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Abstract: Tinea cruris, a dermatophyte fungal infection predominantly caused by Trichophyton rubrum
and Epidermophyton floccosum, primarily affects the groin, pubic region, and adjacent thigh. Its recur-
rence is frequent, attributable to repeated fungal infections in susceptible individuals, especially those
with onychomycosis or tinea pedis, which act as reservoirs for dermatophytes. Given the persistent
nature of tinea cruris, vaccination emerges as a promising strategy for fungal infection management,
offering targeted, durable protection against various fungal species. Vaccines stimulate both humoral
and cell-mediated immunity and are administered prophylactically to prevent infections while min-
imizing the risk of antifungal resistance development. Developing fungal vaccines is challenging
due to the thick fungal cell wall, similarities between fungal and human cells, antigenic variation,
and evolutionary resemblance to animals, complicating non-toxic target identification and T-cell
response variability. No prior research has shown an mRNA vaccine for T. rubrum. Hence, this study
proposes a novel mRNA-based vaccine for tinea cruris, potentially offering long-term immunity
and reducing reliance on antifungal medications. This study explores the complete proteome of
T. rubrum, identifying potential protein candidates for vaccine development through reverse vacci-
nology. Immunogenic epitopes from these candidates were mapped and integrated into multitope
vaccines and reverse translated to construct mRNA vaccines. Then, the mRNA was translated and
computationally assessed for physicochemical, chemical, and immunological attributes. Notably,
1,3-beta-glucanosyltransferase, CFEM domain-containing protein, cell wall galactomannoprotein, and
LysM domain-containing protein emerged as promising vaccine targets. Antigenic, immunogenic,
non-toxic, and non-allergenic cytotoxic T lymphocyte, helper T lymphocyte, and B lymphocyte
epitopes were selected and linked with appropriate linkers and Toll-like receptor (TLR) agonist adju-
vants to formulate vaccine candidates targeting T. rubrum. The protein-based vaccines underwent
reverse translation to construct the mRNA vaccines, which, after inoculation, were translated again
by host ribosomes to work as potential components for triggering the immune response. After that,
molecular docking, normal mode analysis, and molecular dynamic simulation confirmed strong
binding affinities and stable complexes between vaccines and TLR receptors. Furthermore, immune
simulations of vaccines with and without adjuvant demonstrated activation of immune responses,
evidenced by elevated levels of IgG1, IgG2, IgM antibodies, cytokines, and interleukins. There was
no significant change in antibody production between vaccines with and without adjuvants, but
adjuvants are crucial for activating the innate immune response via TLRs. Although mRNA vaccines
hold promise against fungal infections, further research is essential to assess their safety and efficacy.
Experimental validation is crucial for evaluating their immunogenicity, effectiveness, and safety.

Keywords: mRNA-based vaccine; Trichophyton rubrum; tinea cruris; bioinformatics

1. Introduction

Tinea cruris, also known as jock itch, is a dermatophyte fungal infection, most com-
monly caused by Trichophyton rubrum and Epidermophyton floccosum, that primarily affects
the groin, pubic region, and adjacent thigh. Dermatophytes target keratinized tissues,
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including hair and the stratum corneum of the epidermis, leading to the manifestation of a
distinct rash. Regions of skin overlap (intertriginous areas) provide conducive conditions
for fungal colonization, facilitated by factors such as perspiration, moisture accumulation
(maceration), and an alkaline pH, contributing to the heightened susceptibility of the groin
region to fungal infections [1–3]. The infection is transmitted through fomites such as
contaminated towels or hotel bedroom sheets or by autoinoculation from a reservoir on the
hands or feet. The primary complications of tinea cruris are treatment failure and recur-
rence. These may occur due to several factors, including reinfection from close contacts,
self-infection from other parts of the body, infection by less common fungal species, incor-
rect diagnosis, medication resistance, and failure to follow the prescribed treatment plan.
Recurrence is common, as fungi may repeatedly infect susceptible individuals or those
with onychomycosis or tinea pedis, which can serve as a dermatophyte reservoir [4–7].

The prevalence of tinea cruris is estimated to be around 20–25% of the general pop-
ulation globally. However, the prevalence can be higher in specific populations, such as
athletes and individuals with lower socioeconomic status, diabetes mellitus, and improper
hygiene, in certain conditions, such as high temperatures, increased humidity, excessive
perspiration, and occlusive clothing, and in immunocompromised individuals. In addition,
genetic factors can increase an individual’s susceptibility to dermatophytes [8,9]. In the
United States, there have been approximately 29.4 million cases of superficial fungal in-
fections (SFIs) and more than 51 million reported physician visits for such conditions [10].
Similarly, tinea corporis and tinea cruris (53.4%; 1682/3152) are Northern China’s most
prevalent types of SFIs [11]. In a study conducted in Chitradurga, India, the prevalence of
tinea cruris was 25% in the rural population. The study also found that tinea cruris was
more prevalent in males (70%) than in females (30%) [12]. Tinea cruris is more common in
men than women and affects adults more frequently than children [13].

The treatment options for tinea cruris include topical and systemic antifungal medica-
tions. Topical antifungal agents, such as clotrimazole, miconazole, terbinafine, and naftifine,
are often used for localized infections [9,14–17]. These agents disrupt ergosterol synthesis,
destabilizing fungal cell membranes and leading to cell death. Due to their clinical effi-
cacy, topical azoles and allylamines are highly effective against localized infections. Oral
antifungal medications (e.g., terbinafine, itraconazole, griseofulvin, or fluconazole) may be
prescribed for severe or extensive infections. These agents target the fungal cell membrane
or inhibit ergosterol synthesis, leading to cell death [18,19]. In addition to antifungal medi-
cations, good hygiene practices, such as wearing loose-fitting clothing made of cotton or
moisture-wicking materials, washing affected skin areas daily, drying thoroughly, avoiding
scratching, and washing clothes and bed linen frequently, are essential for preventing the
spread of the infection and reducing the risk of recurrence [9]. In addition to traditional
antifungal treatments, novel therapies like green biosynthesized silver nanoparticles using
Achillea santolina extract have shown promise in treating dermatophytosis caused by
T. rubrum. These nanoparticles have demonstrated significant antifungal activity against
T. rubrum, inhibiting its growth and causing damage to fungal structures. This alternative
therapy offers a potential treatment option with lower side effects compared to traditional
antifungal drugs [20].

