

Asian Soil Research Journal

Volume 8, Issue 3, Page 23-29, 2024; Article no.ASRJ.117689 ISSN: 2582-3973

Diagnosing Health of Agricultural Soil Treated with Urea Fertilizer: A Low Frequency Dielectric Analysis

A. S. Biraris ^{a*}

^a Department of Electronics, S.S.V.P. Sanstha'sl. K.Dr.P.R. Ghogrey Science College, Dhule, India.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: https://doi.org/10.9734/asrj/2024/v8i3153

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/117689

Original Research Article

Received: 26/03/2024 Accepted: 29/05/2024 Published: 30/05/2024

ABSTRACT

In agricultural soils, understanding how urea contamination influences electrical properties is crucial. This study explores the influence of urea contamination on the low-frequency (100 Hz - 1 MHz) dielectric properties of agricultural soil originating from Kasare Village in the western Dhule district, India. Soil samples were treated with varying urea concentrations (0 mg, 50 mg, and 150 mg) and subjected to analysis using an LCR meter. The dielectric constant, impedance, dielectric loss, and admittance of the soil were measured. We observed an increase in the dielectric constant with rising urea content, suggesting an intensification of polarization within the soil matrix. Conversely, impedance and admittance are found to exhibit opposing trends, with impedance decreasing and admittance increasing as urea concentration elevates. Dielectric loss also demonstrate a positive correlation with the amount of urea present. This investigation aims to elucidate the interplay between soil composition and dielectric properties under varying urea concentrations, providing valuable knowledge applicable to agricultural and environmental disciplines.

Cite as: Biraris, A. S. (2024). Diagnosing Health of Agricultural Soil Treated with Urea Fertilizer: A Low Frequency Dielectric Analysis. Asian Soil Research Journal, 8(3), 23–29. https://doi.org/10.9734/asrj/2024/v8i3153

^{*}Corresponding author: E-mail: amitbiraris@gmail.com;

Keywords: Agricultural soil; Low-Frequency Dielectric Analysis (LFDA); urea contamination; Dhule district; LCR meter; soil moisture; dielectric constant; dissipation factor; electrical conductivity; impedance; admittance.

1. INTRODUCTION

Agriculture, a cornerstone of the Indian economy, employs a vast majority in rural areas and contributes significantly to the Gross Domestic Product (GDP). Sustainable agricultural ensuring food practices. security, rural employment, and environmental well-being, are paramount for holistic rural development. India's agricultural sector has witnessed significant advancements, including the Green Revolution, White Revolution, Yellow Revolution, and Blue Revolution.

Soil, a dynamic and complex system, forms the foundation for sustainable food production. Understanding its health and integrity is crucial. However, soil contamination by various pollutants, including fertilizers, threatens this delicate ecosystem, impacting soil fertility, plant growth, and ultimately, food security.

Nitrogen (N) is a vital plant nutrient, often supplied through synthetic fertilizers like urea, composts, and manures [1]. While it promotes plant growth, improper N management can lead to detrimental environmental consequences. Excess N from fertilizers or organic sources can mineralize into nitrate, contaminating groundwater and causing health risks like blue baby syndrome [2].

Urea, a widely used nitrogen fertilizer, plays a complex role in soil health. While essential for plant nutrition, excessive urea application can impact various soil properties. Urea hydrolysis can increase soil salinity, potentially altering the ionic balance and affecting microbial [3]. Additionally, studies suggest that imbalanced N from urea can lead to deficiencies in other crucial nutrients, hindering growth of plant. Therefore, monitoring soil N levels, particularly from urea application, is crucial for optimizing fertilization practices and minimizing environmental impacts [4].

Conventional methods for assessing soil contamination often involve invasive, timeconsuming, and expensive laboratory analyses, which can be impractical for large-scale agricultural monitoring projects where efficiency is crucial. In contrast, low-frequency dielectric analysis (LFDA) presents a promising solution [5,6]. This non-destructive technique measures the electrical properties of materials, offering valuable insights into their composition and structure in a cost-effective and timely manner [7].

This study explores the potential of lowanalysis frequency dielectric (LFDA) for investigating the impact of urea contamination on agricultural soils. We focus on samples collected from the western Dhule district in India, a region intensive agricultural practices. We with investigate the relationship between urea concentration (0 mg, 50 mg, and 150 mg) and key dielectric parameters: dielectric constant, impedance. Dissipation factor and admittance. While research exists on soil dielectric properties at microwave frequencies [8,9]. limited data is available for low frequencies. This study aims to bridge this gap and contribute valuable knowledge to the field.

