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Abstract: As global climate change intensifies, nations around the world are implementing policies
aimed at reducing emissions, with carbon-trading mechanisms emerging as a key market-based
tool. China has launched carbon-trading markets in several cities, achieving significant trading
volumes. Carbon-trading mechanisms encompass cap-and-trade markets and voluntary markets,
influenced by various factors, including policy changes, economic conditions, energy prices, and
climate fluctuations. The complexity of these factors, coupled with the nonlinear and non-stationary
nature of carbon prices, makes forecasting a substantial challenge. This paper proposes a dynamic
weight hybrid forecasting model based on a dual sliding window approach, effectively integrating
multiple forecasting models such as LSTM, Random Forests, and LASSO. This model facilitates a
thorough analysis of the influences of policy, market dynamics, technological advancements, and
climatic conditions on carbon pricing. It serves as a potent tool for predicting carbon market price
fluctuations and offers valuable decision support to stakeholders in the carbon market, ultimately
aiding in the global efforts towards emission reduction and achieving sustainable development goals.

Keywords: carbon trading; carbon price prediction; hybrid prediction model; sustainable development

1. Introduction

As the impact of global climate change intensifies and the emphasis on sustainable de-
velopment goals escalates, the management and mitigation of carbon emissions have risen
to prominence within the international agenda. Governments worldwide acknowledge the
critical need to curtail carbon emissions and are actively devising policies that foster carbon
reduction initiatives. The 1997 Kyoto Protocol specified the targets for reducing greenhouse
gases for industrialized countries from 2005 to 2020 and pro-posed three mechanisms for
emission reduction: carbon emissions trading, joint fulfillment, and the Clean Develop-
ment Mechanism [1]. Among these, the carbon-trading mechanism serves as an effective
market-based tool aimed at incentivizing reduction behaviors through the pricing of carbon
emissions, incentivizing reduction efforts through the monetization of carbon emissions
and serving as a fundamental strategy to meet greenhouse gas reduction targets [2]. In 2020,
China announced its dual carbon goals, underscoring the necessity to establish and refine
market mechanisms and to harness the role of the national carbon emission trading market.
Presently, China has operational carbon-trading markets in multiple cities including Beijing,
Shanghai, and Guangzhou, with the cumulative transaction volume reaching 440 million
tons and a transaction value of CNY 24.9 billion by the end of 2023, reflecting a dynamically
evolving carbon market [3].

The carbon market plays a crucial role in achieving global and regional climate goals.
By pricing carbon emissions, it creates financial incentives for businesses and industrial
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sectors to reduce their carbon footprints [4]. Carbon trading is categorized into two
systems: cap-and-trade markets and voluntary markets. Cap-and-trade markets involve
the allocation of carbon quotas by governments, usually distributed to businesses through
auctions or free allocations and subsequently traded in the market. These quotas, often
based on historical emissions and industry benchmarks, enable enterprises to actively
participate in buying and selling [5]. This mechanism is mandatory in regions like the
European Union, the United States’ California, and China [6]. Conversely, voluntary
markets allow enterprises to engage in the trading of carbon credits voluntarily, often
through participation in certified emission reduction projects, which are active in countries
such as Canada and Australia [7]. This market-driven approach encourages innovation and
investment in clean technologies, promoting the transition to a low-carbon economy. These
systems not only ensure the achievement of emission reduction targets but also provide
businesses with the flexibility to comply in a cost-effective manner. By integrating various
market products such as low-carbon investment funds and carbon credit futures, the carbon
market offers multiple pathways for investors to support emission reduction efforts.

The carbon price, a pivotal element in the carbon market, is subject to influences from
policy shifts, economic activity, energy price fluctuations, and climatic extremes. This
complexity renders carbon price forecasting a formidable task. Accurate carbon price
pre-dictions are vital for establishing a robust price discovery mechanism and for guiding
decisions in production, management, and investment. The nonlinear, non-stationary, and
multifaceted nature of carbon prices, coupled with the intrinsic risks distinct from tradi-
tional financial assets like stocks, necessitates a sophisticated approach to forecasting [8–10].

Practically, precise carbon price forecasting is essential for enabling businesses and
policymakers to make informed decisions. For businesses, it improves risk management, op-
timizes investment strategies, and facilitates efficient resource allocation. For governments,
understanding carbon price dynamics helps in formulating more effective environmental
policies, driving emission reductions, and advancing global climate objectives. Thus, the
forecasting model presented in this paper is not only a theoretical innovation but also
holds considerable potential for practical application, contributing significantly to the
advancement of global sustainable development.

Accurate forecasting of carbon prices is imperative for informed decision-making by
governments. The pricing mechanism serves as a pivotal component within the intricate
carbon market system, significantly influenced by diverse factors such as energy prices,
abnormal weather patterns, and political decisions [11]. Early studies of the carbon market
predominantly focused on elucidating the operational mechanisms of carbon trading, gar-
nering substantial scholarly attention. For instance, Jesper and Rasmussen utilized a general
equilibrium model to explore various methods of allocating tradable carbon emission rights,
highlighting the potential compensatory benefits of emission rights [12]. Similarly, Benz
and Truck simulated different approaches to EU emission allowance returns, uncovering
fluctuations in the demand for CO2 quotas under distinct trading mechanisms [13]. Tavoni
et al. employed a comprehensive model to quantify the impacts of carbon-trading mech-
anisms on different regions, showcasing the efficiency and equity of the carbon market
in promoting clean energy investments [14]. Meanwhile, Daskalakis assessed the market
efficiency of EU carbon futures, observing a gradual maturation of the EU ETS [15]. These
studies laid the theoretical foundation for the carbon market, emphasizing the important
role of carbon-trading mechanisms in emission reduction and economic benefits. However,
there remains a significant gap in the area of carbon price forecasting.

