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Mitochondria play a central role in cellular metabolism producing the necessary
ATP through oxidative phosphorylation. As a remnant of their prokaryotic past,
mitochondria contain their own genome, which encodes 13 subunits of the
oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for
their translation in the organelle. Mitochondrial protein synthesis depends on the
import of a vast array of nuclear-encoded proteins including the mitochondrial
ribosome protein components, translation factors, aminoacyl-tRNA synthetases
or assembly factors among others. Cryo-EM studies have improved our
understanding of the composition of the mitochondrial ribosome and the
factors required for mitochondrial protein synthesis and the advances in next-
generation sequencing techniques have allowed for the identification of a
growing number of genes involved in mitochondrial pathologies with a
defective translation. These disorders are often multisystemic, affecting those
tissues with a higher energy demand, and often present with neurodegenerative
phenotypes. In this article, we review the known proteins required for
mitochondrial translation, the disorders that derive from a defective
mitochondrial protein synthesis and the animal models that have been
established for their study.
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1 Introduction

Mitochondria are eukaryotic organelles that play a central role in cellular metabolism,
participating in key cellular processes, from ATP synthesis through oxidative
phosphorylation (OXPHOS), the biosynthesis of nucleotides and amino acids or lipid
metabolism to reactive oxygen species generation and apoptosis (Spinelli and Haigis, 2018).

Mitochondria originated from α-proteobacteria that were incorporated into a
eukaryotic cell and have evolved as endosymbionts over billions of years. As a remnant
of their prokaryotic past, mitochondria maintain a small genome, the mitochondrial DNA
(mtDNA). Human mtDNA is a small circular double-stranded DNAmolecule that encodes
13 essential subunits of the OXPHOS complexes. Mitochondria contain their own
translation machinery, which is solely dedicated to the translation of the 13 mtDNA
encoded proteins. mtDNA encodes two rRNAs, components of the mitochondrial
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ribosome, and 22 tRNAs that are required for mitochondrial
translation. The rest of the ~1100 proteins that compose the
mitochondrial proteome, including the ~65 remaining OXPHOS
subunits, and the proteins required for a correct expression of
mtDNA, are encoded on the nuclear genome, are translated in the
cytosolic ribosomes and imported into mitochondria (Vafai and
Mootha, 2012). This separation of the OXPHOS-encoding genes
and the genes responsible for their expression in two different
cellular compartments, requires that the cell coordinates their gene
expression machineries to adapt the biogenesis of the OXPHOS
complexes to the cells’ energy demand (Couvillion et al., 2016).

Transcription of the mitochondrial genome produces polycistronic
transcripts that cover almost the entire length of the mtDNAmolecule.
Over 40 years ago, work by the group of Giuseppe Attardi showed that
most mitochondrial protein-coding genes and rRNAs were
immediately flanked by tRNA coding sequences, without any
intergenic space, which led them to propose that tRNAs act as
punctuation marks for the processing of these transcripts (Ojala
et al., 1980; 1981; Montoya et al., 1981). Since then, it has been
shown that individual RNA molecules are released from this
polycistronic transcripts by the concerted action of two
endonucleases, RNase P and RNase Z (also known as ELAC2), that
recognize the tRNA structure within these transcripts (Holzmann et al.,
2008; Brzezniak et al., 2011). These enzymes cleave on the 5′ and 3’ end
of the tRNAs respectively, releasing the mRNAs and rRNAs (Rackham
et al., 2016). There are however certain gene junctions in the
polycistronic mitochondrial transcripts that do not contain a tRNA
and the details and protein factors involved in their processing are now
starting to emerge (Ohkubo et al., 2021; Clemente et al., 2022). The
newly processed RNAs need to be further modified for proper
maturation and rRNAs are assembled together with the ribosome
protein components to form the mature mitoribosome.

The correct expression of the OXPHOS genes encoded in the
mitochondrial genome, therefore, depends on a correct mtDNA
maintenance and transcription, RNA maturation, mRNA stability,
ribosomal biogenesis, and translation. Given its importance for the
biogenesis of the OXPHOS complexes, an impairment in any of the
processes involved in mitochondrial gene expression results in
pathological situations, including devastating disorders.
Mitochondrial disorders caused by a defective mitochondrial
protein synthesis can arise from mutations in the
mitochondrially encoded tRNAs and rRNAs, but also from
mutations in nuclear genes encoding mitorribosomal proteins
(MRPs) and ribosome assembly factors, translation factors, and
mitochondrial aminoacyl tRNA synthetases, among others. These
mutations generally result in a combined defect of the OXPHOS
enzymes, and clinical manifestations such as Leigh syndrome,
sensorineural hearing loss, encephalomyopathy, and hypertrophic
cardiomyopathy. In this review we will focus on the defects that
impair mitochondrial translation leading to mitochondrial disorders
and the animal models generated for their study.

2 Structure and biogenesis of the
mitochondrial ribosome

Protein synthesis activity within mitochondria was identified in
the late 1950s (McLean et al., 1958) and in 1967, mitochondrial

ribosomes (mitoribosomes) were isolated from the fungus
Neurospora crassa (Küntzel and Noll, 1967) and rat liver
mitochondria (O’Brien and Kalf, 1967a; O’Brien and Kalf,
1967b). But it has not been until the 2010s, that the advances in
cryo-electron microscopy (Cryo-EM) allowed the determination of
the structure of the yeast (Desai et al., 2017), porcine (Greber et al.,
2015) and human mitoribosomes (Amunts et al., 2015).

Mitochondrial ribosomes have diverged substantially from their
bacterial ancestors and their structure differs from known bacterial
and eukaryotic cytosolic ribosomes. Mitoribosomes have a higher
protein content that their bacterial counterparts, ~ 1:2 rRNA:protein
ratio for the mammalian mitochondrial ribosome. The mammalian
55S mitoribosome is composed of two subunits, a small 28S subunit
(mt-SSU) which contains 12S rRNA and 30 nuclear-encoded
mitochondrial ribosomal proteins (MRPs), and a large 39S
subunit (mt-LSU), which includes 16S rRNA and 52 nuclear-
encoded MRPs and either tRNAVal (in humans or rat) or
tRNAPhe (in porcine or bovine ribosomes), which has been
recruited to the ribosome in the site of bacterial 5S (Rorbach
et al., 2016; Kummer and Ban, 2021). Mitoribosomal proteins are
primarily found on the periphery of the ribosome, surrounding the
catalytic core.

Mitoribosome biogenesis takes place in the mitochondrial
matrix, in the so-called RNA granules, near the mtDNA
nucleoids. This process requires a set of auxiliary factors that
include GTPases, helicases, kinases and modifying enzymes,
which catalyze the assembly of the mitoribosomal subunits with
the mitochondrially encoded rRNAs. Cryo-EM studies have been
instrumental in deciphering the process of mitoribosome assembly,
revealing the conformational changes in rRNA and the hierarchical
incorporation of MRPs that are required to form the mature
mitoribosome. It also allowed to visualize the binding of the
assembly factors during the different steps of mitoribosome
formation, giving insights into their molecular function.

The assembly of mt-SSU requires the participation of
methyltransferases (TRMT2B, NSUN4, METTL17, TFB1M and
METTL15), GTPases (NOA1/MTG3, ERAL1), the rRNA
chaperone RBFA, the endoribonuclease YbeY and malonyl-CoA-
acyl carrier protein transacylase (MCAT) (Figure 1). The GTPases
NOA and ERAL1 promote the folding of the 12S rRNA in the initial
steps of mt-SSU assembly, to form the ribosome platform and the
decoding center (region of the SSU where codon-anticodon pairing
takes place) (Dennerlein et al., 2010; Uchiumi et al., 2010; Kolanczyk
et al., 2011; He et al., 2012; Summer et al., 2020; D’Souza et al., 2021;
Harper et al., 2023). The initial maturation of the mt-SSU also
requires METTL17 and MCAT, which coordinate the maturation of
the rRNA (Shi et al., 2019; Harper et al., 2023; Ast et al., 2024). RBFA
binds the immature mt-SSU and facilitates the incorporation of the
methyltransferase TFB1M, which methylates two highly conserved
adenines, A936 and A937, in 12S rRNA, and METTL15, which
methylates 12S rRNA at position C839 (Seidel-Rogol et al., 2003;
Haute et al., 2019; Itoh et al., 2022; Harper et al., 2023). Biochemical
studies have revealed that the assembly of mt-SSU requires
additional factors, although the precise assembly intermediate
with which they interact remains to be established. This is the
case of the endoribonuclease YbeY, which incorporates the uS11
subunit into mt-SSU (Summer et al., 2020; D’Souza et al., 2021) or
the methyltransferases TRMT2B (Laptev et al., 2020; Powell and
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Minczuk, 2020) and NSUN4 (Cámara et al., 2011; Metodiev et al.,
2014) which methylate positions U429 and C841 respectively.

The assembly of mt-LSU, on the other hand, requires the
GTPases GTPBP5, GTPBP6, GTPBP7 and GTPBP10, the
methyltransferases TRMT61B, NSUN4, MRM1, MRM2 and
MRM3, the pseudourydilase RPUSD4, the RNA helicase
DDX28, the mitochondrial transcription termination factor
family protein mTERF4, and a module composed of the
mitochondrial assembly of ribosomal large subunit 1
(MALSU1), the leucine-tyrosine-arginine motif family protein
L0R8F8 and the mitochondrial acyl carrier protein mt-ACP
(Figure 1). GTPases GTPBP5, GTPBP6, GTPBP7 and
GTPBP10 participate in the late stages of the assembly of mt-
LSU (Kim and Barrientos, 2018; Lavdovskaia et al., 2018;
Lavdovskaia et al., 2020; Maiti et al., 2018; Maiti et al., 2020;
Cipullo et al., 2020). The methyltransferase TRMT61B
methylates position methylation of A947 in 16S rRNA (Bar-
Yaacov et al., 2016). Methyltransferases MRM1, MRM2 and
MRM3 catalyze the 2′-O-ribose methylation of positions
G1145, U1369 and G1370 which are necessary to stabilize or
induce conformational changes in 16S rRNA (Lee and
Bogenhagen, 2014; Rorbach et al., 2014). MTERF4 and
NSUN4 form a complex that methylates 12S rRNA and that
participates in mtLSU assembly (Cámara et al., 2011; Spåhr et al.,
2012; Metodiev et al., 2014). The RNA helicase DDX28 interacts
with 16 rRNA, stabilizing the central protuberance in an
immature conformation (Antonicka and Shoubridge, 2015; Tu
and Barrientos, 2015; Cheng et al., 2021). The pseudourydilation

modification introduced by RPUSD4 is essential for 16S rRNA
stability and assembly into mt-LSU (Arroyo et al., 2016;
Antonicka et al., 2017; Zaganelli et al., 2017). MALSU1,
L08R8F8 and mt-ACP form a module that binds mt-LSU
preventing its premature assembly with mt-SSU (Brown
et al., 2017).