Due to the recurrence of tinea cruris, vaccines are beneficial for the treatment of fungal
infections because they offer a more targeted, long-lasting, broad-range protection against
multiple fungal species. They stimulate both humoral and cell-mediated immunity, are
administered prophylactically to prevent fungal infections, and, most importantly, are
less likely to lead to the development of antifungal resistance. This method contrasts
with antifungal drugs, which typically target specific components of the fungal cell and
can have side effects due to their broad-spectrum activity [21–26]. Literature indicates
the promising recombinant subunit vaccines (NDV-3A for Candida [27]), peptide-based
vaccines (a vaccine using peptide 10 (P-10) for Paracoccidioidomycosis [28]), antibody-
based vaccines (monoclonal Mab28 antibodies against β-glucan particles [29]), and mRNA-
based vaccines [21] for fungi. Although no fungal infection vaccine has been approved,
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two are undergoing clinical trials, with three reaching human clinical trials [30,31]. Science
must overcome significant challenges before fungal vaccines can be licensed for human
use. Clinical trials investigating adjuvant immunotherapies, with or without antifungal
combinations, are crucial for further assessment [32].

Based on the literature search, there is no direct evidence of a vaccine being used as
a treatment for T. rubrum. The search results mainly discuss the treatment of T. rubrum
infections with antifungal medications such as terbinafine and itraconazole. However,
the vaccine strain T. mentagrophytes F-01 has been developed and is 100% ready for mass
production and sale. This vaccine strain and others like T. verrucosum F-02 are used to
produce vaccines against Trichophyton infections in agricultural and carnivorous animals.
The vaccine is administered twice at intervals of 14 days in a preventive dose to prevent the
incidence of cattle Trichophyton infection. The highly immunogenic strain T. mentagrophytes
F-01 is used to manufacture biological drugs against bovine dermatophytosis [33]. A
living polyvalent vaccine has been developed to protect guinea pigs against challenge
infection with virulent strains of dermatophytes, including T. rubrum [34]. Another study
from the University of Georgia has developed a new vaccine that targets the three most
common causes of fungal infections: Aspergillus, Candida, and Pneumocystis. The vaccine
has shown broad, cross-protective antifungal immunity in animal models, making it a
promising candidate for future clinical trials [35,36].

Developing antifungal vaccines presents several challenges, including the complexity
and diversity of fungal pathogens, the lack of understanding of the immune response to
fungal infections, and the high vaccine development and commercialization cost. However,
bioinformatics approaches can help address some of these challenges by enabling the
identification of potential vaccine targets based on the genomic sequence of the pathogen,
predicting the immune response, and optimizing vaccine design. Despite these advances,
there are still several challenges to overcome in the development of antifungal vaccines,
including the need for better adjuvants and delivery systems, more effective and efficient
vaccine production methods, and more clinical trials to evaluate the safety and efficacy of
antifungal vaccines [25,37–39]. The emergence of new infectious diseases drives the need for
innovative vaccine design strategies. Traditional methods, requiring pathogen cultivation
and antigen identification, are time-consuming and expensive [40]. Reverse vaccinol-
ogy, i.e., utilizing bioinformatics to identify antigens from genome sequences, accelerates
vaccine development, particularly for multi-epitope vaccines. These vaccines, offering
specificity, safety, and dual immune response induction, may benefit from protein-based
adjuvants to enhance immunogenicity [41–47]. mRNA vaccines represent an innovative
platform for expedited, safe, and tailored vaccine development against infectious diseases,
encompassing viral outbreaks and emerging pathogens. Their significance stems from the
capacity to utilize cellular machinery for antigen production devoid of infectious agents
and genomic integration, eliciting robust humoral and cellular immune responses. This
strategy affords multiple advantages over conventional vaccine platforms [48–50]. How-
ever, developing mRNA vaccines, while promising, requires further scientific evidence
to ensure their efficacy and safety. Although recent successes have highlighted the po-
tential of mRNA technology, these platforms are currently in stage II clinical trials and
have not yet achieved full commercialization. This shortcoming underscores the necessity
for continued rigorous testing and validation to address regulatory and manufacturing
challenges and gain comprehensive scientific and regulatory confidence in mRNA vaccine
platforms [48,51–53].

The development of vaccines against fungi is fraught with significant challenges, as
highlighted extensively in the literature. One major hurdle is the thick cell wall of fungi,
which impedes the penetration and accessibility of fungal antigens. Furthermore, the
similarities between fungal and human cells complicate the identification of non-toxic
drug targets. Additionally, antigenic variation within and between fungal species presents
another layer of complexity. The evolutionary resemblance between the Fungi and Animalia
kingdoms further complicates vaccine development. Moreover, the effectiveness of T-cell
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responses to fungal antigens may vary depending on the individual’s HLA haplotype.
These factors underscore the intricate and multifaceted nature of developing effective and
safe fungal vaccines [54–57]. No prior research has provided direct evidence of an mRNA-
based vaccine specifically targeting T. rubrum for human use. While mRNA vaccines have
garnered significant attention recently, especially for viral infections, their application
to fungal pathogens, including T. rubrum, has not yet been investigated. An mRNA
vaccine represents a promising alternative, potentially offering long-term immunity and
reducing reliance on antifungal medications, often associated with side effects and the
risk of resistance [58,59]. This study is the first to propose and design an mRNA-based
vaccine to control tinea cruris caused by T. rubrum, presenting a novel preventive and
therapeutic approach. This study first explores the entire proteome of T. rubrum and
identifies promising potential protein candidates for vaccines. Subsequently, immunogenic
epitopes derived from these candidates will be identified and compiled to design multitope
vaccines via reverse vaccinology. Computational assessments will evaluate these vaccines’
physicochemical, chemical, and immunological attributes to identify a potential vaccine
candidate for combating pathogenic T. rubrum and controlling tinea cruris.