While acknowledging the carbon-trading market’s evolution towards resembling a
financial market, recent research has delved into forecasting carbon prices to maintain
market stability and inform investor strategies [16]. This shift has seen the emergence of
various forecasting methodologies, including traditional econometric models, emerging
machine learning algorithms, and composite models. Chevallier pioneered the application
of non-parametric models in carbon price forecasting, highlighting the nonlinear nature of
carbon spot price data and their effectiveness through empirical evidence [17]. Conversely,
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Koop and Tole utilized Dynamic Moving Average (DMA) to describe the characteristics of
carbon prices, providing policy and statistical insights by flexibly capturing the dynamic
changes in time series data [18]. Byun and Cho used the GARCH model to handle the
volatility in time series data and identified significant predictors of carbon prices, empha-
sizing the roles of electricity, coal, and Brent crude oil prices [19]. Additionally, Han et al.
used a Distributed Lag Model to forecast EU carbon prices, demonstrating the effectiveness
of the GA-ridge algorithm in selecting predictive variables [20].

The advent of machine learning has further revolutionized carbon price forecasting,
utilizing powerful data analysis capabilities to capture nonlinear data characteristics. At-
salakis proposed computational intelligence techniques such as the hybrid neuro-fuzzy
controller (PATSOS), artificial neural networks (ANN), and adaptive neuro-fuzzy inference
system (ANFIS), which combine neural networks and fuzzy logic to capture the complex
nonlinear features in carbon price data. Among these, PATSOS demonstrated the highest
prediction accuracy [21]. Abdi and Taghipour constructed a probabilistic model based
on Bayesian neural networks (BNN), incorporating energy prices, economic growth, and
weather conditions. Using Bayesian statistics to handle uncertainty and prior information,
they improved the robustness and accuracy of carbon price predictions in the Western Cli-
mate Initiative market [22]. Simultaneously, Jaramillo-Morán and García-García developed
a multi-layer perceptron neural network (MLP) model, which processes complex nonlinear
relationships through a multi-layer network structure to forecast carbon quota prices and
examine the spatiotemporal relationships between electricity, steel, and carbon prices [23].
Yahşi et al. explored various forecasting models and found that the Random Forest algo-
rithm performed excellently in predicting EU carbon prices. The Random Forest approach
constructs multiple decision trees and integrates the results of various models, enhancing
the stability and accuracy of predictions [24]. Additionally, Adekoya compared forecasting
models using the Feasible Generalized Least Squares (FQGLS) estimation, which addressed
heteroscedasticity and autocorrelation issues, highlighting the effectiveness of asymmetric
models and the significance of energy prices in carbon price forecasting [25].

In this context, this paper considers the impacts of policy, market, technology, and
climate on the carbon market. By integrating traditional algorithms such as LASSO, LSTM,
and RFR with a dynamic weighting hybrid strategy, and using Python 3.8 software, a
superior carbon price forecasting algorithm is developed. The primary goal is to enhance
the accuracy and robustness of carbon price predictions. By providing more accurate
and reliable carbon price data, this model helps reduce market uncertainty and improve
the scientific and effective nature of the decision-making process. This not only helps
businesses remain competitive in a complex and volatile market environment but also
assists policymakers in formulating more flexible and precise carbon emission policies,
thus advancing global and regional climate goals. For businesses, accurate carbon price
forecasts can optimize investment decisions, improve risk management, and facilitate
efficient resource allocation. Policymakers can use carbon price forecasting models to
create more targeted environmental policies, effectively promoting emission reduction
goals. Investors can conduct more precise market analyses using the model, making more
informed low-carbon investment choices. Additionally, regulatory bodies can use this
model to monitor market dynamics, ensuring the stability and transparency of the carbon
market, thereby enhancing market trust and participation.

The structure of this paper is as follows: Section 2 details the materials and methods
used, including data preprocessing and the hybrid forecasting model. Section 3 presents the
results and their analysis. Section 4 compares the performance of various models. Finally,
Section 5 discusses the conclusions and future work directions.

2. Materials and Methods
2.1. ICEEMDAN Model

Data preprocessing is essential to ensure the quality of the original data, reduce noise,
and make the data more suitable for creating forecasting models. In carbon price forecasting,
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the reasons for data preprocessing include ensuring data integrity and accuracy, capturing
key features, and reducing the impact of external factors.

This paper employs the Improved Complete Ensemble Empirical Mode Decompo-
sition with Adaptive Noise (ICEEMDAN), an enhanced version of the Empirical Mode
Decomposition (EMD) method that is adaptive and efficient [26–28], particularly suit-
able for nonlinear and non-stationary time series data [29,30]. The advantages of using
ICEEMDAN for preprocessing include the following:

Adaptivity: ICEEMDAN can better adapt to data characteristics of different scales and
frequencies, automatically adjusting decomposition layers to extract more meaningful modes.

Effective denoising: by incorporating noise-assisted components, ICEEMDAN better
suppresses the effects of noise during decomposition, improving the separation of signal
from noise.

Reduced modal coupling: the improved ensemble method helps reduce the interaction
between modes, enhancing the independence of the modes.

Preprocessing is crucial for establishing an accurate carbon price forecasting model.
Original data may have missing or outlier values, and using such data directly can lead
to inaccuracies and instabilities in model training. Different influencing factors have
different units of measurement; to eliminate the impact of scale differences on the model,
data normalization is required. Additionally, time series data often contain trends and
seasonality, and the forecasting model needs to better reveal the intrinsic patterns of the
data, making detrending and deseasonalization necessary preprocessing steps. In handling
these steps, the use of Improved Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (ICEEMDAN) offers significant advantages. ICEEMDAN introduces
adaptively controlled amplitude of white noise to avoid mode mixing issues, enhancing the
robustness of modal decomposition. Also, by integrating multiple decomposition results,
ICEEMDAN reduces the variance of the decomposition results, making them more stable.
This method better adapts to the nonlinear and non-stationary nature of carbon price data,
providing a reliable foundation for subsequent modeling and forecasting.

Empirical Mode Decomposition (EMD) was proposed by Huang et al. [25] to smooth
signals with nonlinear and non-stationary characteristics. The EMD technique decomposes
original data into intrinsic mode functions with different scale oscillations. However, due
to the discontinuities in the original signal, it includes mode mixing issues. To address the
problems in EMD, Wu and Huang [27] proposed the Ensemble Empirical Mode Decom-
position (EEMD) technique. Although EEMD can solve mode mixing issues, it does not
completely eliminate residual noise. Therefore, Torres et al. [28] proposed an improved
method called Ensemble Empirical Mode Decomposition with Adaptive Noise. However,
the improved algorithm still had some issues, such as potential residual noise in the modes
and possible spurious modes. To resolve these issues, Colominas et al. [31] proposed an
advanced method called Improved Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise, or ICEEMDAN.