In addition to these auxiliary factors, several studies have
identified additional proteins involved in mitochondrial 16 rRNA
modification or the assembly of the mt-LSU, although their precise
function or the step of the assembly in which they participate
remains unknown. This is the case of the RNA helicase DHX30
(Antonicka and Shoubridge, 2015), MPV17L2 (Rosa et al., 2014)
and RCC1L/WBSCR16, NGRN, FASTKD, RPUSD3 which form a
module with RPUSD4 (Antonicka and Shoubridge, 2015; Popow
et al., 2015; Arroyo et al., 2016; Antonicka et al., 2017; Reyes
et al., 2020).

Mitorribosome structure and the mitoribosomal assembly have
been extensively reviewed in (Ferrari et al., 2021; Maiti et al., 2021;
Khawaja et al., 2023).

3 Mitochondrial translation

Mitochondrial translation is a multistep process that involves
the canonical steps of initiation, elongation, termination and
recycling of the ribosome, driven by a set of translation factors
that interact with the ribosome in each of these steps of
the process.

FIGURE 1
Processing and maturation of the mitochondrial rRNAs and assembly of the mitorribosome. Mitochondrial transcription generates polycistronic
precursors that are processed to release the individual rRNA, tRNA and mRNAmolecules. Once the rRNAs are processed, mt-SSU and mt-LSU assembly
proceeds aided by methyltransferases, RNA helicases, GTPases and additional assembly factors. The ribosome figure was created with BioRender.
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3.1 Translation initiation

Translation initiation comprises the necessary steps for the
recognition of the start codon of the mRNA and the addition of
the first aminoacyl-tRNA. The start codon must be placed at the
peptidyl site (P-site) of the ribosome in order to stablish the correct
reading frame of the transcripts.

In bacteria, three translation initiation factors, IF1, IF2 and
IF3, bind the small ribosomal subunit and recruit a devoted
initiator aminoacyl tRNA, fMet-tRNAfMet. In mitochondria, in
contrast, there are just two initiation factors, mtIF2 and mtIF3,
which have acquired specific insertions and extensions. Cryo-EM
studies have described a first pre-initiation complex in which

mtIF3 binds the mt-SSU preventing the binding of the initiator
fMet-tRNAMet and suggest it dissociates before the binding of the
mRNA and fMet-tRNAMet (Figure 2A) (Khawaja et al., 2020; Itoh
et al., 2022). mtIF2 is subsequently recruited to the mt-SSU and
prevents premature binding of the aminoacyl-tRNAs to the
aminoacyl site (A site) of the mitoribosome, replacing the
function of bacterial IF1, through a 37 amino acid insertion
(Gaur et al., 2008; Yassin et al., 2011; Kummer et al., 2018).
mtIF2 facilitates binding of fMet-tRNAMet to the P-site by
specific interactions with the formyl modification on the
methionine. In human mitochondria three codons AUG, AUU
and AUA are recognized as start codons. In mammalian
mitochondria, the three initiator codons are recognized by a

FIGURE 2
Schematic representation of the phases in mitochondrial translation and the translation factors that assist in the process. (A) During translation
initiation, mitochondrial initiation factors mtIF3 and mtIF2 bind the ribosome and fMet-tRNAfMet is recruited to the P-site. (B) Translation elongation
consists on cycles in whichmtEF-Tu:GFP delivers an aminoacyl-tRNA to the A-site of the ribosome.mtEF-G1 catalyzes the translocation of the ribosome
and contacts the tRNA-mRNA base pairing to maintain the reading frame. (C) mtRF1a recognizes UAA or UAG at the A-site and terminates
translation. mtEF-G2 and mtRRF split the mitoribosomal subunits. Figure 2 was created with BioRender.
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single tRNAMet in which the wobble base of the anticodon has been
modified to formylcytosine (Haute et al., 2016).

Together with the absence of IF1 and the presence of three
initiator codons, there are further features that differentiate
mitochondrial and bacterial translation initiation. Bacterial
transcripts are loaded on the ribosome through an interaction
of the 16S rRNA with a Shine-Dalgarno sequence located
upstream of the mRNA initiator codon. Mitochondrial
transcripts, however, are leaderless, carrying no or very short
5′ untranslated regions (5′UTRs) and how the mitochondrial
mRNAs are loaded on the ribosome remains under investigation.
Cryo-EM studies have shown that the mRNA is stably bound
once mtIF3 has left the mt-SSU and the monosome is fully
assembled (Kummer et al., 2018; Khawaja et al., 2020).
Supporting this data, recent in vitro studies have shown that
leaderless mitochondrial mRNAs preferentially bind the fully
assembled 55S ribosome, rather than the small subunit (Remes
et al., 2023). The mitoribosomal subunit mS39, a
pentatricopeptide repeat (PPR) protein, crowns the mRNA
entrance and has been proposed to promote the binding of the
mRNA by interacting with a uridine stretch in the coding
sequence of the transcript (Kummer et al., 2018).

3.2 Translation elongation

Once the monosome is formed and the initiator fMet-tRNAMet

has recognized the translational start codon, the ribosome moves
along the mRNA adding amino acids to the growing polypeptide
chain. Elongation takes place by subsequent cycles of codon
recognition and aminoacyl-tRNA binding, peptide bond
formation and translocation along the mRNA.

Elongation requires the participation of the mitochondrial
elongation factor Tu (mtEF-Tu), with the assistance of the
mitochondrial elongation factor Ts (mtEF-Ts) and the
mitochondrial elongation factor G1 (mtEF-G1). During
elongation, mtEF-Tu binds aminoacylated tRNAs and delivers
them to the A-site of the ribosome (Figure 2B). Once the correct
codon-anticodon pairing occurs, mtEF-Tu hydrolyzes GTP and
leaves the mitoribosome. mtEF-Tu requires the assistance of a
guanine exchange factor, mtEF-Ts, which catalyzes the exchange
of GDP for GTP on mtEF-Tu preparing it for subsequent rounds
of aminoacyl-tRNA delivery (Figure 2B) (Schwartzbach and
Spremulli, 1989; Woriax et al., 1997). After peptide bond
formation, the peptidyl-tRNA needs to be repositioned from
the A- to the P-site of the mitoribosome, together with the
mRNA. The translocation is catalyzed by mtEF-G1, with the
hydrolysis of GTP (Bhargava et al., 2004; Kummer and Ban,
2020). The mitoribosome translocates the peptydil-tRNA and the
mRNA by a rotational motion of the mt-SSU. During
translocation, mtEF-G1 contacts the tRNA-mRNA base
pairing to maintain the reading frame during translocation.
This movement of the ribosome places the next codon of the
mRNA in the A-site, ready to accept the next aminoacyl-tRNA.

A fourth elongation factor, mtEF4/GUF1, has been described to
promote protein synthesis under stress conditions, improving the
fidelity of the translation process (Bauerschmitt et al., 2008).

3.3 Translation termination and
ribosome recycling

The elongation of the polypeptide proceeds until a STOP
codon is placed in the A-site of the ribosome. In the universal
genetic code UAA, UAG and UGA serve as stop codons. In
human mitochondria, UAA and UAG maintain their
conventional role as stop codons. UGA, however, encodes
tryptophan and two additional codons AGA and AGG serve
as translational stop codons.

Four putative translation termination factors have been
identified in mitochondria: mtRF1a, mtRF1, ICT1 and
C12ORF65, based on their homology to bacterial release
factors. mtRF1a recognizes and terminates translation at
codons UAA and UAG (Soleimanpour-Lichaei et al., 2007),
but it does not recognize the “non-canonical” stop codons
AGA and AGG in COX1 and ND6 transcripts respectively
(Figure 2C). It was proposed that termination at COX1 and
ND6 occurs through frameshifting of the mitoribosome due to
the absence of tRNAs that recognize AGA and AGG codons in
mitochondria (Temperley et al., 2010). In both cases,
a −1 frameshift would place a conventional UAG STOP
codon at the A site of the ribosome, which would mean
translation of all mitochondrially encoded peptides terminates
at either UAA or UAG. In several vertebrate species, however,
AGA and AGG are not preceded by U, questioning whether
the −1 frameshift occurs. Two recent publications have
demonstrated thar mtRF1 is the release factor responsible for
termination at the AGA codon present in COX1 transcript
(Nadler et al., 2022; Krüger et al., 2023). Additionally,
ribosome profiling experiments detected stalling at the AGG
codon present in ND6 mRNA when mtRF1 was deleted in
cells (Krüger et al., 2023; Saurer et al., 2023) and in vitro
mitochondrial translation assays showed release activity of
mtRF1 at both AGA and AGG codons (Krüger et al., 2023).
This result, however, is not accompanied by a decrease in
ND6 synthesis, leaving a question open as to how the
recognition of the AGG codon by mtRF1 results in
termination (Nadler et al., 2022; Krüger et al., 2023). mtRF1 is
also present in species that terminate COX1 and ND6 in
conventional STOP codons, suggesting that its function is not
limited to the recognition of AGA and AGG as STOP codons.
Alternatively, it has been suggested that mtRF1 could recognize
the UAG STOP codon placed in the A site after
the −1 frameshifting (Nadler and Richter-Dennerlein, 2023).

