect both E. coli and Salmonella strains, as evidenced by their

respective plating efficiencies.

Fig 5 illustrates the second-order neighbors of bacteriophage phi92. In this network, the

neighbors include various labels, encompassing not only the true host that phi92 precisely

infected but also other labels represented by the grey-colored nodes. Predicting the accurate

label for phi92 using conventional label propagation methods based on the heterogeneous

graph can be challenging. However, PHPGCA demonstrates the capability to accurately pre-

dict the host of phi92 even in this scenario. We use PHPGCA to identify potential hosts

infected by bacteriophage phi92. The prediction scores were sorted in descending order, and

the top 5 scores were considered as the predicted host range. Table 1 displays the top 5 predic-

tions obtained from our analysis. The outcomes of our analysis reveal that PHPGCA success-

fully predicted Escherichia coli and Salmonella enterica as the potential hosts for

bacteriophage phi92.

Fig 4. The description of Hi-C sequencing dataset and host prediction performance. (A): The number of bins

corresponding to different species. (B): The number of training contigs corresponding to different species. (C): The

number of testing contigs corresponding to different species. (D): The performance of host prediction on testing data.

https://doi.org/10.1371/journal.pcbi.1011671.g004
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Case study two: Multi-host prediction of phages on food safety. Globally, there are

approximately 600 million reported cases of foodborne illnesses each year, resulting in the

unfortunate loss of 420,000 lives [42]. Among the various pathogens responsible for foodborne

illnesses, Escherichia coli, Salmonella enterica and Shigella flexneri are recognized as signifi-

cant contributors to these outbreaks. These two bacterial species are widely acknowledged as

major causes of foodborne illnesses, posing a significant threat to public health and food safety

worldwide. Phages, characterized by their high diversity, have the unique capability to infect

and lyse host bacteria, leading to the release of progeny phages that can initiate subsequent

infections. This ability of phages to target and destroy bacterial pathogens has been harnessed

and exploited for food safety purposes. The antimicrobial activities of phages have proven

Fig 5. Visualization of graph of second-order neighbors of bacteriophage phi92. The nodes are colored based on

their respective labels. For prokaryotic nodes, the labels represent their species, whereas for virus nodes, the labels

represent their hosts’ species. In the visualization, the top 5 species that were predicted are shown in distinct colors,

while all other nodes are represented in gray.

https://doi.org/10.1371/journal.pcbi.1011671.g005

Table 1. Top 5 host prediction of bacteriophage phi92.

Rank Species Score

1 Salmonella enterica 0.997

2 Escherichia coli 0.987

3 Cronobacter sakazakii 0.979

4 Vibrio cholerae 0.978

5 Shigella flexneri 0.971

Bold in italics indicates a species with accurate predictions.

https://doi.org/10.1371/journal.pcbi.1011671.t001
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valuable in mitigating the risk of foodborne illnesses caused by bacteria such as Escherichia

coli and Salmonella enterica. By specifically targeting and eliminating these bacterial patho-

gens, phages offer a promising approach to enhance food safety and reduce the incidence of

foodborne illnesses.

We collect three phages, namely HY01 [43], EscoHU1 [44] and LPEK22 [45], that have

demonstrated potential in inhibiting the growth of Escherichia coli, Salmonella enterica and

Shigella flexneri in food. Table 2 presents the host range and the strain used for isolating the

three phages. We have utilized the PHPGCA to predict the potential host range of HY01,

EscoHU1, and LPEK22. Table 3 presents the top 5 prediction scores obtained from PHPGCA,

arranged in descending order. The results demonstrate that PHPGCA successfully predicted

the multi-species targeted by the three phages, as all of them are included in the predictions.

This highlights the accurate predictive capabilities of PHPGCA for determining the potential

hosts of phages infecting multiple species.

Ablation study

In our ablation studies, we investigate the impact of different graph convolutional operations

and the effectiveness of contrastive augmentation. As shown in Fig 6, our evaluation encom-

passes several components, including the use of different GCN models and the incorporation

of contrastive learning. We perform comparisons involving LightGCN, the graph neural net-

work architecture employed in our proposed model, and GCN, a commonly used graph neural

network. Additionally, we assess the performance of LightGCN and GCN when combined

with contrastive augmentation.

The experimental results show that the best performance is achieved by the LightGCN

graph architecture with contrastive augmentation. This is followed by the combination of

GCN with contrastive augmentation. The results suggest that contrastive augmentation

enhances the prediction ability of both LightGCN and GCN, without requiring additional

annotation data. Without augmentation, the performance of LightGCN and GCN is inferior.

Table 2. Host range on species level and the host for phage isolation of three phages.

Phage Species Isolate strain

HY01 Escherichia coli E.coli O157:H7 ATCC 43890

Salmonella enterica

EscoHU1 Escherichia coli E.coli O157:H7 RIMD 0509939

Shigella flexneri

LPEK22 Escherichia coli E.coli LEC8

Salmonella enterica

Shigella sonnei

https://doi.org/10.1371/journal.pcbi.1011671.t002

Table 3. Top 5 host prediction of three phages.