2. Materials and Methods
2.1. Proteome Subtraction

Two reference proteomes of T. rubrum (UP000243015 and UP000008864) are available
in the UniProt Proteome database. We selected the proteome with the highest number
of coding protein sequences among these. Specifically, we utilized the T. rubrum strain
ATCC MYA-4607/CBS 118892, corresponding to UniProt Proteome identifier UP000008864,
which contains 10,006 coding protein sequences. Subsequently, membrane proteins were
isolated from the T. rubrum proteome, and their antigenicity was assessed by employing the
VaxiJen v2.0 server [60] (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html,
accessed on 30 May 2024) with a threshold of 0.5. Next, the DeepLoc 2.0 server [61]
(https://services.healthtech.dtu.dk/services/DeepLoc-2.0/, accessed on 30 May 2024) was
utilized to localize extracellular membrane proteins, which were further scrutinized for hu-
man homologs against the human proteome on NCBI using BLASTp; those sharing ≥35%
identity were eliminated from consideration. The proteomic dataset of T. rubrum contains
both redundant and non-redundant proteins. Redundant proteins, which may appear multi-
ple times in the whole proteome, are less significant as strong vaccine candidates. Therefore,
overlapping, duplicated, and unnecessary protein sequence entries were eliminated using
the high-tolerance CD-HIT clustering database (http://weizhong-lab.ucsd.edu/cdhit-web-
server/cgi-bin/index.cgi?cmd=cd-hit, accessed on 30 May 2024) to refine the selection of
non-redundant immunogenic proteins [62,63]. Checking for the presence of transmem-
brane helices and estimation of protein molecular weights were conducted using TMHMM
2.0 [64] (https://services.healthtech.dtu.dk/services/TMHMM-2.0/, accessed on 30 May
2024) and Expasy tools [65] (https://web.expasy.org/protparam/, accessed on 30 May
2024), respectively. Proteins with a molecular weight <110 kDa and possessing ≤1 trans-
membrane helix were chosen for further evaluation [66,67]. Finally, conserved sequences
among sorted proteins across various species within the genus Trichophyton were identified
through BLASTP analysis and Multiple Sequence Alignment, ensuring that the designed
chimeric vaccines exhibit cross-reactivity against pathogenic Trichophyton species.

2.2. Physiochemical Properties

The ExPASy-ProtParam and EMBOSS-PEPSTATS online webservers [68,69] calculated
the physiochemical properties of the sorted proteins of T. rubrum to understand their
biological functions, stability, structure, and interactions with other molecules. ExPASy-
ProtParam calculates different physical and chemical parameters for protein sequences,
including theoretical isoelectric point (pI), molecular weight in Dalton (Da), extinction
coefficients, grand average of hydropathicity, aliphatic index, instability index, positively
and negatively charged residues, and estimated half-life. SoluProt [70] was employed to

http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://services.healthtech.dtu.dk/services/DeepLoc-2.0/
http://weizhong-lab.ucsd.edu/cdhit-web-server/cgi-bin/index.cgi?cmd=cd-hit
http://weizhong-lab.ucsd.edu/cdhit-web-server/cgi-bin/index.cgi?cmd=cd-hit
https://services.healthtech.dtu.dk/services/TMHMM-2.0/
https://web.expasy.org/protparam/
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predict the soluble protein expression in E. coli, where a solubility score above 0.5 indicates
soluble expression, while a score below 0.5 indicates insoluble expression. EMBOSS-
PEPSTATS calculates the absorption coefficients of protein in both reduced and cystine
bridge form, isoelectric point, and probability of expression in inclusion bodies.

2.3. Profiling of T Cell and B Cell Epitopes and Features

The IEDB bioinformatics database tool [71] was employed to predict T and B cell (LBL)
epitopes. Various prediction methods were utilized, including Ab initio, homology-based,
LBL epitope, T cell epitope, and structure-based prediction.

2.3.1. CTL Binding Epitope Screening and Profiling

We employed the NetMHCpan EL 4.1 method [72] in cytotoxic T lymphocyte (CTL)
binding epitope prediction server to forecast conserved CTL binding epitopes within
sorted protein sequences of T. rubrum. Each predicted CTL epitope was further confirmed
and identified for antigen-binding regions using the ProPred-I online server [73]. These
epitopes were then assessed for antigenicity, toxicity, immunogenicity, and allergenicity
using VaxiJen v2.0, ToxinPred2 [74], immunogenicity [75], and AllerTOP v2.0 [76] servers.

2.3.2. HTL Binding Epitope Screening and Profiling

The study predicted conserved helper T lymphocyte (HTL) binding epitopes within
sorted proteins of T. rubrum using the IEDB recommended 2.22 method in the HTL binding
prediction server [71]. All the predicted HTL binding epitopes were further confirmed using
the ProPred online server [77]. Each epitope underwent assessment for allergenicity, anti-
genicity, IL10 inducing epitopes, IFN (Interferon)-Gamma inducing epitopes, interleukin
(IL)-4 inducing epitopes, and toxicity through AllerTOP v2.0, VaxiJen v2.0, IL-10Pred [78],
INFepitope [79], IL4Pred [80], and ToxinPred2, respectively.

2.3.3. LBL Binding Epitope Screening and Profiling

Conserved LBL epitopes within sorted proteins of T. rubrum were forecasted by em-
ploying the BepiPred linear epitope prediction 2.0 method [81] in the antibody epitope pre-
diction server. All the predicted LBL epitopes were further confirmed using the ABCpred
server, which uses an artificial neural network (ANN) with 65.93% accuracy [82,83]. Subse-
quently, AllerTOP v2.0, ToxinPred2, and VaxiJen v2.0 servers were utilized to anticipate
epitope allergenicity, toxicity, and antigenicity.

2.4. Epitope Conservancy Analysis

The recruited antigenic epitopes’ conservation within sorted proteins of T. rubrum was
confirmed utilizing the Epitope Conservancy Analysis tool [84].

2.5. mRNA-Based Vaccine Construction, Its Structure Prediction and Characterization

The vaccines for sorted proteins of T. rubrum were constituted by linking antigenic
epitopes of CTL, HTL, and LBL and an adjuvant together by AAY, EAAAK GPGPG, and
KK linkers [85–87]. Each vaccine sequence began with a TLR4 agonist RS09 (APPHALS)
adjuvant [88–90] and ended with a 6-His tag [91]. After that, we converted the protein-
based vaccines to optimized mRNA vaccines by following the reported literature [92–95].
For the optimized vaccine expression, including efficient ribosome binding, transcription
termination, and restriction enzyme cleavage sites, we utilized the JCAT online server for
codon optimization [96]. For this purpose, we reverse translated the vaccines’ sequences.
Further, we included 5′ m7GCap (7-methylguanylate cap), 5′ UTR (untranslated region),
Kozak sequence, Signal peptide (tPA: tissue plasminogen activator) EAAAK linker at the
N-terminal and MITD (major histocompatibility complex (MHC) I-targeting domain) se-
quence, stop codon, 3′ UTR, and poly (A) tail at the C-terminal to each vaccine construct.
Subsequently, we employed the RNAfold web server [97–99] to predict the mRNA sec-
ondary structure thermodynamically and calculate the minimal free energy score. For
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the 3D model of the mRNA vaccines, the trRosettaRNA automated online server [100]
(https://yanglab.qd.sdu.edu.cn/trRosettaRNA/, accessed on 30 May 2024) was utilized to
build the models based on de novo folding, guided by deep learning restraints.