Using the EMD decomposition method, Ek(·) is defined as the k-th order mode; the
details of the ICEEMDAN method are as follows:

Step one: Add E1

(
w(i)

)
to the initial signal x:

x(i) = x + β0E1

(
w(i)

)
(1)

where w(i) is Gaussian white noise with a mean of zero, and β0 represents the amplitude
coefficient of the added noise.

Step two: Use EMD to determine the local mean of signal x(i) to obtain the first residual:

r1 =
〈

M
(

x(i)
)〉

(2)

where M(·) represents the operator that generates the local average.
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Step three: Identify the first mode IMF1 when k = 1:

IMF1 = x − r1 (3)

Step four: Identify the second mode IMF2

IMF2 = r1 − r2 (4)

r2 =
〈

M
(

r1 + β1E2

(
w(i)

))〉
(5)

Step five: Identify the k-th mode IMFk:

IMFk = rk−1 − rk, k = 3, 4, · · · , K (6)

rk =
〈

M
(

rk−1 + βk−1Ek

(
w(i)

))〉
(7)

Step six: Repeat step five for the next iteration.
Through the preprocessing with ICEEMDAN, key features of the carbon price data

can be better preserved, and noise interference can be minimized, providing more reliable
inputs for subsequent model training.

2.2. Mixed Forecasting Algorithm Model
2.2.1. Least Absolute Shrinkage and Selection Operator (LASSO) Model

LASSO is a variable selection method with high model stability capable of effective
feature extraction. It continuously compresses coefficients by introducing a penalty term
into the model estimation to simplify the model while effectively addressing issues of
overfitting and multicollinearity [32]. The LASSO model refines the model by constructing a
penalty function aimed at compressing regression coefficients, making it a biased estimator
for dealing with data that exhibit complex collinearity [33]. While ridge regression cannot
reduce model complexity, LASSO regression optimizes on the basis of ridge regression
by potentially compressing coefficients to zero, thus reducing model complexity [34]. The
objective function of LASSO regression can be expressed as follows:

L(b|X, y) = ∑(y − Xb)2 + λ∥b∥1 = ∑(y − Xb)2 + ∑ λ|b| (8)

where λ∥b∥1 is the penalty term of the function, λ is the penalty coefficient; and ∥b∥1 is the
regularization of the regression coefficients, representing the sum of the absolute values
of all regression coefficients. In the cross-validation curve, choose λ where the bias is
minimized, under which the LASSO regression model has the best fit. LASSO is suitable
for datasets with a large number of features, effectively performing feature selection to
prevent overfitting.

Assume that there is carbon price data Z0, and other influencing factor data Z1,
Z2, . . . ZM. Z0 obtains K0 IMFs from the ICEEMDAN method (Formulas (1)–(7)) as[

IMFZ0
1 , IMFZ0

2 , · · · , IMFZ0
K0

]
. In this paper, a total of 9 influencing factors were selected

(see Table 1), namely M = 8. (Please refer to Appendix A for the relevant data sources).
Z1, Z2, . . . Z8 obtains K1, K2, · · · , K8 IMFs from the ICEEMDAN method as[

IMFZ1
1 , IMFZ1

2 , · · · , IMFZ1
K1

]
,
[

IMFZ2
1 , IMFZ2

2 , · · · , IMFZ2
K2

]
, · · ·

[
IMFZM

1 , IMFZ8
2 , · · · , IMFZ8

K8

]
.

They are used as input features of the prediction model, denoted as:

X =
[

IMFZ0
1 , · · · , IMFZ0

K0
, IMFZ1

1 , · · · , IMFZ1
K1

, IMFZM
1 , · · · , IMFZM

KM

]
(9)



Energies 2024, 17, 3662 6 of 18

Table 1. Data indicator description.

Indicator Unit Mean Std Min. Max. Data Source

Predicted data (Z0) CNY/ton 61.04 6.97 50.52 81.67 [35]

Financial market
indicators

(Z1) - 12.87 1.93 9.03 17.41 [17,19,25,35]
(Z2) USD /CNY 688.64 28 630.1 725.5 [11,17,19]
(Z3) EUR/CNY 735.72 34.6 675 808.8 [11,17,19]
(Z4) - 100.7 3.55 95.5 106.4 [18,20,35]

Energy market
indicators

(Z5) (CNY/barrel) 614 71.9 481.5 806.6 [18,23,35,36]
(Z6) (CNY/ton) 6365.3 1401.26 4148 9415 [11,18,35]
(Z7) (CNY/cubic meter) 3.6 0.181 3.2 3.85 [11,18,24,35]
(Z8) (CNY/ton) 731.765 8.0434 715 759 [11,18,35]

Because each input feature is a series of time series, let T represent the total length of
the time series, and use t to represent the t-th data in the time series. Therefore, dataset X
can be represented as follows:

X =



IMFZ0
1,0, · · · , IMFZ0

K0,0, IMFZ1
1,0, · · · , IMFZ1

K1,0, · · · , IMFZ8
1,0, · · · , IMFZ8

K8,0
...

IMFZ0
1,t , · · · , IMFZ0

K0,t, IMFZ1
1,t , · · · , IMFZ1

K1,t, · · · , IMFZ8
1,t , · · · , IMFZ8

K8,t
...