C12ORF65 and ICT1 lack a codon-recognition domain and
likely participate in the ribosome rescue pathway. ICT1 is an integral
part of the mitoribosome, but it has been shown to function as a
peptidyl hydrolase in its soluble form (Akabane et al., 2014).
C12ORF65 can rescue stalled protein synthesis by binding to the
A-site on mt-LSU (Desai et al., 2020).

Once the peptide is released, ribosomes are disassembled, and
their components become available for a new round of translation.
Two ribosome recycling factors have been identified in
mitochondria: mtRRF and mtEF-G2, which help split the two
mitoribosome subunits (Figure 2C) (Rorbach et al., 2008; Tsuboi
et al., 2009; Aibara et al., 2020).
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3.4 Co-translational insertion of the
peptides in the inner
mitochondrial membrane

The 13 mtDNA-encoded peptides are core subunits of the
OXPHOS complexes, which carry a single or multiple
transmembrane domains and are, thus, hydrophobic. The
insertion of these proteins in the inner mitochondrial membrane
(IMM) occurs co-translationally, mediated by the OXA1 insertase.
OXA1 is a member of the Oxa1/YidC/Alb3 protein family, which
was originally identified in yeast (Bauer et al., 1994; Hell et al., 2001).
Yeast Oxa1 and its human homologue OXA1L are integral proteins
in the IMM, which interact with the mitoribosome through their
C-terminal domain (Jia et al., 2003; Szyrach et al., 2003). This
interaction docks the ribosome to the membrane, facilitating the
insertion of the nascent polypeptides in the IMM. In the absence of
Oxa1 binding, the peptide exit tunnel of the mitoribosome is blocked
by the mitoribosomal subunit mL45 (Itoh et al., 2021), preventing
the emergence of the nascent polypeptide. Oxa1 binding to the
ribosome displaces mL45 from the exit tunnel (Itoh et al., 2021),
allowing the polypeptide to exit only in the proximity of the IMM
and minimizing its contact with the mitochondrial matrix.

In yeast, the docking of the mitoribosome to the IMM is further
supported by an extension of 21S rRNA (Pfeffer et al., 2015) and two
additional IMM receptors: Mba1 (the yeast homologue of mL45)
(Preuss et al., 2001; Ott et al., 2006) and Mrx15 (Möller-Hergt et al.,
2018), which tether the LSU to the membrane and ensure efficient
membrane insertion by the insertase Oxa1 (Möller-Hergt et al.,
2018). In human mitochondria, TMEM126A interacts with OXA1L
and the mitoribosome, facilitating the insertion of the
mitochondrially encoded proteins (Poerschke et al., 2024).

Interestingly, the peptide exit tunnel of the mitoribosome has
also been found associated to assembly factors and the protein
quality control machinery allowing for an early decision on whether
the newly synthesized proteins are assembled into the OXPHOS
complexes or are degraded (Singh et al., 2020; Kohler et al., 2023). In
this sense, the lack of TMEM126A has been shown to trigger a
quality control process in the IMM which degrades the newly
synthesized peptides and OXA1L (Poerschke et al., 2024).

4 Defects of mitochondrial translation

Mitochondrial translation is crucial to generate the necessary
amount of OXPHOS subunits to satisfy the cells’ energy demand. An
impairment in mitochondrial protein synthesis, will result in
decreased activities of the respiratory chain complexes (complex
I-IV) and ATP synthase (Complex V) which are a cause of
mitochondrial OXPHOS disorders. The clinical manifestations of
these disorders are extremely heterogeneous and can affect any cell
type, a single tissue/organ or be multisystemic and can appear at any
age. However, the tissues preferentially affected by mitochondrial
OXPHOS dysfunctions are those with a higher energy demand,
mainly muscle and nervous system, resulting in neurodegenerative
diseases, neuromuscular pathologies, metabolic disorders, and
aging-related degeneration (Boczonadi and Horvath, 2014;
Horvath et al., 2023). Mitochondrial dysfunction is a common
hallmark of neurodegenerative diseases. Neurological alterations

associated with mtDNA mutations include a very important
number of disorders such as mitochondrial encephalomyopathy,
chronic progressive external ophthalmoplegia, neurogenic
weakness, sensorineural deafness, optic neuropathies or
Leigh syndrome.

Mutations in many mitochondrial protein biosynthesis players
have been associated with mitochondrial pathologies. The mutations
are usually autosomal recessive and can affect mitochondrial rRNA
and tRNA encoding genes, tRNA modifying enzymes,
mitochondrial aminoacyl-tRNA synthetases, ribosomal protein
subunits, ribosome assembly factors and elongation and
termination translation factors. In this next section, we will focus
on the molecular pathways that lead to a defective mitochondrial
protein synthesis and the clinical outcomes caused by these defects.

4.1 Mutations in rRNAs

The human mitoribosome includes three RNA molecules, 12S
and 16S rRNAs and tRNAVal. tRNAVal performs a structural function
in themitoribosomes. The rRNAs, in addition, directly participate in
all ribosomal functions including codon recognition, peptidyl
transferase activity, and translocation along with the mRNAs
(Moran et al., 2023). Defects in the structural components of the
mitoribosome, including the rRNA sequences themselves, provoke
multiple mitochondrial OXPHOS diseases.

Since all RNA components of the huge ribonucleoparticle that is
the mitoribosome, 12S rRNA, 16S rRNA and tRNAVal, are encoded
in the mtDNA, the clinical manifestations of their defects are subject
to the nature of mtDNA genetics: heteroplasmy (the ratio of mutated
vs. non mutated mtDNA molecules in the cell), threshold effect
(level of heteroplasmy at which a phenotypic defect is shown),
mitotic segregation (the random reception of mutated and non-
mutated mtDNA molecules during cell division), and maternal
inheritance (DiMauro and Schon, 2003). In addition, since
rRNAs work as general players in mitochondrial translation, their
defects should have a general impact on the expression of all mtDNA
encoded proteins, affecting, therefore, to complexes I, III, IV and V
of the OXPHOS system. Functional defects of the rRNAs provoke
primary mitochondrial OXPHOS disorders, usually multisystemic,
affecting the cardiac and skeletal muscle, nervous system, liver,
kidney, etc. Occasionally, mutations on rRNAs are responsible for
secondary mitochondrial diseases being associated with a risk to
undergo or an aggravation factor (Ferrari et al., 2021) or even
described as a reduced risk factor to suffer a neurological
disorder (Hudson et al., 2013).

Although there are dozens of mutations on 12S rRNA associated
with a variety of mitochondrial disorders (Table 1), the vast majority
are responsible of sensorineural deafness, particularly
aminoglycoside-induced and non-syndromic hearing loss (Ferrari
et al., 2021). The best characterized are the homoplasmic
m.1555A>G and m.1494C>T mutations (Prezant et al., 1993;
Zhao et al., 2004), which despite being present in the whole body
affect just the hearing apparatus. The penetrance of the m.1555A>G
mutation is incomplete, and many patients do not develop hearing
loss unless exposed to aminoglycosides. Aminoglycosides, such as
kanamycin and streptomycin, are antibacterial agents that inhibit
protein synthesis interacting with the A-site of bacterial ribosome.
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These mutations in 12S rRNA facilitate the interaction of
aminoglycoside drugs with the human mitoribosome, disturbing
mitochondrial translation (Hamasaki and Rando, 1997). Therefore,
exposure to aminoglycosides can induce or aggravate hearing loss in
individuals carrying one of those mutations. As a result of the
incomplete penetrance, the m.1555A>G mutation would have
mostly been phenotypically neutral until the discovery of
antibiotics (Pacheu-Grau et al., 2010; 2011) and has become a
common mutation in certain populations, especially in Europe
where different studies estimate a prevalence of 0,19-0,21% for
these pathogenic variants (Bitner-Glindzicz et al., 2009; Himesha
et al., 2009; Bellusci et al., 2021).

Additional variants in the RNR1 gene have been associated to
hearing loss or other disorders, although their unequivocal
pathogenic role is under discussion, due to their presence in
control individuals. In this way, variants such as m.1095T>C,
which has also been associated to aminoglycoside-induced
hearing loss (Thyagarajan et al., 2000), is a nucleotide change
that defines mitochondrial haplogroups M11 and R54 (Ruiz-
Pesini and Wallace, 2006), questioning its pathogenic
character. Nevertheless, treatment with aminoglycoside
antibiotics in cells harboring this variant induced a ten-fold
increase in the number of apoptotic cells compared to
controls, suggesting its pathogenicity (Muyderman et al.,
2012). This situation illustrates a relatively recurrent situation
in which the assignment of the pathogenicity to a genetic variant
is subject to numerous variables, some of which are inherent to
the nature of the mtDNA itself.

On the contrary, only a few disease-causing mutations have been
described on the gene RNR2, which encodes 16S rRNA (Table 1)
(Elson et al., 2015). Mutations in 16S rRNA have been identified as
the cause of a serious muscle affectation due to a combined
OXPHOS deficiency in skeletal muscle (Elson et al., 2015), a
severe hypertrophic cardiomyopathy due to a decreased the
stability of the 16S rRNA (Li et al., 2018) or Rett syndrome, a
rare pediatric neurological disorder that affects brain development
causing progressive loss of motor capabilities, chronic progressive
external ophthalmoplegia (CPEO), muscle weakness, and cerebellar
dysfunction (Lv et al., 2017), among others. The most representative

mutations on 12S rRNA and 16S rRNA molecules associated with
neurological disorders are shown on Table 1.