mRNA vaccines enter immune cells, producing antigenic proteins that trigger adaptive
immune responses. They also activate innate immunity, stimulate antibody production, and
induce long-term cellular immunity, promising alternatives to traditional vaccines [49,101].
In this respect, each antigenic protein vaccine’s allergenicity, antigenicity, physicochem-
ical characteristics, and toxicity were assessed via the AllerTop 2.0, VaxiJen 2.0, ANTI-
GENpro [102], ExPASy-ProtParam, EMBOSS-PEPSTATS, and Toxinpred2, respectively.
SoluProt [70] was employed to predict the soluble protein expression in E. coli, where a
solubility score above 0.5 indicates soluble expression, while a score below 0.5 indicates
insoluble expression.

2.6. Secondary and Tertiary Structure Prediction, Refinement, and Verification

The secondary structure parameters of T. rubrum antigenic protein vaccine constructs
were determined utilizing SOPMA [103]. The graphical representation was generated
by PSIPRED [104]. Tertiary structure construction employed ColabFold [105], utilizing
AlphaFold2 and Alphafold2-multimer, with sequence templates generated via HHsearch
and MMseqs2. The 3D structures of each vaccine construct underwent refinement using
GalaxyRefine [106], which rebuilds and repacks the amino acid residue side chains to
relax the structure via molecular dynamics (MD) simulation. The refined structures were
subsequently validated using PROCHECK [107], which analyzes residue-by-residue and
overall structure geometry, constructing the Ramachandran Plot.

2.7. Prediction of Continuous and Discontinuous B Cell Epitopes

The IEDB server’s ElliPro tool [108] represented each vaccine construct’s continuous
and discontinuous B cell epitopes.

2.8. Molecular Docking

Immune response against fungus has been reported to be supported by both TLR2
and TLR4 interactions [109–111]. The ClusPro v2.0 web server (https://cluspro.bu.edu/
home.php, accessed on 2 April 2024) was used to dock the TLR2 (PDB ID: 6NIG) and
TLR4 (PDB ID: 4G8A) proteins with the vaccines individually [112–115]. All unnecessary
ligands and heteroatoms were removed from the TLR2 and TLR4 and uploaded to the
ClusPro 2.0 server with all the constructed vaccines as a separated ligand for protein–
protein docking. The highest-ranked model for each docking prediction was retrieved
and evaluated with PRODIGY [116,117] (https://wenmr.science.uu.nl/prodigy/, accessed
on 2 April 2024). PRODIGY assessed the binding affinity, dissociation constant, and the
number of contacts created between the vaccines and both TLR2 and TLR4 receptors at
37 ◦C (protein–protein complexes). Additionally, PDBsum was used to obtain a graphical
illustration with additional features like interface residues with area, salt bridges, hydrogen
bonds, and non-bonded contacts of the interactions between vaccines and receptors [118].

2.9. Normal Mode Analysis

The iMODS online server [119] (http://imods.chaconlab.org/, accessed on 2 April
2024) was employed to determine normal mode analysis (NMA) of collective motion
in internal coordinates and torsional angles and protein flexibility following molecular
docking of the best-docked vaccine–TLR complexes. Essential dynamics were utilized for
protein stability and motion prediction based on various factors. The basic interface atomic
model was used with the CA option for the Coarse Grain model representations to account
for alpha carbon (Cα) atoms for whole residue mass.

https://yanglab.qd.sdu.edu.cn/trRosettaRNA/
https://cluspro.bu.edu/home.php
https://cluspro.bu.edu/home.php
https://wenmr.science.uu.nl/prodigy/
http://imods.chaconlab.org/
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2.10. Molecular Dynamic Simulation

The software application Desmond (https://www.schrodinger.com/platform/products/
desmond/, accessed on 15 June 2024) from Schrödinger LLC (New York, NY, USA) was
employed to conduct 100 ns (100,000 ps) of MD simulations. For this purpose, rigid
binding assessments of the vaccines’ potential interactions with the TLRs were performed
using protein–protein docking in MD simulations. Newton’s classical equation of motion
was applied in the MD simulations to predict the protein–protein binding status in the
physiological environment [120–125]. The selected vaccine–receptor interactions from the
docking experiments were optimized and minimized using Maestro’s Protein Preparation
Wizard, ensuring there were no steric conflicts, poor contacts, or distorted geometries. The
systems were built with the System Builder tool, employing the TIP3P (Intermolecular
Interaction Potential 3 Points Transferable) as the solvent model in an orthorhombic box
with the OPLS_2005 force field [126,127]. During the simulation, conditions were set at
300 K temperature and 1 atm pressure to mimic physiological environments, with counter
ions added for model neutralization and 0.15 M sodium chloride included. Trajectories
were recorded every 100 ps for analysis, and the stability of vaccine–receptor interactions
was assessed by measuring the Root Mean Square Deviation (RMSD) over time [120–125].

2.11. Immune Simulation of Vaccine Constructs

The C-ImmSim (https://kraken.iac.rm.cnr.it/C-IMMSIM/, accessed on 2 April 2024) [128],
an online antigen-based immune simulator, was utilized to evaluate the vaccine constructs
with and without adjuvant for immunogenic profiles. This web server predicts immune
reactions by hybridization, combining the position-specific scoring matrix (PSSM) with
machine learning algorithms. Each vaccine received three doses of 1000 antigens, with an
8-week interval between doses. The doses were administered at time-steps 168 and 504
(equivalent to 8 h in real life), respectively, with the first dose given at time-step 1. The
simulation was conducted for 1050 time-steps using default parameters.

3. Results
3.1. Protein Selection

From the proteomic analysis of T. rubrum, four proteins (1,3-beta-glucanosyltransferase,
CFEM domain-containing protein, cell wall galactomannoprotein, and LysM domain-
containing protein) were identified based on meeting specific criteria, including antigenicity
(≥0.5), extracellular localization (≥0.612), ≤35% human homolog identity, ≤1 transmem-
brane helix, and a molecular weight of less than 110 kDa. These findings are summarized in
Table 1. These proteins play pivotal roles in fungal biology, including cell wall biosynthesis,
pathogenesis, virulence, and interactions with the host immune system.