IMFZ0
1,T , · · · , IMFZ0

K0,T , IMFZ1
1,T , · · · , IMFZ1

K1,T , · · · , IMFZ8
1,T , · · · , IMFZ8

K8,T


(10)

Similarly, this article represents the carbon price dataset as follows:

Y = [Z0,0, · · · , Z0,t, · · · , Z0,T ]
T (11)

Therefore, in order to better train the model proposed in this paper, we processed
the dataset into a training set and a testing set, where the features Xtrain and target Ytrain
of the training set and the features Xtest and target Ytest of the testing set are represented
as follows:

Xtrain =
[
X∆T

0 , · · · , X∆T
t , · · · , X∆T

k
]
, Ytrain =

[
YD

∆T , · · · , YD
t+∆T , · · · , YD

k+∆T

]T

Xtest =
[
X∆T

k , · · · , X∆T
T−∆T

]
, Ytest =

[
YD

k+∆T , · · · , YD
T

]T (12)

Among them, ∆T represents the length of the time series used for prediction, and D
represents the time span for predicting the future. In the third section of this article, ∆T = 5,
D = 1, that is:

X∆T
t =


IMFZ0

1,t , · · · , IMFZ0
K0,t, · · · , IMFZ8

1,t , · · · , IMFZ8
K8,t

...
IMFZ0

1,t+∆T , · · · , IMFZ0
K0,t+∆T , · · · , IMFZ8

1,t+∆T , · · · , IMFZ8
K8,t+∆T


YD

t+∆T = [Z0,t+∆T , · · · , Z0,t+∆T+D]
T

(13)

Then according to Formula (8), the prediction model that can be constructed is as follows:

YLASSO = LASSO(Xtest) = Xtestb, where b ∈ argminL(b|Xtrain, Ytrain) (14)

2.2.2. Long Short-Term Memory Model (LSTM)

Hochreiter and Schmidhuber [37] first introduced Long Short-Term Memory (LSTM),
which is designed based on Recurrent Neural Networks (RNNs) with added memory
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characteristics to avoid the long dependency problem. LSTM can maintain long-term
memory in neural networks, making the model also well-suited for carbon price forecasting.

For RNNs, as the network layers update information unrestrictedly, information
becomes jumbled and prone to disappearance, leading to the problem of vanishing gradi-
ents [38]. However, LSTM networks incorporate forget and memory cells in the hidden
layers, discarding secondary information when new information is input, and retaining
important information in long-term memory. These cells are known as gates in LSTM, and
the gating mechanism fundamentally includes a cell and three gates, such as the input gate,
output gate, and forget gate.

LSTM neural networks include multiple gates: the input gate i determines how much
of the current timestep’s input is saved in the cell state. Sometimes, the input gate is also
called the update gate; the forget gate f decides how much of the previous timestep’s cell
state is retained to the current timestep, or possibly not retained at all; the output gate
o determines how much of the cell state is outputted to the current output value of the
hidden state.

Compared to RNNs, which have only one type of transmission state, LSTMs have
two transmission states, namely the cell state Ct and the hidden state ht The key to LSTM
is the cell state c, which acts like a conveyor belt running directly through the entire
chain framework with only minimal linear interactions, making it easy for each cell’s
information to circulate and remain unchanged across the network. Moreover, to address
the problem of vanishing gradients, LSTMs do not simply apply element-wise nonlinear
affine transformations to internal self-loops, but instead use a gating mechanism to control
the flow of information within the LSTM. Gates typically include pointwise multiplication
used for addition and are governed by sigmoid functions tanh(x) = (ex − e−x)/(ex + e−x)
to determine how much information can be passed.

Equations (15)–(20) detail the computational formulas for LSTM, where lowercase
variables represent vectors, and uppercase variables represent vector matrices.

ft = σ
(

W f xt + U f ht−1 + b f

)
(15)

it = σ(Wixi + Uiht−1 + bi) (16)
∼
c t = tanh(Wcxt + Ucht−1 + bc) (17)
∼
c t = tanh(Wcxt + Ucht−1 + bc) (18)

ot = σ(Woxt + Uoht−1 + bo) (19)

ht = ot ◦ tanh(ct) (20)

In this context, xt ∈ Rm is the input vector to the LSTM cell; ht ∈ (−1, 1)n is the
hidden state vector of the LSTM cell; ft ∈ (0, 1)n is the activation vector of the forget gate;
it ∈ (0, 1)n is the activation vector of the input gate;

∼
c t ∈ (−1, 1)n is the cell input activation

vector; ct ∈ Rn is the cell state vector; and ot ∈ (0, 1)n is the activation vector of the output
gate, where the superscripts m and n, respectively, indicate the number of input features and
hidden units. ◦ represents the Hadamard product. For Wk ∈ Rn×m, Uk ∈ Rn×n, bk ∈ Rn,
k = f, i, c, o, these represent the weight matrices of the input vector xt, the weight matrices of
the hidden vector state ht, and the bias vector parameters, each corresponding to different
gates or cell states f, i, c, o. Additionally, special vector notation is used to better elucidate, for
example, the cell state vector ct ∈ Rn, which contains information not only about one cell in
the LSTM neural network but also about n LSTM cells. In practical calculations, the Adam
optimization algorithm [39] is commonly used, which is a method of gradient descent
because it adaptively adjusts the learning rate. Adam combines the advantages of the
AdaGrad and RMSProp optimization algorithms, offering simplicity, high computational
efficiency, and low resource usage. As the updates of its parameters are unaffected by
gradient transformations, it is suitable for datasets with noisy, unstable, or sparse gradients.
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Furthermore, as overfitting is a common issue when training neural networks, it is necessary
to implement a Dropout mechanism [40].

Let the LSTM model calculation process represented by Formulas (11)–(16) be repre-
sented by function LSTM(X). As in Formula (9), in this section, the input variable in the
LSTM model training process is also X, the output variable is Z0, the carbon price to be
predicted is represented by YLSTM, and the feature variable input in the prediction process
is Xnew. Then, the prediction process can be expressed as follows:

YLSTM = LSTM(Xtest) = Wyht + by, where Wy, by ∈ argminLSTM
(
Wy, by

∣∣Xtrain, Ytrain
)

(21)

where Wy and by are the weights and biases of the output layer.