The generation of animal models carrying mutations in
mtDNA-encoded genes is limited due to the difficulties in
manipulating the mitochondrial genome. These difficulties arise
from the characteristics of the organelle and the polyploidy of the
mitochondrial genome. Mitochondria are surrounded by a double
lipid bilayer membrane, making their “transfection” with exogenous
DNA difficult. There are hundreds to thousands of copies of mtDNA
in each cell, and a significant number of molecules would need to be
targeted to achieve a functional level of heteroplasmy. Finally,
recombination of mtDNA is vanishingly rare both in somatic
tissues and in the germline (Hagström et al., 2014), complicating
the incorporation of exogenous DNA in the mtDNA molecule. A
mouse line carrying mutations in 12S rRNA was generated by
injecting transmitochondrial embryonic stem cells, carrying the
A2379T substitution in 12S rRNA (Marchington et al., 1999). No
further studies were published as it did not result in a stable mouse
line for analysis (Stewart, 2021).

Finally, although tRNAVal is a structural component of human
mitoribosome, it is difficult to associate mutations on tRNAVal to
defects on mitoribosomal structure and function since any tRNA
dysfunction will necessarily give rise to mitochondrial translation
defects. Furthermore, since tRNAVal can be replaced by tRNAPhe as
part of the ribosome structure (Rorbach et al., 2016), the human
mitoribosome can be built independently of the tRNAVal situation,
and mutations in tRNAVal will mostly affect translation elongation.

4.2 Mutations in ribosomal subunits

Mutations in the genes encoding mitoribosomal subunits lead to
impaired mitochondrial protein synthesis causing combined
OXPHOS enzyme deficiencies. Despite the seemingly equivalent
function of the mitoribosomal proteins as part of the mitochondrial
ribosome and their ubiquitous expression, patients harboring
mutations in these proteins present with a wide variety of clinical
presentations (detailed in Table 2), which predominantly affect the
brain, the heart, and the liver.

TABLE 1 Representative mutations in mitoribosome RNA components and neurological disorders.

Gene Mutation Clinical manifestation

RNR1 m.1555A>G Non-syndromic antibiotic induced hearing loss

m.1494C>T Non-syndromic antibiotic induced hearing loss

m.1095T>C Aminoglycoside-induced hearing loss*

RNR2 m.2648T>C Rett Syndrome

m.2835C>T Rett Syndrome

m.3090G>A Mitochondrial encephalomyopathy

m.3093C>G MELAS

m.3196G>A AD/PD associated

RNR1 encodes 12S rRNA; RNR2 encodes 16S rRNA. AD: Alzheimer’s disease. MELAS: mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. PD: Parkinson’s

disease. Rett syndrome: defects in brain development, loss of motor capabilities, CPEO,muscle weakness, and cerebellar dysfunctions. The complete set of rRNAmutations and references can be

found in the MITOMAP database (https://www.mitomap.org/MITOMAP).

*m.1095T>C is also a variant of haplogroups M11 and R54.
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To date, mutations in genes MRPS2, MRPS7, MRPS9, MRPS14,
MRPS16, MRPS22, MRPS23, MRPS25, MRPS28, MRPS34 and
MRPS39, which encode mt-SSU subunits, and genes MRPL3,
MRPL12, MRPL24, MRPL44 and MRPL50 which encode mt-LSU
subunits have been linked to mitochondrial disorders (reviewed in
(Ferrari et al., 2021)). In the majority of these patients, the mutations
result in a decrease in the steady-state levels of the affected protein
and, as a consequence, the assembly of the ribosome is impaired and
results in an overall reduction of protein synthesis. The predominant
clinical features include lactic acidosis, sensorineural hearing loss,
hypertrophic cardiomyopathy and neurodevelopmental disabilities,
nevertheless patients also present specific clinical features such as
corpus callosum agenesis, Leigh syndrome, hypoglycemia or ovarian
insufficiency.

Given the heterogeneity of phenotypes associated with
mutations in mitochondrial ribosomal subunits, the generation

and study of animal models is an essential tool to understand
how a decrease in mitochondrial translation can result in such an
array of clinical features. In this sense, several animal models have
been generated to try to reproduce the phenotypes observed in
patients and will be discussed below.

Full-body knockout mouse models lacking mitoribosomal
subunits are embryonic lethal (Cheong et al., 2020a; 2020b),
showing a functional mitochondrial ribosome is essential for
development and pointing to the necessity to use different
strategies or generate alternative animal models. In this sense, a
mouse line carrying a missense mutation in MRPS34, developed
cardiac hypertrophy, liver dysfunction, kidney dysfunction and
smaller brain (Richman et al., 2015; Lake et al., 2017). The
mutation results in decreased levels of MRPS34 and a subsequent
reduction in 12S rRNA steady state levels and mt-SSU in heart and
liver. Thereafter, mutations in MRPS34 have been identified in

TABLE 2 Clinical manifestations due to mutations in mitochondrial ribosomal proteins.

Gene Clinical manifestation Reference

MRPS2 Sensorineural hearing loss, developmental delays, hypoglycemia, lactic acidemia Gardeitchik et al. (2018)

Hypoglicemia and lactic acidosis Liu et al. (2022)

MRPS7 Sensorineural deafness, lactic acidemia Menezes et al. (2015)

MRPS14 Increased lactate, Wolff-Parkinson White syndrome Jackson et al. (2019)

MRPS16 Agenesis of corpus callosum and lactic acidosis Miller et al. (2004)

MRPS22 Edema, hypotonia, cardiomyopathy and tubulopathy Saada et al. (2007)

Cornelia de Lange-like dysmorphic features, brain abnormalities and hypertrophic cardiomyopathy Smits et al. (2011b)

Fatal lactic acidosis, cardiomyopathy and encephalopathy Baertling et al. (2015)

Dysmorphism, hypotonia, developmental delay, and LS-like lesions. (Chromosome analyses also showed mosaic
down syndrome pattern)

Kılıç et al. (2017)

Primary ovarian insufficiency Chen et al. (2018), Jolly et al. (2019)

MRPS23 Liver disease Kohda et al. (2016)

Delayed growth and development, hearing impairment, hypoglycemia, lactic acidosis, and liver dysfunction Ittiwut et al. (2023)

MRPS25 Mitochondrial encephalomyopathy with syskinetic cerebral palsy and partial agenesis of the corpus callosum Bugiardini et al. (2019)

MRPS28 Intrauterine growth retardation, facial dysmorphism, sensorineural hearing loss and developmental delay Pulman et al. (2018)

MRPS34 Leigh syndrome or Leigh-like syndrome Lake et al. (2017), Lenzini et al. (2022)

MRPS39 Abnormal brain development at birth and infantile-onset Leigh syndrome Borna et al. (2019), Muñoz-Pujol et al.
(2023)

MRPL3 Hypertrophic cardiomyopathy, psychomotor retardation Galmiche et al. (2011)

Lactic acidosis, sensorineural hearing loss, infantile-onset hypertrophic cardiomyopathy and liver dysfunction Bursle et al. (2016)

MRPL12 Growth retardation and neurological deterioration Serre et al. (2013)

MRPL24 Lactic acidosis, cerebellar atrophy, choreoathetosis of the limbs and face, intellectual disability Nottia et al. (2020)

MRPL44 Infantile onset hypertrophic cardiomyopathy, liver steatosis Carroll et al. (2013)

Hypertrophy cardiomyopathy, myopathy, hemiplegic migraine, pigmentary retinopathy, renal insufficiency, and a
Leigh-like lesions

Distelmaier et al. (2015)

Cardiac and skeletal myopathy, neurological involvement Horga et al. (2021)

Cardiomyopathy, failure to thrive, hypoglycemia and lactic acidosis Friederich et al. (2021)

MRPL50 Sensorineural hearing loss, chronic kidney disease, left ventricular hypertrophy, Premature ovarian insufficiency Bakhshalizadeh et al. (2023)
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patients with Leigh or Leigh-like syndrome (Lake et al., 2017;
Lenzini et al., 2022).

Mutations in MRPL3 have been found mutated in four siblings
who suffered from hypertrophic cardiomyopathy and psychomotor
retardation and subsequently in a patient suffering from lactic
acidosis, sensorineural hearing loss, infantile-onset hypertrophic
cardiomyopathy and liver dysfunction (Galmiche et al., 2011;
Bursle et al., 2016). Interestingly, a spontaneous intronic
mutation in the MRPL3 gene in an inbred mouse colony was
found as the cause in an adult-onset neurodegenerative disorder
(Cahill et al., 2020), and while the mutation does not reproduce the
phenotype observed in patients, this mouse constitutes an excellent
model of neurodegenerative disorder due to mutations in the
mitochondrial ribosome subunits.

MRPL24 has been found mutated in a patient suffering from
cerebellar atrophy, choreoathetosis of limbs and face, intellectual
disability, and Wolff-Parkinson-White syndrome, as a result from a
combined CI, CIII and CIV deficiency. The patient was homozygous
for a mutation which results in a L91P variant of MRPL24, and
almost undetectable levels of the protein in fibroblasts. Reducing the
expression levels of MRPL24 in a zebrafish model (Nottia et al.,
2020) leads to impaired ATP production and a decreased basal
respiration. Knockdown zebrafish embryos exhibited motor and
heart impairment, reproducing the patient’s phenotypes.
Interestingly, reintroducing a mutated MRPL24Leu91Pro in the
knockdown zebrafish rescues the heart phenotype but not the
locomotion suggesting that the mutation impairs mainly motor
behavior or a different demand for MRPL24 in different tissues.
Likewise, MRPL24 knockdown in Caenorhabditis elegans (Ficociello
et al., 2023) resulted in reduced locomotion of the worms.

Mutations in MRPS22 have been associated with a wide variety
of clinical symptoms, from hypertrophic cardiomyopathy to edema,
encephalopathy or muscle hypotonia (Saada et al., 2007; Smits et al.,
2011b; Baertling et al., 2015). In 2018 and 2019, mutations in
MRPS22 were identified in patients suffering from primary
ovarian insufficiency (Chen et al., 2018; Jolly et al., 2019). To
analyze the involvement in of MRPS22 in ovarian physiology, as
this phenotype had not been previously associated to mutations in
MRPS22, its homologue was knocked down in Drosophila
melanogaster germ cells resulting in agametic ovaries (Chen
et al., 2018). Primordial germ cells, which are germ cell
precursors, show elevated OXPHOS activity relative to other cell
types (Hayashi et al., 2017), possibly explaining their increased
sensitivity to mutations in the mitoribosome.