Table 1. Proteins extracted from Trichophyton rubrum proteomic dataset meeting criteria of targeted
for vaccine design.

Protein ID Protein Name Length Antigenicity Localizations
Extra Cel-
lularity
Score

Human
Homolog
Identity

Transmem-
brane Helix

Score

Molecular
Weight

F2SF86 1,3-beta-
glucanosyltransferase 531 0.74 Extracellular 0.8228 0.00% 0 57.45 kDa

F2SCX9
CFEM

domain-containing
protein

263 1.13 Extracellular 0.8623 0.00% 0 24.95 kDa

F2SDA6 Cell wall
galactomannoprotein 177 0.67 Extracellular 0.9471 0.00% 0 18.99 kDa

A0A080WV70
LysM

domain-containing
protein

283 0.98 Extracellular 0.942 0.00% 0 31.15 kDa

https://www.schrodinger.com/platform/products/desmond/
https://www.schrodinger.com/platform/products/desmond/
https://kraken.iac.rm.cnr.it/C-IMMSIM/
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3.2. Physiochemical Properties

The systematic examination of the physiochemical properties of proteins—1,3-beta-
glucanosyltransferase, CFEM domain-containing protein, cell wall galactomannoprotein,
and LysM domain-containing protein—of T. rubrum provides crucial insights into their
functionality within biological contexts. In designing vaccines against T. rubrum fun-
gal infections, the physiochemical properties of sorted proteins reveal a mildly acidic
nature with an abundance of negatively charged amino acid residues; notably, 1,3-beta-
glucanosyltransferase and LysM domain-containing protein exhibit higher stability than
other proteins. Table 2 presents a comprehensive overview of the physiochemical charac-
teristics of sorted proteins of T. rubrum.

Table 2. Physiochemical properties of sorted proteins from T. rubrum targeted for vaccine design.

Physiochemical Properties 1,3-Beta-
glucanosyltransferase

CFEM
Domain-Containing

Protein

Cell Wall
Galactomanno-

protein

LysM
Domain-Containing

Protein

Number of amino acids 531 263 177 283

Theoretical pI (ExPASy-ProtParam) 5.73 4.66 5.51 6.57

Theoretical pI
(EMBOSS-PEPSTATS) 5.63 4.37 5.32 6.96

Negatively charged residues
(Asp + Glu) 57 18 23 18

Positively charged residues
(Arg + Lys) 54 7 21 17

Formula C2531H3924N658O807S30 C1029H1666N298O397S12 C839H1363N225O258S8 C1375H2135N365O418S21

Total number of atoms 7950 3402 2693 4314

Ext. coefficient (ExPASy-ProtParam) 64,595 3480 3105 39,015

Molar ext. coefficients
(EMBOSS-PEPSTATS)

63,720 (reduced), 64,595
(cystine bridges)

2980 (reduced), 3480
(cystine bridges)

2980 (reduced), 3105
(cystine bridges)

38,390 (reduced), 39,015
(cystine bridges)

Estimated Half-life (mammalian
reticulocytes, in vitro) (hours) >30 >30 >30 >30

Estimated Half-life
(yeast, in vivo) (hours) >20 >20 >20 >20

Estimated Half-life (Escherichia
coli, in vivo) (hours) >10 >10 >10 >10

Instability index 25.42 47.14 50.6 26.67

Stability classification Stable Unstable Unstable Stable

Aliphatic index 65.59 53.12 90.51 72.76

Grand average of hydropathicity
(GRAVY) −0.333 −0.244 0.013 −0.142

Solubility 0.475 0.148 0.306 0.271

Improbability of expression in
inclusion bodies 0.816 0.97 0.571 0.773

3.3. T Cell and B Cell Epitope and Feature Profiling

An IDEB server was utilized to predict binding epitopes of 1,3-beta-glucanosyltransferase,
CFEM domain-containing protein, cell wall galactomannoprotein, and LysM domain-
containing protein from T. rubrum for CTL, HTL, and LBL.

3.3.1. CTL Binding Epitope Prediction

The CTL binding epitopes of 1,3-beta-glucanosyltransferase, CFEM domain-containing
protein, cell wall galactomannoprotein, and LysM domain-containing protein sequences of
T. rubrum were predicted by IEDB and confirmed for antigen binding regions by ProPred-I
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online servers. Table 3 displays the filtered CTL binding epitopes selected based on their
antigenicity, non-allergenicity, immunogenicity, and non-toxic properties of sorted proteins.

Table 3. NetMHCpan EL 4.1 method on the IEDB server predicted antigenic CTL binding epitopes of
sorted proteins from T. rubrum targeted for vaccine design.

Proteins Position Peptide Antigenic
Score Toxin Immunogenicity

Score Allergen

1,3-beta-glucanosyltransferase 36–44 SNGTEFFMK 0.78 No 0.25 No

63–71 SYQDPLADV 1.5 No 0.01 No

82–90 QELQTNTIR 0.94 No 0.02 No

83–91 ELQTNTIRV 1.99 No 0.18 No

137–145 YTRYTSVID 1.37 No 0.007 No

150–158 YTNVIGFFA 1.4 No 0.37 No

151–159 TNVIGFFAG 1.8 No 0.41 No

194–202 FWGYNIYSW 2.2 No 0.02 No

222–230 NFNVPVFFA 1.08 No 0.23 No

CFEM domain-containing protein 22–30 THVVTTSRP 1.08 No 0.02 No

27–35 TSRPPTTLY 0.83 No 0.05 No

28–36 SRPPTTLYT 1.75 No 0.04 No

33–41 TLYTEVSGS 1.4 No 0.05 No

47–55 SSSPTGTGS 1.64 No 0.05 No

48–56 SSPTGTGSE 1.96 No 0.03 No

49–57 SPTGTGSES 1.17 No 0.03 No

66–74 PSSTEGGSS 1.7 No 0.04 No

Cell wall galactomannoprotein 50–58 AQSPGGITE 1.98 No 0.13 No

60–68 MSVTNDIYD 0.59 No 0.17 No

LysM domain-containing protein 73–81 PSTTTTAKP 0.67 No 0.03 No

101–109 TRAMTTTIS 2.33 No 0.02 No

3.3.2. HTL Binding Epitope Prediction

HTL binding epitopes of 1,3-beta-glucanosyltransferase, CFEM domain-containing
protein, cell wall galactomannoprotein, and LysM domain-containing protein sequences of
T. rubrum were predicted by IEDB and confirmed by ProPred. The antigenicity, IFN-gamma-
inducing, IL4-inducing, and IL10-inducing effects, non-allergenicity, and non-toxicity of all
the epitopes were assessed for utilization in vaccine construction, as shown in Table 4.