2.2.3. Random Forest Regression Model (RFR)

Random Forest is an ensemble learning method that enhances overall model perfor-
mance and robustness by constructing multiple decision trees and synthesizing the results
of multiple models through voting or averaging. Specific construction methods and exam-
ples of the Random Forest regression model can be found in the literature [41]. The Random
Forest regression model can be mathematically summarized as follows: Given a data sam-
ple X and prediction set Y, a forest dependent on random variables is planted, forming tree
predictors h(x, θk) that output numerical results. The Random Forest predictor is obtained
by averaging these trees {h(x, θk)} with respect to k. The training set consists of samples
Y, X drawn independently and distributed according to a random variable. The mean
squared generalization error for any tree predictor hEX,Y(Y − h(X))2. When the number of
trees in the forest increases indefinitely, EX,Y(Y − avkh(X, θk))

2 → EX,Y(Y − Eθh(X, θ))2

holds everywhere.
Thus, the Random Forest regression function is Y = Eθh(X, θ), and in practice, it is

often replaced by the approximation formula Y = avkh(X, θk) when k is sufficiently large.
The error analysis is as follows:

PE*(tree) = EθEX,Y(Y − h(X, θ))2 (22)

where PE* represents the average generalization error of the Random Forest. Assuming
that for all θ, E(Y) = EXh(X, θ) holds, then:

PE*( f orest) ≤ yPE*(tree) (23)

where y is the weighted correlation coefficient between Y − h(X, θ) and the remainder
Y − h(X, θ′), and θ and θ′ are independent of each other. This demonstrates that the
generalization error of the Random Forest is y times lower than that of individual trees,
and the introduction of random variables θ and θ′ is intended to reduce y.

According to the calculation process of the Random Forest Regression Model expressed
in Formulas (22) and (23), assuming that there are M trees in the Random Forest, the
prediction model of the mth tree is hm(·). Then, given the feature data set Xtest, the carbon
price prediction result can be expressed as follows:

YRFR = RFR(Xtest) =
1
M∑M

m=1 hm(Xtest) (24)

2.2.4. Hybrid Forecasting Model Weighting Rules

This paper employs a dynamic weighting hybrid forecasting model based on dual
sliding windows. For the prediction results of each algorithm, the average absolute er-
ror (MAE), root mean square error (RMSE), symmetric mean absolute percentage error
(SMAPE), and accuracy (Accuracy) from the Least Absolute Shrinkage and Selection Oper-
ator (LASSO), Long Short-Term Memory model (LSTM), and Random Forest Regression
(RFR) algorithms are used as weighting coefficients.

The formula for calculating the hybrid weights is as follows:
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To test the predictive effectiveness of the designed hybrid forecasting framework,
this study considers four commonly used metrics: mean absolute error (MAE), root mean
square error (RMSE), symmetric mean absolute percentage error (SMAPE), and accuracy
(Accuracy). Lower values of the first three indicators signify higher predictive accuracy,
while a higher value of the last indicator indicates greater predictive accuracy. The specific
formulas are shown below, where N represents the number of samples, and Rn and Pn,
respectively, represent the actual (Ytest) and predicted values at the n-th time node.

The formula for mean absolute error (MAE) is given by:

MAE =
1
N ∑N

n=1|Rn − Pn| (25)

The formula for root mean square error (RMSE) is given by:

RMSE =

√
1
N ∑N

n=1(Rn − Pn)
2 (26)

The formula for symmetric mean absolute percentage error (SMAPE) is given by:

SMAPE =
100%

N ∑N
n=1

|Rn − Pn|
(|Rn|+|Pn|)/2

(27)

The formula for accuracy (Accuracy) is given by:

Accuracy =

(
1 − 100% × |Rn − Pn|

Rn

)
(28)

Because lower values of mean absolute error, root mean square error, and symmet-
ric mean absolute percentage error indicate better model performance, and higher val-
ues of accuracy indicate better model performance, this research uses the reciprocals
of the MAE, RMSE, SMAPE, and accuracy derived from the Least Absolute Shrinkage
and Selection Operator (LASSO), Long Short-Term Memory model (LSTM), and Random
Forest Regression (RFR) algorithms as follows: wij, where, i ∈ {LASSO, LSTM, RFR},
j ∈ {MAE, RMSE, SMAPE, ACCUARCY}.

Therefore, the hybrid weight of algorithm i ∈ {LASSO, LSTM, RFR} can be defined
as Wi:

Wi =
∑j wij

−1

∑i ∑j wij
−1 (29)

According to Formulas (13), (20), (24) and (29), the prediction model proposed in this
paper can be expressed as follows:

Y = WLASSOYLASSO + WLSTMYLSTM + WRFRYRFR = WLASSOLASSO(Xtest) + WLSTM LSTM(Xtest) + WRFRRFR(Xtest) (30)

By integrating the LASSO, LSTM, and Random Forest algorithms, this study is able
to fully leverage the strengths of each algorithm, compensate for the deficiencies of single
models under specific conditions, and enhance the comprehensiveness and robustness of
the forecasts. The adoption of a dynamic weight adjustment strategy allows for flexible
adjustments to each algorithm based on the performance of different forecasting indicators,
improving the model’s adaptability to various aspects. The use of dual sliding windows
makes the model more sensitive to the diversity and complexity of carbon price changes,
more accurately capturing the dynamic characteristics of the market. By considering
multiple performance indicators, including MAE, RMSE, SMAPE, and Accuracy, a compre-
hensive evaluation of the algorithms is conducted to ensure that the model achieves good
predictive results in all aspects.
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3. Results
3.1. Example Selection

This study primarily utilizes carbon price data from the National Carbon Market
(China). Predicting carbon prices is a complex process influenced by various factors. To
more accurately predict carbon prices, we need to consider a series of relevant market
indicators. Given that changes in carbon prices are closely related to the energy and financial
markets, we must take these into account. The supply–demand relationship and price
fluctuations in the energy market directly impact the demand for carbon emissions rights
and investment decisions, thereby affecting carbon prices. Simultaneously, the financial
market significantly influences carbon prices through financial innovation, capital flows,
and policy and regulatory measures. Therefore, when predicting and analyzing carbon
prices (Z0), it is essential to comprehensively consider various factors from both markets.

The financial market indicators include the Shanghai Stock Exchange Composite Index
(Z1), the midpoints of the USD to CNY (Z2) and EUR to CNY (Z3) exchange rates, and the
China Enterprise Commodity Price Index (Z4). These indicators reflect the performance
of the domestic stock market, exchange rate changes, and commodity price fluctuations,
which impact the carbon market’s capital flows, investor sentiment, and supply–demand
relationship. The energy market indicators include the closing price of crude oil futures
(Z5), the price of liquefied natural gas (Z6), the price of industrial natural gas (Z7), and the
Bohai Rim Steam Coal Price Index (Z8). The fluctuations in these energy prices directly
or indirectly affect the supply–demand relationship and pricing in the carbon market, as
shown in Table 1.