Since then, additional mitoribosomal subunits have been found
mutated in patients with ovarian insufficiency. Mutations in
MRPL50 were identified as a cause of a mitochondrial disorder
in twin sisters with premature ovarian insufficiency, sensorineural
hearing loss and chronic kidney disease (Bakhshalizadeh et al.,
2023). The mutation, p.(V112A), destabilizes MRPL50 and as a
result patients also showed a global decrease in abundance in
proteins of the large ribosomal subunit. Knockdown and
knockout of MRPL50 in Drosophila melanogaster recapitulates
the patients’ phenotype, as deficiency of the Drosophila
MRPL50 orthologue leads to stunted ovarian development and
small-sized ovaries devoid of germ cells (Bakhshalizadeh et al.,
2023). These results support the effect of MRPL50 disruption in
the premature ovarian insufficiency suffered by the patients,

however, the molecular mechanisms underlying the hearing loss,
kidney and heart dysfunction has not directly been validated in
this model.

4.3 Mutations in tRNAs and tRNA
modifying enzymes

tRNA molecules are exceptionally important for decoding the
genetic information as they are the tools that translate the nucleotide
language of mRNAs into the amino acid language of proteins. There
is a fabulous machinery in the number of components and
complexity to help tRNAs execute that conversion, which is
reasonably well conserved throughout evolution among all living
organisms. Mitochondrial translation utilizes 22 tRNAs, all of them
encoded in mtDNA, to translate the 13 mitochondrial proteins
expressed within the organelle (Rackham and Filipovska, 2022).

The synthesis of functional mitochondrial tRNAs requires a
complex process and a plethora of different players. In fact, synthesis
of all mitochondrial RNAs shares the first steps: transcription on
long polycistronic RNAs and processing. After cleavage and release
by two devoted endonucleases (RNAse P and ELAC2), mt-tRNAs
undergo an extensive list of modifications that give rise to themature
tRNA molecules, ready to be recognized and aminoacylated by their
corresponding mitochondrial aminoacyl-tRNA synthetase (ARS2)
as a previous and necessary step before entering the mitoribosome
(Hallberg and Larsson, 2014). Post-transcriptional modifications are
essential for tRNA function to obtain the structural properties to be
differentiated by ARS2 with an extremely low possibility of error and
to obtain a precise decoding capability (interaction with ribosome,
codon-anticodon recognition. . .) (Hallberg and Larsson, 2014;
Suzuki and Suzuki, 2014). Remarkably, a mt-tRNA molecule just
released by action of ELAC2 (3′ end processing) and RNAse P (5’
end processing) is already methylated by action of MRPP1, one of
the three subunits of RNAse P. MRPP1 shows a tRNA N1-
methyltransferase activity that methylates the ribonucleotide on
position nine in mt-tRNAs, forcing a structural change of the
tRNA which adopts the cloverleaf formation, crucial for its
function (Helm et al., 1999; Hallberg and Larsson, 2014). Thus,
mt-tRNA molecules are born modified.

Human tRNAs undergo 18 different modifications affecting
137 positions that are carried out by 34 accessory proteins
(Suzuki et al., 2020). The most relevant modifications are taurine
modification, thiolation, formylation, pseudouridylation or
queuosine modification. For a full list of known mitochondrial
tRNA modifications see refs. (Kazuhito and Wei, 2020; Suzuki
et al., 2020). An essential modification for the function of tRNAs
is the addition of a 3′ CCA extension by the CCA-adding enzyme
TRNT1 (Nagaike et al., 2001). This CCA3’-OH end will be the
acceptor of the amino acid by the action of aminoacyl-tRNA
synthetase. In addition, there is a single tRNA modification
essential for mitochondrial translation: the synthesis of the
initiator tRNA, fMet-tRNAMet. Mitochondria contain a unique
gene encoding tRNAMet, which functions in initiation and
elongation. Thus, a portion of Met-tRNAMet is formylated by the
mitochondrial methionyl-tRNA formyltransferase (MTFMT) to
generate fMet-tRNAMet for initiation (Tucker et al., 2011). The
importance of this modification for mitochondrial translation
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initiation is highlighted by the discovery of mutations in the
MTFMT gene, which result in Leigh syndrome and a combined
OXPHOS deficiency caused by a severe decrease in mitochondrial
translation (Tucker et al., 2011; Haack et al., 2014).

There are more than 100 pathogenic mutations on tRNA genes,
however, many of those mutations are not at a critical position for
tRNA function, and their pathogenicity is a consequence of
disturbing the recognition by the mitochondrial tRNA
modification machinery (Yarham et al., 2010; Suzuki et al., 2020).
In addition, pathogenic mutations in several tRNA modifying
enzymes have been identified as a cause of human disorders,
illustrating the essential role of mt-tRNA modifications in
mitochondrial physiology and pathology. Mutations in
mitochondrial tRNA modifying enzymes associated with human
disorders and their associated phenotypes have been extensively
reviewed in (Chujo and Tomizawa, 2021; Magistrati et al., 2023).

One of these modifying enzymes, mitochondrial translation
optimization protein 1 (MTO1), has been identified in patients
with cardiomyopathy, lactic acidosis, developmental delay and
combined or isolated respiratory chain deficiency (Ghezzi et al.,
2012; Baruffini et al., 2013; Charif et al., 2015; Martín et al., 2017;
Kamps et al., 2018; O’Byrne et al., 2018; Li et al., 2019; Seo et al.,
2019; Luo et al., 2021; Zhou et al., 2022; Monda et al., 2023).
MTO1 synthesizes the taurinomethyl (τm5U) modification of the
anticodon of mitochondrial tRNALeu, tRNATrp, tRNALys, tRNAGln

and tRNAGlu, which is essential for the accurate decoding of their
corresponding codons (Suzuki et al., 2002; Suzuki and Suzuki, 2014).
Several animal models carrying deletions of the homologues of
MTO1 in zebrafish (Zhang et al., 2021), mice (Becker et al.,
2014) or the worm Caenorhabditis elegans (Navarro-González
et al., 2017) have been generated to understand the molecular
mechanisms underlying MTO1 defects. Zebrafish and C. elegans
present low levels of the MTO1 target tRNAs which resulted in a
reduced mitochondrial translation. As a result of these defects,
mouse and zebrafish MTO1 knock-out animals develop a cardiac
defect, reproducing the clinical phenotype observed in patients.

About half of the mtDNA mutations causing mitochondrial
OXPHOS diseases in humans occur in tRNA genes and show an
extraordinary range of clinical presentations. This variability can be
explained, at least in part, by different percentage of heteroplasmy
(Boczonadi and Horvath, 2014). However, heteroplasmy alone
cannot explain the variability and additional factors must be
involved in the modulation of the expression of particular point
mutations on tRNA molecules. A paradigmatic case comes from the
3243G>A mutation in mitochondrial tRNALeu(UUR). This mutation
has been associated to MELAS (Mitochondrial Encephalopathy
Lactic Acidosis and Stroke-like episodes) (Goto et al., 1990),
deafness, and diabetes (Ouweland et al., 1992) or progressive
external ophthalmoplegia (Moraes et al., 1993).

As mentioned above, the difficulties in the genetic manipulation
of mtDNA have hindered the generation of animal models carrying
mutations in mitochondrially encoded genes. A mouse model with
pathogenic mutations in tRNALys was generated by fusing
pronucleus-stage embryos with enucleated cytoplasts carrying a
G7731A mutation in the tRNA (Shimizu et al., 2014). This
mouse allowed the authors to analyze the transmission pattern of
the mutation in the offspring and the heteroplasmy threshold for the
mutation to have a detrimental effect on mitochondrial function. A

second mouse line carrying an heteroplasmic pathogenic mutation
in tRNAAla was established through breeding mice that carry a
mitochondrial DNA polymerase (POLG) without proofreading
activity, and selecting for mutant lineages (Kauppila et al., 2016).
This tRNAAla mutant mouse line has allowed to analyze the
transmission and threshold of the mutation in different tissues,
as well as genetic strategies to improve the phenotype of the mice
(Kauppila et al., 2016; Filograna et al., 2019).

The most representative mutations affecting mitochondrial
tRNA function and tRNA modifying enzymes and that are
associated with neurological disorders are shown on Table 3.

4.4 Mutations in aminoacyl-tRNA
synthetases

Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are the last
enzymes acting on tRNAs in order to obtain their final maturation
state and functional adequacy before their binding to mtEF-Tu and
entry to the A-site in the mitoribosomes. Mitochondrial aaRSs,
named ARS2, catalyze the binding of amino acids to their cognate
tRNA and constitute one of the two supporting pillars of protein
synthesis fidelity. As occurs with cytosolic aminoacyl-tRNA
synthetases (ARS1), tRNA aminoacylation by ARS2 requires ATP
to first generate an AMP-amino acid derivative, and then binding
the amino acid to the cognate tRNA, releasing AMP. aaRSs must
possess a strict discriminating ability to recognize the correct amino
acid and its corresponding tRNA among a pool of very similar tRNA
molecules, to guarantee translation accuracy (Turvey et al., 2022).

In humans, there are two groups of nuclear genes that code for
either the cytosolic aaRSs or mitochondrial aaRSs with just two
exceptions. The mitochondrial and cytosolic versions of GlyRS and
LysRS are encoded by a single gene that expresses two versions of
their respective enzymes, with and without mitochondrial targeting
sequence. This is achieved by using two different translation
initiation sites in the case of GlyRS and by alternative mRNA
splicing in the case of LysRS (Sissler et al., 2017).