Table 4. Antigenic HTL binding epitopes of sorted proteins from T. rubrum targeted for vaccine
design, predicted using IEDB recommended 2.22 method on the IEDB server.

Proteins Position Peptide Antigenic
Score Toxin IFN IL4

Inducer
IL10

Inducer Allergen

1,3-beta-
glucanosyltransferase 58–72 TSADNSYQDPLADVK 0.7 No Positive Yes Yes No

59–73 SADNSYQDPLADVKS 0.91 No Positive Yes Yes No

CFEM
domain-containing

protein
24–38 VVTTSRPPTTLYTEV 0.7 No Positive No No No
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Table 4. Cont.

Proteins Position Peptide Antigenic
Score Toxin IFN IL4

Inducer
IL10

Inducer Allergen

25–39 VTTSRPPTTLYTEVS 1.07 No Positive No No No

27–41 TSRPPTTLYTEVSGS 1.28 No Positive No No No

29–43 RPPTTLYTEVSGSQT 1.71 No Positive No No No

88–102 TSGSGNGPSQTPSQG 1.0 No Positive No No No

89–103 SGSGNGPSQTPSQGI 1.03 No Positive No No No

90–104 GSGNGPSQTPSQGIA 1.03 No Positive No No No

91–105 SGNGPSQTPSQGIAP 0.57 No Positive No No No

Cell wall galac-
tomannoprotein 45–59 LSQRIAQSPGGITEL 1.87 No Positive No No No

111–125 ATSTKVPLIKAVPGG 1.7 No Positive No No No

LysM
domain-containing

protein
99–113 TTTRAMTTTISSDAP 1.55 No Positive Yes No No

138–152 SIQTKYGISTDQFKA 2.43 No Positive Yes No No

139–153 IQTKYGISTDQFKAW 2.58 No Positive Yes No No

141–155 TKYGISTDQFKAWNP 1.94 No Positive Yes No No

142–156 KYGISTDQFKAWNPY 1.99 No Positive Yes No No

146–160 STDQFKAWNPYINAE 1.81 No Positive Yes No No

143–157 YGISTDQFKAWNPYI 2.3 No Positive Yes No No

3.3.3. LBL Binding Epitope Prediction

The LBL epitopes of 1,3-beta-glucanosyltransferase, CFEM domain-containing pro-
tein, cell wall galactomannoprotein, and LysM domain-containing protein sequences of
T. rubrum were predicted by IEDB and confirmed by ABCpred server. The predicted LBL
binding epitopes were screened based on their antigenicity, non-allergenicity, and non-toxic
properties and are presented in Table 5.

Table 5. Predicted sorted protein LBL epitopes of T. rubrum using IEDB’s BepiPred Linear Epitope
Prediction 2.0 methods.

Proteins Position Peptide Length Antigenicity
Score Toxin Allergen

1,3-beta-
glucanosyltransferase 235–253 NEVQPRMFTEVQALYGDKM 19 0.7053 No No

CFEM domain-containing
protein 53–251

CSNADFQHGLRDCTHEAC-
PGEKVEQVVQAGLQACREMGGA-
PGSSTGAPTTGTGSGTTTGTPTSGS-
GSETTAPSTSGSGSAPAPTSGGHST-
PYSTIPAGPTVITSGTHVVTTSRPPT-

TLYTEVSGSQTGSESSSPTGTGS-
ESTSAPETTSPSSTEGGSSPSSTEG-
SGNGGSGGSETSGSGNGPSQTPS-

QGIAPKATGLGV

199 1.152 No No

Cell wall
galactomannoprotein 22–61 PSTFSSVPEAIGDLDPISASIE-

GLSQRIAQSPGGITELMS 40 1.297 No No

LysM domain-containing
protein 176–202 GATISTSMPMPTPSGP-

QPQMPGIVSNC 27 0.5542 No No
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3.4. Epitope Conservancy Analysis

All the recruited CTL, HTL, and LBL epitopes selected for vaccine construction exhib-
ited complete conservation, as determined by epitope conservancy analysis.

3.5. mRNA-Based Vaccine Construction and Characterization

A systematic approach was employed for developing protein-based vaccines targeting
1,3-beta-glucanosyltransferase, CFEM domain-containing protein, cell wall galactomanno-
protein, and LysM domain-containing protein of T. rubrum [42,129]. Antigenic, immuno-
genic, non-toxic, interleukin-inducing, and non-allergenic CTL, HTL, and LBL epitopes
were arranged. These epitopes were connected using AAY, GPGPG, KK, and EAAAK
linkers. As per prior methodologies, a TLR4 agonist RS09 (APPHALS) adjuvant [88–90]
was attached at the N-terminal and a 6 × His tag at the C-terminus. Epitopes that exhibited
≥70% similarity in amino acid composition were merged into a singular epitope.

Further, the mRNA vaccine construct for BGTV was 5′ m7GCap–5′ UTR–Kozak
sequence–Signal peptide (tPA)–EAAAK linker- Adjuvant (RS09)—EAAAK Linker–NEVQP-
RMFTEVQALYGDKM–KK Linker–TSADNSYQDPLADVKS–AAY Linker–SNGTEFFMK–
GPGPG Linker–SYQDPLADV–GPGPG Linker–QELQTNTIRV–GPGPG Linker–YTRYTSV-
ID–GPGPG Linker-YTNVIGFFAG–GPGPG Linker–FWGYNIYSW–GPGPG Linker–NFNV-
PVFFA–GPGPG–MITD sequence–Stop codon–3′ UTR–Poly (A) tail. For CDPV, it was
5′ m7GCap–5′ UTR–Kozak sequence–Signal peptide (tPA)–EAAAK linker-Adjuvant (RS09)–
EAAAK Linker-CSNADFQHGLRDCTHEACPGEKVEQVVQAGLQACREMGGAPGSSTG-
APTTGTGSGTTTGTPTSGSGSETTAPSTSGSGSAPAPTSGGHSTPYSTIPAGPTVITSGTH-
VVTTSRPPTTLYTEVSGSQTGSESSSPTGTGSESTSAPETTSPSSTEGGSSPSSTEGSGNGG-
SGGSETSGSGNGPSQTPSQGIAPKATGLGV–KK Linker–VVTTSRPPTTLYTEVSGSQT–AAY
Linker–TSGSGNGPSQTPSQGGIAP–AAY Linker–THVVTTSRPPTTLYTEVSGS–GPGPG
Linker–SSSPTGTGSES–GPGPG Linker–PSSTEGGSS–GPGPG–MITD sequence–Stop codon–
3′ UTR–Poly (A) tail.