2. MATERIALS AND METHODS

Soil samples were meticulously collected from various locations within the 6- to 9-inch depth range from Kasare village in the Dhule district's Sakri Tahsil Maharashtra (20°55'45" N, 74° 14'55"E), following established protocols. The collected soil was thoroughly mixed to ensure homogeneity and then sieved through a 425-micrometer sieve to achieve a consistent particle size distribution.

For the experiment, 1.5-gram portions of the soil samples were weighed and combined with different amounts of urea: 0 mg (as a control), 50 mg, and 150 mg. Dry mixing methods will be utilized to evenly distribute the urea throughout the soil matrix.

To ensure consistency, hydraulic compression employing a 10-ton press will be employed to shape the soil samples into pallets with a uniform diameter of 20 mm and a thickness exceeding 2 mm. This approach guarantees consistency in the samples and facilitates accurate measurements of their electrical properties.

Following palletization, all samples will undergo a drying process in an oven at 115°C to eliminate moisture, adhering to standard procedures. The Wyne Kerr LCR meter from the 4100 series will

be used to measure capacitance (Cd), Dissipation factor, impedance, and admittance within the test soil serving as the dielectric medium. The frequency range for these measurements will span from 100 Hz to 1 MHz [10].

To establish a baseline, the capacitance with air as the dielectric medium (Ca) was calculated using the formula Ca = ε_0 A / d, where ε_0 represents the permittivity of free space, A denotes the area of the capacitor plates, and d signifies the distance between the plates. The dielectric constant (K) for each frequency was subsequently computed as K = Cd / Ca. Rigorous calibration processes, including open circuit and short circuit calibrations, was implemented before measurements to minimize errors [11].

3. RESULTS AND DISCUSSION

3.1 Dielectric Constant

At low frequencies, urea molecules have sufficient time to reorient themselves in response to the applied electric field. This orientation polarization, where the permanent dipoles of urea molecules align with the field, contributes to a higher dielectric constant. Additionally, urea can form hydrogen bonds with water molecules, further enhancing the overall polarization and dielectric constant. As the concentration of urea increases, there are more dipoles available to participate in this alignment, potentially leading to a further increase in the dielectric constant at low frequencies.

However, as the frequency of the applied electric field increases, the sluggish motion of the urea molecules begins to lag behind the rapid field changes. This results in a phenomenon known as dielectric relaxation. The molecules are no longer able to fully align with the field at each cycle, leading to a decrease in the overall polarization and a consequent reduction in the dielectric constant. This effect becomes particularly pronounced at frequencies exceeding a certain threshold, where the relaxation time of the urea molecules becomes significantly longer than the period of the oscillating field.

Chaudhary et al., [12] investigated the dielectric constant of urea-water solutions across a wide range of frequencies and concentration. Prachi palta et al., [13] reported the effect of sewage pollution in altering dielectric properties of soils in

the broadband region. Vivek Yadav et al., [14] observed that there is a variation in the dielectric constant of mixture of water content with fertilizers. Their findings support the described trend. At low frequencies, the dielectric constant of soil pallet was found to be higher and increased with increasing urea concentration. However, as the frequency was raised, the dielectric constant started to decrease. This decrease became more pronounced at higher frequencies, suggesting a dominant role for relaxation processes at these conditions.

In conclusion, the dielectric constant of soil pallet demonstrates a frequency-dependent behaviour. At low frequencies, orientation polarization due to urea molecules leads to a higher dielectric constant. However, as frequency increases, dielectric relaxation sets in, causing the constant to decrease.

Dissipation factor: The initial increase and subsequent decrease in DF observed at low frequencies (100 Hz to 700-800 Hz) for all three urea concentrations can be attributed to a phenomenon known as dielectric relaxation. Here's a breakdown of the possible mechanisms:

At lower frequencies, Urea molecules, being polar, have sufficient time to orient themselves with the applied electric field. This orientation polarization leads to an increase in permittivity, the ability to store electrical energy. Dissociation of urea into ions might occur, contributing slightly to electrical conductivity. These combined effects can cause an initial rise in DF at low frequencies. However, as the frequency increased, the sluggish movement of urea molecules and ions struggles to keep pace with the rapidly oscillating electric field. This hinders their ability to contribute to polarization and conduction, leading to a decrease in permittivity and conductivity.

Consequently, the dissipation factor, which reflects the ratio of conductive loss to stored energy (permittivity), exhibits a peak and then dips as the frequency rises beyond the relaxation frequency. Dahim M et al. 2019 reported that the dielectric properties of leachate-contaminated soil decrease with increasing leachate content while the loss factor increase with increasing leachate content.

The observed increase in the peak value of dissipation factor with increasing urea concentration aligns with this explanation. Higher

urea content translates to more polar molecules and potentially more dissociated ions. Although relaxation still occurs, the presence of these additional contributors to polarization and conduction leads to a higher peak in dissipation factor before the relaxation sets in.