One amino acid–one aminoacyl tRNA synthetase is almost a
dogma in translation. In the cytosol, the 20 cellular proteinogenic
amino acids require 20 cytosolic aaRSs (Sissler et al., 2017). In
human mitochondria, however, there are only 19 aaRSs, lacking the
glutaminyl-tRNA synthetase (QARS2). The biosynthesis of
mitochondrial Gln-tRNAGln follows an indirect pathway in which
the tRNAGln is first misaminoacylated by a non-discriminant
EARS2 to Glu-tRNAGln, followed by a transamidation reaction to
Gln-tRNAGln, using glutamine as amide donor. This transamidation
reaction is catalyzed by the heterotrimeric complex glutamyl-
tRNAGln amidotransferase, hGatCAB (Nagao et al., 2009).

Since the identification of the first pathogenic mutation in
DARS2 in 2007 (Scheper et al., 2007), defects in mitochondrial
aminoacyl-tRNA synthetases have emerged as prevalent cause of
human diseases. Mutations in all ARS2 genes have been linked to
human diseases (collected in misynpat.org (Moulinier et al., 2017)).
They all are recessive mutations and lead mainly to neurological
disorders, although with pleiotropic effects. Interestingly, and
perhaps expected, the diversity of pathologies is much wider for
mutations inmt-tRNAs than in ARS2, probably because of the much
higher number of possibilities of functional alterations within tRNA
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molecules compared to aaRSs. Dysfunction of eight ARS2 leads to
encephalopathies, defects in another four ARS2 cause
leukodystrophies, two are responsible for causing Perrault
syndrome (sensorineural hearing loss in males and females and
ovarian dysfunction in females) and mutations in additional single

aaRSs can also result in hearing loss or deafness and intellectual
disability, all affecting the central nervous system (Sissler et al.,
2017). Mitochondrial aaRS have also been associated with disorders
that do not have neurological manifestations such as
cardiomyopathies, the MLASA (Mitochondrial Myopathy, Lactic

TABLE 3 Representativemutations affectingmitochondrial tRNA function andmitochondrial tRNAmodifying enzymes that result in neurological disorders.

tRNA-modifying enzymes

Gene Modifying activity Main clinical manifestation

PUS1 Pseudouridylation Myopathy, Lactic Acidosis, Sideroblastic Anaemia (MLASA)

TRMU Thiolation Reversible infantile liver failure

MTO1 Taurinonethylation Lactic acidosis, Hypertrophic cardiomyopathy

MTFMT Methionyl-tRNAMet formyltransferase Leigh syndrome

TRNT1 CCA addition Lactic acidosis, sideroblastic anaemia, developmental delay, deafness, microcephaly with cortical atrophy;
Ataxia, hypotonia, ptosis, ophthalmoplegia

TRIT1 Isopenthynilation Encephalopathy and myoclonic epilepsy

TRMT5 Methylation Lactic acidosis, hypotonia, falilure to thrive and hypertrophic cardiomyopathy; Lactic acidosis, exercise
intolerance, weakness, peripheral neuropathy

GTPBP3 Taurinomethylation Cardiomyopathy, lactic acidosis

tRNA mutations

Gene Mutation Clinical manifestation

MTTF m.583G>A MELAS

m.616T>C Maternally inherited epilepsy

MTTV m.1606G>A Ataxia, Myoclonus and Deafness

m.1644G>A Leigh Syndrome/MELAS

MTTL1 m.3243A>G MELAS/Leigh Syndrome/deafness/MIDD/SNHL/CPEO/FSGS/multi-organ dysfunction

m.3271T>C MELAS/DM/MERRF-like

MTTI m.4308G>A CPEO

MTTQ m.4332G>A Encephalopathy/MELAS

MTTM m.4450G>A Myopathy/MELAS/Leigh Syndrome/EXIT

MTTW m.A5537insT Leigh Syndrome

MTTN m.5690A>G CPEO, ptosis, proximal myopathy

MTTS1 m.7471C>CC PEM/AMDF/Motor neuron disease-like

m.7510T>C SNHL

MTTK m.8344A>G MERRF/depressive mood disorder/leukoencephalopathy

MTTG m.10010T>C PEM

MTTH m.12147G>A MERRF-MELAS/Encephalopathy

MTTL2 m.12294G>A CPEO/EXIT, Ophthalmoplegia

MTTD m.14709T>C MM + DMDF/Encephalomyopathy/Dementia, diabetes, ophthalmoplegia

MTTT m.15923A>G LIMM/MERRF

AMDF: ataxia, Myoclonus and Deafness; CPEO: chronic progressive external ophthalmoplegia; DM: diabetes mellitus; DMDF: Diabetes Mellitus and DeaFness; EXIT: exercise intolerance;

FSGS: focal segmental glomerulosclerosis; LIMM: lethal infantile mitochondrial myopathy; MELAS: mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; MERRF:

myoclonic epilepsy and ragged red muscle fibers; MIDD: maternally inherited diabetes and deafness; MM: mitochondrial myopathy; PEM: progressive encephalopathy; SNHL: Sensorineural

Hearing Loss. The complete set of mutations affecting mitochondrial tRNAs and references can be found in the MITOMAP database (https://www.mitomap.org/MITOMAP).
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Acidosis, and Sideroblastic Anemia) (Shahni et al., 2013) or HUPRA
(hyperuricemia, pulmonary hypertension, renal failure, and
alkalosis) syndromes (Belostotsky et al., 2011; Rivera et al., 2013).

A particular case of defects in the aminoacylation of
mitochondrial tRNAs is derived from mutations in the
heterotrimeric amidotransferase complex GatCAB, responsible of
the synthesis of the Gln-tRNAGln. Although this complex is not a
bona fide mitochondrial aminoacyl tRNA synthetase, its shares the
function with aminoacyl-tRNA synthetases. There have been
pathogenic mutations identified in all three subunits of the
GatCAB complex, QRSL1, GatB and GatC (Kohda et al., 2016;
Friederich et al., 2018; Kamps et al., 2018), but none of them,
however, result in a neurological affection despite having an
aminoacylation defect of a mitochondrial tRNA. Patients
presented with lactic acidosis and a metabolic cardiomyopathy
and died shortly after birth. All patients showed a reduced
mitochondrial translation due to a defective Gln-mt-tRNAGln

acylation (Friederich et al., 2018).
Different groups have generated animal models to study the

molecular mechanisms behind the pathologies due to mitochondrial
aaRSs. Drosophila melanogaster WARS2 knock-down displays
aminoacylation defects similar to those observed in patients
(Maffezzini et al., 2019). dFARS2 knock down in Drosophila leads
to a developmental delay, an abnormal brain morphology and
induces seizures (Fan et al., 2021), showing FARS2 function is
crucial for the maintenance of neuronal function and
reproducing the phenotypes observed in patients. MARS2 mutant
flies display a mild reduction in complex I activity with a
concomitant production of reactive oxygen species (ROS) (Bayat
et al., 2012). Interestingly, the brain tissue of these flies accumulates
lipid droplets, suggesting a defect in lipid metabolism that has also
been observed in patients carrying mutations in tRNAMet and COX3
(Bortot et al., 2009). Similarly, SARS2 knock down in Drosophila
affects its viability, longevity, motility and tissue development, and
induces lactic acidosis and ROS accumulation (Guitart et al., 2013).
These models not only show Drosophila is an excellent model to
study the pathophysiology of these disorders, as they reproduce the
defects observed in patients, but can also be used to test potential
therapies. In this way, it was shown that the phenotypes for both
MARS2 and SARS2 mutant flies can be partially reversed by the
administration of antioxidants (Bayat et al., 2012; Guitart
et al., 2013).

Zebrafish,Danio rerio, have also been used as models of reduced
mitochondrial tRNA aminoacylation. Several groups have knocked
down the expression of FARS2 (Li et al., 2021; Chen et al., 2022),
RARS2, VARS2 (Kayvanpour et al., 2022), WARS2 (Wang et al.,
2016) and YARS2 (Jin et al., 2021) in zebrafish. A decrease in FARS2,
RARS2, VARS2 or YARS2 results in neurological alterations in
zebrafish, reproducing the central nervous system phenotypes
observed in patients. These zebrafish models also show different
degrees of muscle and heart involvement, and vascular
development problems.

Full body knock-out mouse models of aaRSs are embryonic
lethal, and the mouse models that have been studied to date have
depleted the expression of aaRSs in specific tissues. Conditional
DARS2 knockout mice in heart and muscle developed cardiac
hypertrophy and died prematurely (Dogan et al., 2014). To study
the effect of DARS2 depletion in the central nervous system, in a

second work by the same group, DARS2 expression was knocked out
in forebrain-hippocampal neurons or myelin-producing cells
(Aradjanski et al., 2017). Loss of DARS2 in adult neurons lead to
a strong mitochondrial dysfunction accompanied by an early
inflammation response and progressive loss of cells. Defects that
were not observed when DARS2 was knocked out in myelin-
producing cells. To model the hearing loss in patients with
Perrault syndrome, HARS2 was knocked-out in mouse
cochlear hair cells (Xu et al., 2021). HARS2 knock-out led to
progressive hearing loss due to hair cell synaptopathy and
apoptosis, triggered by the mitochondrial damage and elevated
ROS production. Due to the lethality of the full-body aaRSs
knock-outs and the necessity to develop tissue specific models,
these knock-out mice can’t be used to study the pleiotropic effects
of a given mutation in different tissues. Agnew et al. identified
and characterized a mouse model harboring a hypomorphic
mutation in the WARS2 gene (Agnew et al., 2018). These mice
develop progressive tissue-specific pathologies, including hearing
loss, adipose tissue dysfunction, and hypertrophic
cardiomyopathy. The advances in CRISPR/Cas gene editing
should allow us to generate mice harboring patient specific
variants, which will be a more accurate model for the study of
these disorders.