For GMPV, it was 5′ m7GCap–5′ UTR–Kozak sequence–Signal peptide (tPA)–EAAAK
linker- Adjuvant (RS09)– EAAAK Linker-PSTFSSVPEAIGDLDPISASIEGLSQRIAQSPGGIT-
ELMS–KK Linker–LSQRIAQSPGGITEL–AAY Linker–ATSTKVPLIKAVPGG–AAY Linker–
AQSPGGITE–GPGPG Linker–MSVTNDIYD–GPGPG–MITD sequence–Stop codon–3′ UTR–
Poly (A) tail. Lastly, for LDPV, it was 5′ m7GCap–5′ UTR–Kozak sequence–Signal peptide
(tPA)–EAAAK linker- Adjuvant (RS09)–EAAAK Linker-GATISTSMPMPTPSGPQPQMPGI-
VSNC–KK Linker–TTTRAMTTTISSDAP–AAY Linker–SIQTKYGISTDQFKAWNPYINAE–
AAY Linker–PSTTTTAKP–GPGPG Linker–TRAMTTTIS–GPGPG–MITD sequence–Stop
codon–3′ UTR–Poly (A) tail.

The amino acid-based vaccines underwent reverse translation, and the resulting
optimized nucleotide sequences of the constructed BGTV, CDPV, GMPV, and LDPV can-
didates are provided in Supplementary Table S1. The optimal secondary structures of
mRNA BGTV, CDPV, GMPV, and LDPV candidates exhibited minimal free energies
of −272.60 kcal/mol, −416.20 kcal/mol, −217.30 kcal/mol, and −185.10 kcal/mol, re-
spectively, as illustrated in Supplementary Figure S1. Additionally, the thermodynamic
free energies of the BGTV, CDPV, GMPV, and LDPV candidates were determined to be
−286.80 kcal/mol, −442.11 kcal/mol, −233.14 kcal/mol, and −201.13 kcal/mol, respec-
tively. The 3D structures of mRNA-derived BGTV, CDPV, GMPV, and LDPV candidates,
predicted using trRosettaRNA, are presented in Figure 1.
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Figure 1. Predicted 3D structures of mRNA-derived vaccine candidates BGTV (a), CDPV (b), GMPV
(c), and LDPV (d). Generated using trRosettaRNA.

When mRNA vaccines enter host immune cells, these are translated by the host
protein factory, i.e., ribosomes, into antigenic proteins that trigger adaptive immune re-
sponses. They also activate innate immunity, stimulate antibody production, and in-
duce long-term cellular immunity, promising alternatives to traditional vaccines [49,101].
The molecular characteristics of translated protein-based vaccines, i.e., BGTV (1,3-beta-
glucanosyltransferase targeting vaccine), CDPV (CFEM domain-containing protein target-
ing vaccine), GMPV (cell wall galactomannoprotein targeting vaccine), and LDPV (LysM
domain-containing protein targeting vaccine), exhibit unique attributes tailored to their
specific target (as shown in Table 6). For instance, the BGTV, comprising 158 amino acids,
demonstrates stability, with an instability index of 15.64 and a negative GRAVY score
(−0.564), indicating hydrophilicity. In contrast, the CDPV, with 319 amino acids, shows
signs of instability, reflected in its high instability index (50.49) and negative GRAVY score
(−0.653). The GMPV, consisting of 124 amino acids, similarly exhibits instability charac-
teristics, as evidenced by its high instability index (66.81) and relatively low solubility
(0.435). Conversely, the LDPV, comprising 119 amino acids, displays stability, with a lower
instability index (31.74) and comparable solubility (0.294) to the GMPV vaccine. These
diverse molecular profiles highlight the importance of considering specific protein targets
and optimizing vaccine design to enhance stability, immunogenicity, and safety for effective
immunotherapy.

3.6. Secondary and Tertiary Structure Modeling, Refinement, and Verification

The secondary structures of constructed vaccines predicted from the SOPMA server
reveal distinct distributions of alpha helix, extended strand, beta-turn, and random coil
elements. For the BGTV, alpha helices constitute the highest proportion at 28.48%, followed
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by random coil, at 46.84%. In contrast, the CDPV displays a higher prevalence of random
coil (72.10%) and a relatively lower percentage of alpha helices (11.29%). The GMPV ex-
hibits alpha helices (29.03%) and extended strands (8.06%). Conversely, the LDPV shows a
significant proportion of extended strands (25.21%) and random coils (61.34%). These varia-
tions in secondary structure compositions across the target proteins underscore the diverse
structural characteristics vaccine designs need to consider for optimal immunogenicity and
efficacy (Figure 2).

Table 6. Protein-based vaccine sequences targeting 1,3-beta-glucanosyltransferase, CFEM domain-
containing protein, cell wall galactomannoprotein, and LysM domain-containing protein with their
profiling (adjuvant: red, linkers: green, cyan, blue, and mustard, B-cell epitope: pink, HTL: yellow,
CTL: grey, and His tag: purple).