Phage Species

Rank1 Rank2 Rank3 Rank4 Rank5

HY01 Escherichia coli Salmonella enterica Shigella flexneri Klebsiella pneumoniae Shigella boydii

EscoHU1 Escherichia coli Salmonella enterica Shigella flexneri Shigella boydii Shigella sonnei

LPEK22 Escherichia coli Salmonella enterica Shigella flexneri Shigella boydii Shigella sonnei

Bold in italics indicates a species with accurate predictions.

https://doi.org/10.1371/journal.pcbi.1011671.t003
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Overall, the key components of our model: LightGCN and contrastive augmentation, both

contribute to improving the prediction ability in the host prediction task.

The impact of hyperparameters

In this section of our research, we conduct experiments with different hyperparameters to

examine their impact on the performance of our proposed model. The hyperparameters

include the embedding size d, number of layers K, and the augmentation hyperparameters λ
and �. Specifically, we fixed other hyperparameters and experimented with different values of

embedding size d (16, 32, 64, 128, 256, and 512), and then fixed the optimal d and tried differ-

ent number of layers K (1, 2, 3, 4, 5, 6, 7, and 8). For the augmentation hyperparameters, we

fixed � at 0.1 and experimented with different values of λ (0, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, and 5)

to investigate their impact on model performance. The results of these experiments are shown

in Fig 7, providing valuable insights for selecting optimal hyperparameter settings for our

model.

1. Embedding size d. For the CHERRY dataset, the prediction accuracy all increase from

d = 16 to d = 128. While the embedding size is set small, the model may not be able to repre-

sent the full information of the input data. CHERRY dataset achieves best performance

when d = 128, which can be the appropriate embedding size for the model. However, the

prediction ability may decrease if the embedding size is set too large, causing the overfitting

problem and reducing model generalization.

2. Number of layers K. By fixing d = 128, we set the range of K from 1 to 10. As shown in Fig

7B, the prediction accuracy is infected by different K. For CHERRY dataset, K = 3 can per-

form best. We find that in the first few layers, the performance becomes better because the

representation of each node is aggregated more fully, capturing the feature of the global

graph structure. However, when the K increasingly set large leads to the oversmoothing

problem. The nodes of the graph aggregate information from their neighbor too many

times and the information from different parts of the graph becomes indistinguishable.

3. Strength of CL λ. As shown in Fig 7C, the prediction performance on all the dataset increase

in the begining with the increase of lambda. The phenomenon is expected because the

Fig 6. Host prediction accuracy with diffrenet ablation combinations.

https://doi.org/10.1371/journal.pcbi.1011671.g006
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auxiliary contrastive learning task starts to take effect. The range of peak performance that

the model maintains varies across different datasets. However, when lambda still increase

larger, the accuracy decrease even perform worse than those without augmentation.

4. Magnitude of noise �. We change the value of � from 0 to 5 shown in Fig 7D. Like λ, the

model accuracy increase in the beginning but decrease if the value is set too large. when � is

near 0.01, the model achieve best performance on CHERRY dataset.

Discussion

In this study, we propose a novel approach for prokaryotic virus host prediction, where we

treat the host prediction task as a recommendation task. We start by constructing a virus-pro-

karyote heterogeneous graph that integrates abundant information, such as protein similarity

between viruses and sequence similarity between viruses and prokaryotes. Subsequently, we

employ the graph encoder LightGCN to encode the embeddings of the nodes within the

graph. Additionally, we employ a graph contrastive learning method to augment the node rep-

resentations without requiring additional labels. This is achieved by encouraging representa-

tions of the same nodes in two different views to be similar, while representations of different

nodes in those views to be distinct. Lastly, we employ a multi-task training strategy to optimize

the model for the host prediction task. The main task focuses on predicting the host, while the

Fig 7. The effect of hyperparameters on the host prediction performance. (A): Impact of the embedding size. (B):

Impact of number of layers. (C): Impact of strength of CL. (D): Impact of magnitude of noise.

https://doi.org/10.1371/journal.pcbi.1011671.g007
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auxiliary task involves contrastive learning. The training strategy allows us to train the model

effectively and achieve accurate host predictions.

The experimental results demonstrate that PHPGCA outperforms state-of-the-art methods

on three different datasets. Moreover, when applied to metagenomic data, PHPGCA remains

competitive with the current state-of-the-art methods. By utilizing PHPGCA, we can calculate

preference scores between viruses and prokaryotes, enabling us to effectively assess the host

range of newly discovered phages. We further validate our approach through three case stud-

ies, showcasing the effectiveness of PHPGCA in determining the host range of these phages.

Despite the performance improvement of PHPGCA in host prediction, there are areas that

can be optimized in future work. Firstly, the construction of an accurate and informative

virus-prokaryote heterogeneous graph is crucial for the contrastive learning framework. Cur-

rently, only virus-virus and virus-prokaryote interactions are utilized, without incorporating

prokaryote-prokaryote interactions. Exploring the incorporation of additional biological fea-

tures in the graph construction could be a potential avenue for further improvement. Sec-

ondly, the generation of different views of nodes for contrastive learning is based on simple

strategies. Exploring more powerful data augmentation methods may unlock more potential

of unlabeled data in improving the performance of PHPGCA in host prediction.
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