In carbon price forecasting, the theoretical output results typically manifest as pre-
dicted carbon prices at a future point in time (such as the next day), and the model’s
training process aims to align these predictions as closely as possible with actual observed
values. The form of the output results can be flexible, either as a single day’s forecast or as
a series of predicted values for future points in time, depending on the design of the model
and specific requirements of the task. The expected accuracy of the forecasts is influenced
by several factors, including the chosen model, the volume of training, data quality, and
the complexity of the problem. Common metrics used to measure model performance
include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Symmetric Mean
Absolute Percentage Error (SMAPE), and accuracy. A comprehensive consideration of these
indicators helps to assess the overall performance of the model and improve the accuracy
of future carbon price changes.

The model and related procedures defined in this study allow for the training and
prediction time series length to be set according to real-world conditions. For simplicity, this
study selected an example using 5 days’ worth of data (a working week) as input, aimed at
predicting the carbon price for the next day. The input data include carbon price data from
the past 5 days, as well as other energy and financial market indicator factors. Regarding
the output data, this report predicts the carbon price for the next day. The selection of this
example is well justified. Firstly, using a shorter range of data can more sensitively reflect
the short-term fluctuations in carbon prices, thus testing the model’s ability to capture
market dynamics. Secondly, predicting the carbon price for the next day is a common task
in practical scenarios and a focus of interest for investors and decision-makers; thus, it is
representative of practical applications. Finally, the example includes multiple influencing
factors, allowing the model to make predictions in more complex situations and verifying
its robustness under the influence of multiple factors.

The object of the trial calculation’s verification is to compare the model’s predicted car-
bon price for the next day with the actual observed data. By comparing with actual data, the
accuracy and reliability of the model in this short-term prediction task can be assessed. This
verification object directly relates to the algorithm’s effectiveness in real-market applica-
tions, providing strong support for the model’s practicality. By choosing this example, this
study aims to demonstrate the application effect of the carbon price prediction algorithm
in real scenarios and provide a solid basis for validating the model’s performance.
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Furthermore, to more comprehensively demonstrate the advantages of the proposed
forecasting model, this study selected a complete dataset spanning from 4 January 2022 to
30 December 2023 for step-by-step prediction validation. The choice of such an extended
time span aims to thoroughly evaluate the model’s adaptability to different seasons, cycles,
and external factors, verifying its stability and robustness in long-term forecasting tasks.
Through step-by-step prediction validation using the full-year data, this study can more
comprehensively assess the model’s ability to capture carbon price fluctuations, further
validating its feasibility and practicality in real market environments. This also helps reveal
the model’s performance in long-term forecasting, providing decision-makers with more
reliable market trend references.

To determine the optimal exogenous parameter settings in the proposed model, this
study employed the GridSearchCV method, which optimizes model parameters by travers-
ing a given parameter grid, in conjunction with cross-validation to identify the best param-
eter combinations. Specifically, we set a fine parameter grid ranging from 0 to 1 with an
interval of 0.01 for the key parameter (regularization parameter) of the LASSO model. For
the LSTM model, detailed parameter grids were set for the training batch size ([32, 64, 128]),
the number of network layers ([1, 2, 3, 4]), and the number of neurons ([20, 40, 60, 80, 100,
120]). For the Random Forest model, we meticulously set parameter grids for the number
of decision trees ([100, 200, 300]) and the maximum depth of each tree ([None, 10, 20, 30]).

Ultimately, through rigorous cross-validation, we selected the best-performing param-
eter combinations: the regularization parameter for the LASSO model was set at 0.1; the
LSTM network structure was determined to be 3 layers with 100 hidden layer neurons; and
the Random Forest model was set with 100 decision trees, each with a depth of 20. These
key exogenous parameter settings provide strong support for the accuracy and reliability
of the model in this study.

3.2. Results Analysis

To verify the predictive accuracy of the trial calculation example and to assess whether
the hybrid algorithm offers an advantage, we can calculate four predictive accuracy indica-
tors (RMSE, MAE, SMAPE, Accuracy) and make comparisons, as shown in Figure 1.
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Figure 1 presents four evaluation metrics of the hybrid algorithm in carbon price
prediction: RMSE, MAE, SMAPE, and Accuracy. The blue line represents RMSE, the orange
line represents MAE, the yellow line represents SMAPE, and the green line represents
Accuracy (right Y-axis). As shown in the figure, the maximum values of RMSE and MAE
are 6.1242 CNY/ton and 5.1882 CNY/ton, respectively. For most of the time, they remain
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below 1, with minimum values reaching 0.2352 CNY/ton and 0.2071 CNY/ton, indicating
that the prediction error of the model is relatively small. The maximum value of SMAPE is
6.8337%, but it stays below 2 for most of the time, also indicating a relatively small error.
The minimum value of Accuracy is 92.33%, and it remains above 95% for most of the time,
indicating a high prediction accuracy of the model. Overall, these metrics demonstrate the
effectiveness and reliability of the proposed hybrid algorithm in carbon price prediction.

Before proceeding with the comparative analysis, it is necessary to understand the
range or standards of the indicators predetermined by the research objectives. Generally,
lower values of RMSE, MAE, and SMAPE, along with a higher Accuracy value, indicate
better predictive accuracy. We can initially compare the performance of the hybrid algo-
rithm against three separate algorithms on these indicators to verify whether the hybrid
algorithm has advantages across multiple metrics. The comparison between the prediction
results and the original data is shown in Figure 2.
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Figure 2 shows the comparison between actual carbon prices and predicted carbon
prices. The blue line represents actual carbon prices (CNY/ton), and the orange line
represents the carbon prices predicted by the proposed algorithm (CNY/ton). The actual
carbon prices underwent several significant phases from January 2022 to December 2023:
slight fluctuations in early 2022, but generally stable between 55 and 60 CNY/ton; relatively
stable from mid-2022 to early 2023, maintaining the same range of 55–60 CNY/ton; an
upward trend from early 2023 to mid-2023, peaking at over 80 CNY/ton in mid-2023; and
significant volatility from mid-2023 to the end of 2023, with a sharp decline followed by
a recovery, stabilizing between 70 and 80 CNY/ton. The predicted carbon prices closely
align with the actual prices. Overall, the proposed algorithm performs well in predicting
carbon prices. Although there are slight delays or deviations in some periods, the overall
trend is consistent with the actual prices. Especially in early 2022 and early 2023, the
prediction results closely match the actual results. During periods of significant price
volatility, the predictions still accurately reflect the actual price trends, demonstrating the
model’s effectiveness and high prediction accuracy.