In conclusion, the initial rise and fall of DF at low frequencies point towards dielectric relaxation in

the soil-urea system. The increasing peak value of DF with higher urea concentration reflects the influence of more polar molecules and potential ion conductivity. These findings offer valuable insights into the electrical behaviour of soil amended with urea, highlighting the interplay between frequency, dielectric urea content, and relaxation processes.

DIELECTRIC CONSTANT VS LOG F

Fig. 1. Variation of Dielectric constant with log of applied frequency

DISSIPATION FACTOR VS LOG F

Fig. 2. Variation of Dissipation factor with log of applied frequency

Biraris; Asian Soil Res. J., vol. 8, no. 3, pp. 23-29, 2024; Article no.ASRJ.117689

IMPEDANCE VS LOG F

Fig. 3. Variation of Impedance with log of applied frequency

ADMITTANCE VS LOG F

Fig. 4. Variation of Admittance with log of applied frequency

3.2 Impedance

At lower frequencies, the impedance response of soil amended with urea is expected to be complex. Urea, being a polar molecule, can dissociate into charged ions (ammonium and carbonate) in water. However, these ions are larger and having less mobile. This limited mobility can lead to a slight decrease in impedance compared to pure soil at low frequencies. Additionally, the accumulation of ions at the electrode interfaces can create a blocking effect, further contributing to a modest impedance reduction.

However, as the frequency increases, the limitations of ionic mobility become more

pronounced. The sluggish movement of ureaderived ions struggles to keep pace with the rapidly oscillating electric field. This phenomenon, known as dielectric relaxation, hinders the formation of effective charge pathways, leading to a progressive increase in impedance with rising frequency. Chaudhary et al.. [12] observed a similar trend in their study of dielectric properties of urea-amended soil. Their findings suggest that the impedance significantly increases at higher frequencies due to the relaxation of both mobile ions and the polarization of water molecules surrounding the urea molecules.

The concentration of urea is also expected to play a role in the impedance response. At higher

urea concentrations, the increased presence of ions can initially contribute to a minor decrease in impedance at lower frequencies. However, as the frequency rises, the relaxation effects become more dominant. The higher concentration of ions further impedes their leading to a steeper rise in movement, impedance compared to lower urea concentrations. This suggests that while a slight increase in conductivity might occur at low frequencies with higher urea content, the overall effect on impedance is a substantial increase at higher frequencies.

In conclusion, the impedance response of urea in soil exhibits a frequency-dependent behaviour. While a modest decrease in impedance might be observed at low frequencies due to some ion conductivity, the dominant effect is a significant increase in impedance with rising frequency due to dielectric relaxation of urea-derived ions. Additionally, higher urea concentrations are expected to exacerbate this impedance rise at higher frequencies. These findings highlight the contrasting influence of ionic mobility and relaxation processes on the electrical behaviour of soil-urea systems.

3.3 Admittance

At lower frequencies, the admittance of ureaamended soil is expected to exhibit a slight increase compared to pure soil. This can be attributed to two factors. Firstly, the presence of urea can contribute to a minor increase in permittivity. Urea molecules are polar, and at low frequencies, they have sufficient time to orient themselves with the applied electric field. This orientation polarization leads to a higher ability to store electrical energy, which manifests as an increase in permittivity. Additionally, some dissociation of urea into ions might occur, leading to a modest increase in conductivity. However, the limited mobility of these ions restricts a significant rise in conductivity. As the frequency increases, the response of admittance becomes more complex. The sluggish movement of ureaderived ions hinders their ability to contribute to conduction at higher frequencies. This, coupled with the relaxation of the polarized urea molecules, leads to a decrease in permittivity, Consequently, the overall admittance of the soilurea system is expected to decline with increasing frequency.

In conclusion, the admittance response of urea in soil exhibits a frequency [15]. A modest increase in admittance was observed at low frequencies due to some permittivity and conductivity increase, the dominant effect was a decrease in admittance with rising frequency due to relaxation processes. Additionally, higher urea concentrations are expected to exacerbate this decrease at higher frequencies. These findings highlight the contrasting influence of urea on permittivity and conductivity leading to a distinct electrical response in soil-urea systems.

4. CONCLUSION

The present investigation into the electrical properties of soil amended with varying concentrations of urea (0 mg, 50 mg, and 150 mg) across a frequency range of 100 kHz to 1 MHz sheds light on the unique interplay between urea content, frequency, and the dielectric response of the soil-urea system.

Our analysis revealed a frequency-dependent behaviour for all measured parameters: dielectric constant, dissipation factor (analogous to dielectric loss), impedance, and admittance. At lower frequencies, the presence of urea molecules likely contributes to a modest increase in permittivity and a slight rise in conductivity. However, as frequency increases, dielectric relaxation comes into play. The sluggish movement of urea-derived ions and the relaxation of polarized urea molecules lead to a decrease in both permittivity and conductivity.