4.5 Mutations in translation factors

Mitochondrial translation factors play an essential role in the
biogenesis of the OXPHOS complexes by regulating and facilitating
protein synthesis in the mitoribosome. Mutations in translation
elongation factors mtEF-Tu, mtEF-Ts, mtEF-G1 and GUF1 have
been identified as a cause of mitochondrial disorders in patients,
which in general present neurological symptoms as happens with
the patients with mutations in aaRSs.

mtEF-Tu, encoded by the gene TUFM, is a highly conserved
protein that uses the energy from GTP hydrolysis to deliver the
aminoacyl-tRNAs (aa-tRNA) to the A site of the mitochondrial
ribosome during the elongation phase of translation. The
crystallographic structure of mtEF-Tu shows the presence of
three domains: I is a Mg2+ GTPase domain, II is an aa-tRNA
binding domain and III, a mtEF-Ts binding domain (Andersen
et al., 2000).

Valente et al., reported on a baby affected by severe lactic
acidosis and rapidly progressive, fatal encephalopathy with severe
infantile macrocystic leukodystrophy with micropolygyria caused by
a R339Q amino acid variation in mtEF-Tu (Valente et al., 2007). A
similar clinical presentation was described by Di Nottia et al., who
reported on a baby with severe infantile macrocystic leukodystrophy
with micropolygyria caused by a homozygous c.964G>A (p.G322R)
mutation in TUFM (Nottia et al., 2017). Both mutations result in a
severely decreased mitochondrial protein synthesis and as a result,
these patients presented a combined defect in the activity of
mitochondrial complexes I and IV (Valente et al., 2007; Nottia
et al., 2017). Both mutations are located on domain II of mtEF-Tu.
Further in vitro analysis demonstrated that R336Q prevents proper
binding to the aa-tRNAs and, thus, formation of the ternary
complex GTP:mtEF-Tu:aa-tRNA (Valente et al., 2009; Akama
et al., 2010).
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Hershkovitz et al. described a new homozygous missense
variant, H115P, in domain I of the mtEF-Tu protein
(Hershkovitz et al., 2019). Bioenergetic analysis of the muscle
biopsy revealed a combined mitochondrial defect in the activity
of complexes I, I + III and IV. Interestingly, this patient exhibited
lactic acidosis and a dilated cardiomyopathy without neurological
symptoms, which were presented by the previous patients. The
authors proposed that the distinct clinical presentation resulted
from the mutation’s location on domain I, rather than domain II,
likely impacting the stability of the mtEF-Tu:mtEF-Ts complex and
GDP-GTP exchange (Hershkovitz et al., 2019). Additional
mutations in the mtEF-Tu have been described, a homozygous
mutation L147H and a compound L147H/Y54X, in patients with
childhood-onset mitochondrial respiratory chain complex
deficiencies (Kohda et al., 2016). Patients presented with lactic
acidosis, hyperammonemia and abnormalities of the basal ganglia
on brain MRI or intrauterine growth retardation, premature birth,
respiratory failure, hypotonia and lactic acidosis.

mtEF-Ts, encoded by gene TSFM, is a guanine exchange factor
responsible for the regeneration of mtEF-Tu:GTP from the inactive
mtEF-Tu:GDP. A publication from the group of Eric Shoubridge
reported two unrelated patients with a homozygous missense
substitution in TSFM, R333W (Smeitink et al., 2006). This amino
acid is located in the C-terminal domain, in an evolutionarily
conserved site essential for the interaction with mtEF-Tu and,
interestingly, both mtEF-Ts and mtEF-Tu protein levels were
decreased in patients’ fibroblasts. Bioenergetic analysis revealed a
complex I, III and IV defect caused by a decreased in mitochondrial
protein synthesis. Interestingly, the synthesis of the different
mtDNA-encoded polypeptides is affected to varying degrees as a
result of the TSFM mutation. Despite carrying the same
homozygous mutation, the clinical presentation of both patients
was remarkably different (Smeitink et al., 2006), suggesting the
presence of potential genetic modifiers and illustrating the
variability observed in mitochondrial disease patients. Patient one
presented an encephalomyopathy, muscle weakness, hypotonia,
rhabdomyolysis, and epilepsy. Patient two presented hypertrophic
cardiomyopathy, but the neurological examination and brain
imaging were normal.

The clinical spectrum associated to mutations in mtEF-Ts was
expanded by additional studies, which reported patients with
intrauterine growth retardation, neonatal lactic acidosis, liver
dysfunction and multiple respiratory chain deficiency in muscle
(Vedrenne et al., 2012), patients with infantile-onset mitochondrial
cardiomyopathy, progressing to juvenile-onset Leigh syndrome,
neuropathy, and optic atrophy or optic atrophy and a loss of
myelinated axons (Ahola et al., 2014), patients with ataxia and
non-obstructive cardiomyopathy (Emperador et al., 2017) or
encephalocardiomyopathy and sensorineural hearing loss (Scala
et al., 2019), among others.

mtEF-G1, encoded by gene GFM1, is the third elongation factor
necessary for mitochondrial translation. mtEF-G1 plays an essential
role in facilitating the translocation of peptidyl-tRNA from the
P-site to the A-site of the ribosome, thereby vacating the A-site
for the incorporation of a new aa-tRNA. Coenen et al. were the first
to describe a family with mutations in mtEF-G1 leading to disease
(Coenen et al., 2004). This group identified two patients with a
mutation in a conserved amino acid position in the GTP binding

domain of mtEF-G1. Both patients died early after birth and
displayed similar clinical presentations marked by lactic acidosis,
severe liver dysfunction and altered brain morphology. Patient
fibroblasts exhibited a significant reduction in mitochondrial
protein synthesis accompanied by an impairment in the assembly
of mitochondrial complexes I, III, IV, and V. A similar clinical
presentation was observed by Antonicka et al. in two siblings with
compound heterozygous mutations in the mtEF-G1 protein, S321P
and L607X, with growth retardation, lactic acidosis and liver
dysfunction, (Antonicka et al., 2006). The authors suggested the
S321P substitution, between domains one and two of the protein
could affect nucleotide binding or hydrolysis while the second one
truncates the protein.

Smits et al. reported an additional patient carrying a
homozygous R250W mutation in mtEF-G1, which is presumed
to hamper ribosome-dependent GTP hydrolysis (Smits et al.,
2011a). Similar to the previous cases, the patient died at an early
age. This patient, however, had a slightly different clinical
presentation and did not show significant hepatic or muscular
involvement. Instead, he presented with encephalopathy, which
was followed by rapid neurological degeneration and epilepsy.
Although bioenergetic analysis of the muscle biopsy did not
reveal a decrease in OXPHOS activities, a clear mitochondrial
defect was evident when the patient’s fibroblasts were used to
measure mitochondrial complex activity. The patient exhibited a
combined complexes I, III, and IV defect caused by a decreased
mitochondrial protein synthesis in fibroblasts (Smits et al., 2011a).
The clinical phenotype of this patient is shared by patients that carry
mutations R47X/M496R (Valente et al., 2007), which were
characterized by neurological failure and lactic acidosis.

Mitochondrial translation was similarly decreased in all
investigated patients with mutations in mtEF-G1. Surprisingly,
this decrease was not uniform for all OXPHOS subunits, as was
found in patients carrying mtEF-Tu mutations. In general, mtEF-
G1 patients showed an overall decrease in the rate of
mitochondrial translation, with the expression of subunits
ND5, ND6, COX1, COX2 and COX3 generally being the
lowest. ND3 expression, on the contrary, was often increased
(Smits et al., 2011a). A common feature of the disease caused by
mutations in mtEF-G1 is the muscular symptoms are relatively
mild in all cases, there is however, a wide variation in the clinical
symptoms due to mutations in mtEF-G1, with patients having
mainly a hepatic presentation or others presenting with
neurological symptoms.

In an effort to understand the phenotype-genotype correlations
in these patients, the mutations have been modelled on the crystal
structure of mtEF-G1 (Galmiche et al., 2012). Hepatic failure was
associated with mutations located in the central part of the protein
while mutations associated with encephalopathy were located in
peripheral regions of the protein. This prediction suggests affecting
different functional domains of mtEF-G1 has tissue-specific
consequences, despite the general function of mtEF-G1 in
mitochondrial translation, and points to compensatory or
regulatory mechanisms as responsible for the differences in
clinical presentations.

Since then, other groups have reported numerous patients with
mutations in GFM1 (Balasubramaniam et al., 2011; Calvo et al.,
2012; Simon et al., 2017; Bravo-Alonso et al., 2019; Barcia et al.,
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2020; Su andWang, 2020; You et al., 2020; Khan et al., 2022; Aleksic
et al., 2024).

Gfm1 knock-in and knock-out mouse models were developed to
study the underlying molecular mechanisms of the disease and to
test potential therapies (Molina-Berenguer et al., 2022). Knock-in
mice harboured the missense mutation R671C, previously identified
in patients with encephalopathy. This amino acid change in mice
causes a mild complex IV deficiency in the liver associated with a
reduced mitochondrial translation rate. Mice did not show motor
dysfunction and had normal OXPHOS activities in brain, skeletal
muscle and heart and did not reproduce the encephalopathy
observed in the patients. Crossing the R671C mice to mice
carrying a knocked-out Gfm1 allele, resulted in more severe
phenotypes that better recapitulated what was observed in
patients. R671C/- mice showed a more pronounced CI and CIV
deficiency, both in liver and brain and will be a useful model to
further investigate the pathophysiological mechanisms behind the
mutations in mtEF-G1.

mtEF4/GUF1, encoded by the gene GUF1, is an evolutionarily
conserved mitochondrial GTPase that controls the fidelity of
translation under stress situations. A work published by Alfaiz
et al. identified mutations in GUF1 in siblings from a
consanguineous family affected by West syndrome, which is
characterized by infantile spasms, pathognomonic
hypsarrhythmia and developmental regression (Alfaiz et al., 2016).