This study’s predictions perform generally well as the model successfully captures
the overall fluctuation trend of carbon prices and achieves satisfactory predictive accuracy
on many dates. Facing various complex market scenarios, the model demonstrates strong
adaptability and successfully predicts changes in carbon prices. These results indicate that
the hybrid forecasting algorithm in this study possesses high accuracy and robustness in
predicting carbon prices, meeting the predetermined indicators of the research objectives
and providing reliable decision support for handling uncertainties in the carbon market.
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Despite significant progress in carbon price prediction, we must acknowledge the
presence of some anomalies that were not predicted. These anomalies may be influenced by
various unexpected events, policy adjustments, or other unpredictable factors, contributing
to market volatility uncertainties. While adjusting model parameters can increase sensitivity
to outliers, this often comes at the expense of overall predictive accuracy. Tuning the model
to better capture outliers might make it more sensitive to noise or short-term fluctuations,
thereby reducing its ability to accurately capture overall trends. When balancing the
model’s sensitivity and stability, we need to weigh the response to outliers against the
grasp of overall market trends.

Although the presence of unpredicted outliers does not affect the model’s reliability in
general situations, we recommend integrating the model’s outputs with other market anal-
ysis tools in practical applications to fully understand the dynamics of the carbon market.
Additionally, regularly monitoring model performance and making necessary adjustments
based on market changes are key to maintaining the model’s accuracy and robustness.

Overall, the hybrid forecasting algorithm in this study demonstrates a relatively high
level of accuracy and robustness in predicting carbon prices, providing decision-makers
with a reliable decision support tool. However, we must remain cautious in using the
model, recognize the presence of outliers, and adjust the model flexibly to adapt to dynamic
market changes.

4. Comparison of Algorithmic Advantages
4.1. Logical Advantages

The carbon price forecasting algorithm developed in this study demonstrates several
advantages in its logical design. First, it adopts a comprehensive algorithmic architecture
that integrates various mature forecasting algorithms such as Lasso, LSTM, and RFR,
making full use of their strengths in time series data analysis, feature capture, and nonlinear
relationship modeling. Secondly, by introducing a dynamic weight mixing strategy, it
flexibly adjusts the weights of each algorithm, thus better adapting to the dynamic changes
in the carbon market. Most notably, the use of a dual sliding window enhances the model’s
sensitivity to changes in carbon prices, enabling it to better adapt to the instantaneous
fluctuations and long-term trends of the market.

4.2. Performance Advantages

In our comparative analysis, we conducted a comprehensive evaluation of the inde-
pendent applications of the Lasso, LSTM, and RFR algorithms against the dynamic weight
mixing forecast model proposed in this paper. The results from Table 2 clearly show that
the dynamic weight mixing forecast model in this study significantly outperforms the other
forecasting algorithms when applied independently in terms of various evaluation metrics
and overall accuracy.

Table 2. Comparative analysis.

Algorithm Names RMSE
(CNY/ton)

MAE
(CNY/ton)

SMAPE
(%)

Accuracy
(%)

Lasso Algorithm 3.3767 1.983 3.00855 91.94%
LSTM Algorithm 2.2301 1.2754 1.9516 97.11%
RFR Algorithm 2.36218 1.3016 1.96005 97.31%

ARIMA 2.3696 1.909 2.878 91.29%
Exponential Smoothing Algorithm 2.4243 1.9522 2.9515 91.14%

The proposed algorithm 1.5882 1.35423 2.049 97.64%

Specifically, the Lasso algorithm’s RMSE (3.3767), MAE (1.983), and SMAPE (3.00855)
values are relatively high, with an accuracy of only 91.94%. In contrast, the LSTM algorithm
and RFR algorithm perform better on these metrics, but still not as well as the hybrid model
developed in this study. The Autoregressive Integrated Moving Average (ARIMA) model
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and Exponential Smoothing algorithm perform even worse on these metrics, as shown in
Figure 3.
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The LSTM algorithm shows shortcomings in handling sudden changes in carbon
prices, as evidenced by its poor performance during the sudden price drop in November
2023 and the sudden price rise in December 2023. The Lasso algorithm also lacks in
capturing price volatility. The RFR algorithm sometimes fails to accurately capture changes
in carbon prices; for example, when actual prices were rising in October 2023, the algorithm
predicted a downward trend. Both the ARIMA model and the Exponential Smoothing
algorithm can capture overall trends in carbon prices, but they fall short in addressing
short-term price fluctuations.

The dynamic weighted hybrid prediction model proposed in this paper achieves
RMSE, MAE, and SMAPE values of 1.5882, 1.35423, and 2.049, respectively, with an accuracy
of 97.64%. This indicates that our model significantly surpasses traditional algorithms in
terms of accuracy and robustness in carbon price prediction. By leveraging the strengths
of the Lasso, LSTM, and RFR algorithms through a dynamic weighting strategy, our
model provides more realistic predictions, offering more reliable decision support for
carbon market participants. This significant performance improvement demonstrates the
effectiveness and superiority of the hybrid prediction strategy adopted in this study.

In order to more comprehensively evaluate the performance of the model, we used
a method of gradually eliminating indicators and carefully observed the changes in the
prediction results of indicators such as mean absolute error (MAE), root mean square error
(RMSE), symmetrical mean absolute percentage error (SMAPE), and accuracy. This allowed
us to more accurately grasp the impact of each indicator on the prediction results.

In Table 2, we learn that the algorithm model proposed in this article has scores
of 1.5882, 1.35423, 2.049, and 97.64% in terms of RMSE, MAE, SMAPE, and accuracy,
respectively. In Table 3, we show the changes in the model’s RMSE after removing each
metric. The “−” sign indicates a decrease in the corresponding value compared to the
above scores, while the “+” sign indicates an increase in the corresponding value compared
to the above scores.
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Table 3. Analysis of influencing factors.