The observed increase in the peak value of dissipation factor with increasing urea concentration aligns with this explanation. Higher urea content translates to more polar molecules and potentially more dissociated ions, leading to a higher peak in permittivity and conductivity before relaxation sets in.

These findings suggest that dielectric analysis holds promise for non-destructive and potentially rapid estimation of urea concentration in soil. This approach could offer a valuable tool for precision agriculture practices, enabling more efficient fertilizer management and environmental monitoring.

By establishing robust correlations and accounting for these variables, dielectric analysis could be refined as a practical tool for soil analysis in agricultural applications.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

- Yadav MR, Kumar R, Parihar CM, Yadav RK, Jat SL, Ram H, Meena RK, Singh MB, Verma A P, Ghoshand A, Jat ML. Strategies for improving nitrogen use efficiency: A review. Agricultural Reviews. 2017;38(OF):29–40. Available:https://doi.org/10.18805/ag.v0iof.
- 7306
 Bari MN, Alam MZ, Sharmin FJ, Rashid MH. Effect of Urea Fertilizer on Soil, Plant and Food Grain. Proceedings of the International Conference on Biotechnology
- Engineering, May. 2007; 862–868. 3. Fathi A. Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A review. Agrisost\, 28 (October); 2022. Available:https://doi.org/10.5281/zenodo.7 143588
- Bijay-Singh, Craswell E. Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences. 2021; 3(4):1–24. Available:https://doi.org/10.1007/s42452-

Available:https://doi.org/10.1007/s42452-021-04521-8

 Amos-Uhegbu CJ, John U. Geophysical and Geotechnical Evaluation of Erosion Sites in Ebem-Ohafia Area of Abia State, Southern Nigeria. Adv. Res. [Internet]. 2017 Jun. 27 [cited 2024 May 16];10(3):1-14.

Available:https://journalair.com/index.php/ AIR/article/view/187

- Maru A, Ahmed OH, Primus WC, Jeffary AV. Dielectric response of nitrogen in soil amended with chicken litter biochar and urea under Oryza sativa L. cultivation. Scientific reports. 2021;11(1): 12545.
- 7. Dahim, M., Abuaddous, M., Ismail, R., Al-Mattarneh, H., & Jaradat, A. (2020). Using a dielectric capacitance cell to determine the dielectric properties of pure sand artificially contaminated with Pb, Cd, Fe, and Zn. Applied and Environmental Soil Science; 2020.

Available:https://doi.org/10.1155/2020/883 8054

- 8. Chaudhari PR, Ahire DV, Ahire VD. Variation of Dielectric Constant of Dry Soils with their Physical Constituents and Available Nutrients at C-Band Microwave Frequency, Journal of Chemical, Biological and Physical Sciences. 2012;2(2):1001-1009.
- Gadani DH, Vyas AD. Measurement of complex dielectric constant of soils of Gujarat at X-and C-band microwave frequencies. In Indian Journal of Radio & Space Physics. 2008;37.
- Dahim M, Ismail R, Al-Mattarneh H, Hatamleh R. Determination of leachate pollution content in soil using in-situ dielectric measurement. Advanced Materials Letters. 2019;10(4):298–301. Available:https://doi.org/10.5185/amlett.20 19.2253
- 11. Brodie G, Jacob MV, Farrell P. Techniques for Measuring Dielectric Properties. Microwave and Radio-Frequency Technologies in Agriculture. 2015;6:52–77. Available:https://doi.org/10.1515/97831104 55403-007
- Chaudhary PD, Patel VN, Rana VA, Gadani DH. Dielectric properties of soil mixed with urea fertilizer over 20 Hz to 2 MHz frequency range. Indian Journal of Pure and Applied Physics. 2020;58 (6): 455–464. Available:https://doi.org/10.56042/ijpap.v58

Available:https://doi.org/10.56042/ijpap.v58 i6.29759

- 13. Prachi palta P, kaur, KS. Mann, Dielectric Properties of Soils Affected by Sewage Waste Pollution", SPAST Abs. 2021;(1):01.
- 14. Vivek Yadav, Anil Kumar, Sudeep Sharan, AK. Sinha, International journal of the physical sciences. 2010;5(16):2466-2470.
- 15. Dospatliev LK, Ivanov IT, Paarvanova BK, Katrandzhiev NT, Popova RT, "Determining the Relationship between the Dielectric Properties and the Basic Physical and Chemical Parameters of the Air-Dry Soil", International Journal of Scientific and Research Publications. 2014;4(7):1-7.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/117689