In addition to the general translation factors, certain transcripts
require the assistance of gene-specific translational activators for
their translation in the mitoribosome. This is the case of COX1
mRNA and its translational activator TACO1 (Translational
Activator of COX1), which is the only translational activator
identified in mammalian mitochondria to date. TACO1 was first
identified in patients suffering late-onset Leigh syndrome and a
complex IV deficiency (Weraarpachai et al., 2009). The patients
carry a homozygous one-base-pair insertion in TACO1 that results
in a frameshift and the creation of a premature stop codon. The
complex IV deficiency in the patients is due to a specific defect in the
synthesis of COX1, which results in very low levels of fully
assembled complex. A second report associated mutations in
TACO1 in two additional families with late-onset Leigh
syndrome (Oktay et al., 2020). A third report described the
presence of TACO1 mutations as the cause of an adult-onset
slowly progressive spastic paraparesis with cognitive impairment
and leukoencephalopathy, expanding the clinical phenotypes
associated to mutations in this gene (Sferruzza et al., 2021).

Mice carrying a homozygous point mutation in the Taco1 gene
have an isolated complex IV deficiency and develop a late-onset
syndrome with visual impairment, motor dysfunction and cardiac
hypertrophy (Richman et al., 2016). These mice recapitulate the
defects observed in patients and, thus, provide a useful model for the
study of the molecular basis of the tissue-specific defects observed in
patients and the development of potential therapies.

Release factor C12ORF65 has also been identified as a cause of
mitochondrial disease in over 25 patients. C12ORF65 belongs to the
family of mitochondrial class I peptide release factors together with
mtRF1a, mtRF1 and ICT1. C12ORF65 does not exhibit peptidyl-
tRNA hydrolase activity, but most likely plays role in recycling
abortive peptidyl–tRNA species. The first patients with pathogenic
mutations in C12ORF65 were reported by Antonicka et al.

(Antonicka et al., 2010). Both presented with Leigh syndrome,
optic atrophy and ophthalmoplegia due to a deletion causing the
appearance of a premature stop codon in C12ORF65. These patients
show a general decrease in mitochondrial protein synthesis and a
strong mitochondrial complex I, IV and V assembly defect. Since the
identification of the first patients, several groups have reported
additional pathogenic mutations in C12ORF65 (Shimazaki et al.,
2012; Buchert et al., 2013; Heidary et al., 2014; Pyle et al., 2014;
Spiegel et al., 2014; Tucci et al., 2014; Wesolowska et al., 2015;
Imagawa et al., 2016; Nishihara et al., 2017). The clinical
presentation of these patients varies, however, optic atrophy,
peripheral neuropathy, and spastic paraparesis are common
findings to most patients.

4.6 Mutations in ribosome assembly factors

A decreased mitochondrial translation and OXPHOS deficiency
can also stem from defects in ribosome assembly. To date mutations
in ERAL1, the protease CLPP, the methyltransferase MRM2 and the
helicase DHX30 have been associated with human disorders.

ERAL1 is the gene that encodes the Era-Like 12S rRNA
chaperone 1 or ERAL1. ERAL1 is essential for the assembly of
the mt-SSU (Dennerlein et al., 2010; Uchiumi et al., 2010). A
missense mutation in ERAL1 was identified in three unrelated
women from a small village in the Netherlands with Perrault
syndrome. All patients presented sensorineural hearing loss in
addition to fertility disorders, such as premature menopause or
primary amenorrhea (Chatzispyrou et al., 2017). As a consequence
of this mutation patients’ fibroblasts show a defective assembly of
the small mitoribosomal subunit, reduced 12S rRNA levels and a
compromised mitochondrial function. To demonstrate the role of
ERAL1 in fertility, the authors knocked-down the ERAL1
homologue in C. elegans. Knock-down of worm ERAL1 resulted
in a decreased mitochondrial respiration and an impaired egg
production, confirming the essential role of ERAL1 in
mitochondrial function and fertility (Chatzispyrou et al., 2017).

Interestingly, mutations in the mitochondrial protease CLPP have
been identified as a cause of Perrault syndrome as well (Jenkinson
et al., 2013; Demain et al., 2017; Faridi et al., 2024). The work on Clpp
knock-out mice has shown this protease has an essential role in
mitochondrial protein synthesis by regulating the levels of ERAL1
(Szczepanowska et al., 2016). Clpp knock-out mice accumulate
ERAL1, which remains bound to the small ribosomal subunit
preventing mt-SSU maturation and its assembly into a functional
mitoribosome. Moreover, the Clpp deletion in mice represents a
faithful model of Perrault syndrome, displaying infertility due to a
follicular and spermatic differentiation failure (Gispert et al., 2013).

MRM2, is a uridine 2′-O-methyltransferase for the
U1369 position of the mitochondrial 16S rRNA in humans
(Rorbach et al., 2014). Methylation by MRM2 is essential in the
late stages of mt-LSU biogenesis. In its absence, 16S rRNA is
unstructured and the mt-LSU accumulates in immature assembly
states (Rebelo-Guiomar et al., 2022). A patient with a homozygous
G189R substitution in MRM2 developed a MELAS-like syndrome
manifesting with childhood-onset progressive encephalomyopathy
and stroke-like episodes (Garone et al., 2017). MRM2 has also been
found mutated in two families with progressive dystonic features
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and a neurodevelopmental disorder with involuntary movements
(Shafique et al., 2023). To model the consequences of a decreased
16 rRNA methylation, DmMRM2 was knocked down in Drosophila
melanogaster. Downregulation of DmMRM2 led to a developmental
delay and lethality during the pupal stage due to decreased OXPHOS
subunits (Rebelo-Guiomar et al., 2022).

Over 40 patients have been identified with mutations in the gene
that encodes the helicase DHX30. Patients are affected by global
developmental delay, intellectual disability, severe speech impairment
and gait abnormalities (Lessel et al., 2017; Mannucci et al., 2021). To
model the disorder, Mannucci et al. generated dhx30 KO zebrafish,
which had a social behavioral deficit with altered sleep-wake activity,
which is consistent with the neurodevelopmental disorder in
DHX30 patients. The precise function of DHX30 on mitoribosome
assembly remains to be identified.

4.7 Mutations that affect ribosome tethering
to the membrane and the coordination of
translation and OXPHOS assembly

As explained in section 4.4, the newly synthesized peptides are
inserted co-translationally to the membrane. This insertion is
mediated by OXA1L, which tethers mitochondrial ribosomes to
the IMM and assists in the insertion of the polypeptides into the
membrane (Hell et al., 2001; Jia et al., 2003; Szyrach et al., 2003).
Mutations in OXA1L have been identified by whole exome
sequencing in patients suffering from a severe childhood-onset
encephalopathy (Thompson et al., 2018). Mitochondrial protein
synthesis is not affected in patient fibroblasts, but the stability of
all mitochondrially encoded proteins is decreased, which is consistent
with the role of OXA1L in the insertion of the polypeptides in the
IMM. Interestingly, and despite the general role of OXA1L in
ribosome tethering to the membrane, the OXPHOS activities are
not equally decreased in all patient tissues, showing an isolated
complex I deficiency in the nervous system and a combined defect
of complexes I, IV and V in skeletal muscle (Thompson et al., 2018).
These results suggest that the insertase machinery may vary between
tissues and that further research is needed to identify its components.

Mutations in factors that coordinate COX1 translation with its
assembly into complex IV have also been described as the cause of
human disorders. hCOA3 (MITRAC12, CCDC56), the homologue of
yeast Cox25/Coa3 (Szklarczyk et al., 2012), is a transmembrane protein
in the IMM that interacts with newly synthesized COX1 and the
mitoribosome, and participates in the initial steps of complex IV
assembly (Mick et al., 2012; Clemente et al., 2013; Busch et al.,
2019). COA3 forms a complex that has been termed MITRAC
(mitochondrial translation regulation assembly intermediate of
cytochrome c oxidase) which links the initial steps in complex IV
assembly with COX1 translational regulation. These MITRAC
complexes additionally include C12orf62 (Mick et al., 2012), the
homologue of yeast Cox14 (Szklarczyk et al., 2012). Mutations in
both COA3 and C12orf62 result in a reduced translation of COX1,
and have been associated to neuropathy, exercise intolerance, obesity,
and short stature or neonatal lactic acidosis, respectively (Weraarpachai
et al., 2012; Ostergaard et al., 2015). The feedback loop that coordinates
Cox1 synthesis and complex IV assembly has been extensively
characterized in Saccharomyces cerevisiae models (Timón-Gómez

et al., 2018). Additionally a D. melanogaster model of
COA3 deficiency reproduced the isolated complex IV defect caused
by mutations in hCOA3 (Peralta et al., 2012).

5 Conclusion and future prospects

During the past 2 decades our understanding of themitochondrial
ribosome structure, the process and regulation of mitochondrial
translation and the assembly of the mitochondrial ribosomes has
greatly advanced and recent reports have revealed the mechanisms for
the co-translational insertion of the proteins into the inner
mitochondrial membrane and the quality control mechanisms that
take place during this insertion process. In addition, next-generation
techniques have improved the diagnosis and identification of
mutations in patients with mitochondrial disorders due to a
deficient protein synthesis, which has allowed for the identification
of genes also involved in the process. These disorders are
multisystemic, many of them with neurological symptoms, and
include Leigh syndrome, hearing loss or hypertrophic
cardiomyopathy among others.

Despite the advances, our knowledge of the translation process
and the factors involved in it is still limited, and, in particular, our
knowledge concerning the molecular mechanisms behind the
pathologies is far for complete. The variability in clinical outcomes
due to defects in mitochondrial protein synthesis is remarkable,
despite the common underlying defect in mitochondrial translation
and OXPHOS activities. Animal models have proven a valuable tool
in understanding the molecular mechanisms behind many human
disorders, and they allow for the study of tissue-specific consequences
of a given gene defect. This is especially valuable in the disorders, such
as those due to a defective protein synthesis, were the affected organs
and the severity of the symptoms are very variable, even in patients
carrying mutations in the same gene. In the future, the use of gene
editing techniques to generate animal models carrying patient
mutations will be instrumental in comprehending the molecular
mechanisms behind the disorder and the different consequences of
a mutation in each tissue of the organism. To date, there is no cure for
mitochondrial disorders and the generation and study of animal
models will additionally allow to identify targets and test potential
therapies that could improve the patients’ symptoms.
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