Excluded
Indicators

RMSE
(CNY/ton)

MAE
(CNY/ton)

SMAPE
(%)

Accuracy
(%)

Z1 +0.030256 +0.049426 +0.086384 −0.05973
Z2 +0.00529 +0.004948 +0.026189 −0.01317
Z3 +0.05739 +0.05374 +0.06414 −0.008354
Z4 +0.07542 −0.06647 +0.07692 −0.001763
Z5 +0.04562 +0.03691 −0.04131 −0.047854
Z6 +0.062752 +0.063913 +0.111424 −0.11018
Z7 +0.04613 −0.03466 +0.04591 −0.054055
Z8 +0.02987 +0.02466 −0.02377 −0.010903

From the analysis results of Table 3, it is evident that price indicators have significant
economic and managerial implications for the carbon market. Specifically, the price of
liquefied natural gas (Z6) has the greatest impact on carbon price changes, as indicated by
an increase in RMSE by 0.062752, in MAE by 0.063991, and in SMAPE by 0.111424, and a
decrease in accuracy by 0.110185. This suggests that the price of liquefied natural gas is one
of the most critical variables in carbon market pricing. Managers should closely monitor
the fluctuations in the liquefied natural gas market and its impact on carbon prices, and
develop corresponding risk management strategies. Conversely, the USD to CNY exchange
rate midpoints (Z2) have the least impact, with RMSE increasing by only 0.00529, MAE by
0.004948, and SMAPE by 0.026189, and accuracy decreasing by 0.01317. This indicates that
exchange rate fluctuations have a relatively minor impact on carbon market prices. When
formulating carbon market policies and conducting market forecasts, less attention can
be given to exchange rate changes, allowing more resources to be allocated to monitoring
and analyzing energy prices, especially the price of liquefied natural gas, to improve the
accuracy of prediction models and the effectiveness of management decisions.

4.3. Other Advantages

Beyond performance improvements, the algorithms in this study also possess other
significant advantages. First, the algorithm fully utilizes information from different algo-
rithms during the training phase and effectively avoids the limitations of a single algorithm
under specific conditions through dynamic weight mixing. Secondly, detailed analysis
of influencing factors and data preprocessing enable the algorithm to better adapt to the
complexities of the carbon market, enhancing the adaptability of the model. Overall, the
advantages of the algorithms in this study lie not only in their outstanding performance but
also in their comprehensive consideration of multiple factors in their design, making them
more practical and reliable. This provides decision-makers with a more comprehensive
reference for carbon market trends, holding significant value for practical applications.

5. Conclusions

This study is dedicated to developing a superior carbon price forecasting algorithm
by integrating traditional methods (such as Lasso, LSTM, and RFR) with a dynamic weight
hybrid strategy. The goal is to comprehensively and accurately grasp the future trends
of the carbon market. Through an in-depth analysis of factors influencing the carbon
market, meticulous data preprocessing, and extensive validation, this research has achieved
significant results. Comparative analysis reveals that the proposed dynamic weight hybrid
forecasting model significantly outperforms traditional algorithms in various evaluation
metrics (RMSE, MAE, and SMAPE) and overall accuracy. It performs exceptionally well in
handling sudden changes in carbon prices and short-term price fluctuations, as shown in
Figures 2 and 3.

The scientific novelty of this research lies in the innovative integration of multiple
algorithms through a dynamic weighting approach, which harnesses the strengths of each
method to deliver superior predictive performance. This novel hybrid model provides a
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more nuanced and accurate understanding of carbon market dynamics, demonstrating its
practical significance in offering reliable decision support to market participants.

However, it is worth noting that the integration of multiple algorithms to enhance
predictive performance may increase the computational complexity of the model, leading
to an extended runtime. Despite the thorough analysis of the carbon market’s influencing
factors, this study may not have comprehensively covered all key elements. Given the
continuous development of the carbon market and the evolving policy environment, new
influencing factors are bound to emerge.

Further improvement in the carbon price forecasting algorithm needs to ensure the
adaptation of this algorithm to the ever-changing market environment. For this, it is
necessary to solve the following main tasks:

(1) Incorporate more factors: Include additional influencing factors in the model, such
as social factors and policy changes. These factors can significantly impact carbon
market dynamics, and their inclusion can enhance the model’s comprehensiveness
and predictive capability.

(2) Research more complex algorithm structures and deep learning models: Conduct
in-depth research and application of more complex algorithm structures and deep
learning models. This will help to more accurately capture the nonlinear and time-
varying characteristics of the carbon market, thereby improving prediction accuracy.

(3) Balance model prediction accuracy and computational efficiency: Carefully balance
model prediction accuracy and computational efficiency during development. By op-
timizing algorithm combinations and reasonably allocating computational resources,
we can find the optimal balance between performance and efficiency, thereby enhanc-
ing the model’s practical value.

(4) Expand the dataset and improve data quality: Further expand the scope of the dataset
and improve data quality. High-quality and diverse data will enhance the model’s
stability and generalization ability, ensuring good predictive performance under
different market conditions.
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Appendix A

The relevant data sources used in this article are as follows:

(1) Data is contained within the article.
(2) Carbon price data source: http://www.tanjiaoyi.com/ (accessed on 22 May 2024);
(3) Shanghai Stock Exchange Composite Stock Price Index data source: https://finance.

sina.com.cn/realstock/company/sh000001/nc.shtml (accessed on 22 May 2024);

http://www.tanjiaoyi.com/
https://finance.sina.com.cn/realstock/company/sh000001/nc.shtml
https://finance.sina.com.cn/realstock/company/sh000001/nc.shtml
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(4) USD/CNY midpoint exchange rate and EUR/CNY midpoint exchange rate: https:
//www.safe.gov.cn/safe/rmbhlzjj/index.html (accessed on 21 May 2024);

(5) China Enterprise Commodity Price Index: http://data.eastmoney.com/cjsj/qyspjg.
html (accessed on 21 May 2024);

(6) Crude oil futures closing price: https://www.ine.cn/ (accessed on 19 May 2024);
(7) Liquefied natural gas: https://www.sci99.com/ (accessed on 21 May 2024);
(8) Natural gas (industrial): https://oil.oilchem.net/ (accessed on 21 May 2024);
(9) Bohai Rim thermal coal price index: http://www.cqcoal.com/ (accessed on 22 May 2024).

The above data can also be requested from the author.
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