Vaccines BGTV CDPV GMPV LDPV

Targeting Proteins 1,3-beta-
glucanosyltransferase

CFEM domain-containing
protein

Cell wall
galactomannoprotein

LysM domain-containing
protein

Vaccine Sequence

APPHALS EAAAK

NEVQPRMFTEVQ-

ALYGDKM KK TSA-

DNSYQDPLADVKS

AAY SNGTEFFMK

GPGPG SYQDPLADV

GPGPG QELQTNTIRV

GPGPG YTRYTSVID

GPGPG YTNVIGFFAG

GPGPG FWGYNIYSW

GPGPG NFNVPVFFA

GPGPG HHHHHH

APPHALS EAAAK

CSNADFQHGLRDCT-

HEACPGEKVEQVVQ-

AGLQACREMGGAPG-

SSTGAPTTGTGSG-

TTTGTPTSGSGSE-

TTAPSTSGSGSAP-

APTSGGHSTPYS-

TIPAGPTVITSG-

THVVTTSRPPTT-

LYTEVSGSQTG-

SESSSPTGTGS-

ESTSAPETTSPSST-

EGGSSPSSTEG-

SGNGGSGGSET-

SGSGNGPSQT-

PSQGIAPKATGLGV-

KK VVTTSRPP-

TTLYTEVSGSQT

AAY TSGSGNGPSQ-

TPSQGGIAP

AAY THVVTTSRPP-

TTLYTEVSGS GPGPG

SSSPTGTGSES

GPGPG PSSTEGGSS

GPGPG HHHHHH

APPHALS EAAAK

PSTFSSVPEAIGDLD-

PISASIEGLSQRIA-

QSPGGITELMS KK

LSQRIAQSPGGITEL-

AAY ATSTKVPLIKAV-

PGG AAY AQSPGGITE

GPGPG MSVTNDIYD

GPGPG HHHHHH

APPHALS EAAAK

GATISTSMPMPTP-

SGPQPQMPGIVSNC

KK TTTRAMTTTISS-

DAP AAY SIQTK-

YGISTDQFKAWNP-

YINAE AAY PSTTTT-

AKP GPGPG TRAMTT-

TIS GPGPG HHHHHH

Number of Amino
Acids 158 319 124 119

Molecular Weight (Da) 16,673.4 30,329.02 12,476.94 12,292.77

Theoretical pI
(ExPASy-ProtParam) 6.14 5.68 6.14 9.47

Theoretical pI
(EMBOSS-PEPSTATS) 6.6 6.05 6.6 9.8

Negatively Charged
Residues (Asp + Glu) 12 19 10 4
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Table 6. Cont.

Vaccines BGTV CDPV GMPV LDPV

Positively Charged
Residues (Arg + Lys) 9 10 7 8

Ext. coefficient
(ExPASy-ProtParam) 24,410 9190 4470 11,460

Molar ext. coefficients
(EMBOSS-PEPSTATS)

24,410 (reduced), 24,410
(cystine bridges)

8940 (reduced), 9190
(cystine bridges)

4470 (reduced), 4470 (cystine
bridges)

11,460 (reduced), 11,460
(cystine bridges)

Estimated Half-life
(mammalian

reticulocytes, in vitro)
4.4 h 4.4 h 4.4 h 4.4 h

Estimated Half-life
(yeast, in vivo) >20 h >20 h >20 h >20 h

Estimated Half-life (E.
coli, in vivo) >10 h >10 h >10 h >10 h

Instability Index (II) 15.64 50.49 66.81 31.74

Stability Stable Unstable Unstable Stable

Aliphatic Index 46.96 33.39 75.73 42.1

GRAVY −0.564 −0.653 −0.257 −0.571

Antigenicity Score
(VaxiJen 2.0) 0.52 1.0026 0.9305 1.0933

Antigenicity Score
(ANTIGENpro) 0.83 0.88 0.86 0.87

Allergen Status Probable Non-Allergen Probable Non-Allergen Probable Non-Allergen Probable Non-Allergen

Toxin Status Non-Toxin Non-Toxin Non-Toxin Non-Toxin

Solubility 0.563 0.520 0.435 0.294

Improbability of
expression in inclusion

bodies
0.964 0.965 0.92 0.978

The tertiary structures of all the vaccine constructs (BGTV, CDPV, GMPV, and LDPV)
were built using ColabFold (represented in Figure 3, purple), which uses a subset of the
MSA as input to the model, with Alphafold2 subsampling the MSA to a maximum of
512 cluster centers and 1024 extra sequences [105]. All the modeled vaccines were validated
through a Ramachandran plot. The plot results confirmed that the predicted structures
were not of good quality because of less than 90% of residues in favored regions, as shown
in Supplementary Figure S2 and Table 7. For instance, BGTV has only 60.9% residues in the
most favored regions of the plot, while CDPV, GMPV, and LDPV have 30.8%, 57.6%, and
42.9%, respectively. Since then, the refinement of 3D vaccine structures has been required
to obtain good-quality models.

The GalaxyRefine online server was employed to conduct structural relaxation of
3D-modeled constructs of BGTV, CDPV, GMPV, and LDPV. This process yielded five re-
fined structures for each vaccine construct. Subsequently, the structure exhibiting the
highest Rama-favored value and the lowest Root Mean Square Deviation (RMSD) value (as
delineated in Supplementary Table S2) was chosen for subsequent analysis. The refined
3D vaccine constructs (green) superimposed on the unrefined 3D vaccine constructs (pur-
ple) are exhibited in Figure 3. Ramachandran plots of all the refined vaccine constructs
confirmed good quality models having over 90% in the amino acid residues in the most
favored regions (as shown in Figure 3 and Table 7).

3.7. Discontinuous and Continuous B Cell Epitope Prediction

The folding process of the vaccine model proteins leads to the emergence of conforma-
tional or discontinuous B-cell epitopes. The ElliPro server analysis revealed the presence of
seven linear epitopes and ten discontinuous B-cell epitopes within BGTV. Similarly, CDPV
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exhibited four linear and six discontinuous B-cell epitopes, while GMPV demonstrated
five linear and five discontinuous B-cell epitopes. Moreover, LDPV showcased six linear
and nine discontinuous B-cell epitopes. Supplementary Figure S3 illustrates the spatial
distribution of continuous and discontinuous B-cell epitopes across BGTV, CDPV, GMPV,
and LDPV.
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Table 7. Comparative representation of Ramachandran plot statistics of unrefined and refined 3D
constructs of BGTV, CDPV, GMPV, and LDPV.

Ramachandran Plot BGTV CDPV GMPV LDPV

Unrefined Refined Unrefined Refined Unrefined Refined Unrefined Refined

Residues in most favored
regions 60.90% 95.50% 30.80% 92.40% 57.60% 97.80% 42.90% 91.20%

Residues in additional
allowed regions 23.60% 4.50% 31.20% 4.90% 17.40% 2.20% 41.80% 6.60%

Residues in generously
allowed regions 13.60% 0.00% 25.00% 2.20% 15.20% 0.00% 11.00% 2.20%

Residues in disallowed
regions 1.80% 0.00% 12.90% 0.40% 9.80% 0.00% 4.40% 0.00%
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3.8. Molecular Docking

Following vaccine administration, its primary objective is to initiate the immune
response against the foreign antigen. Toll-like receptors (TLRs) play a pivotal role in
recognizing molecules from pathogens and activating innate immunity. Among TLRs
involved in fungal recognition, TLR2 and TLR4 are prominent. TLR2 forms complexes
with TLR1 or TLR6 to detect fungal cell wall components like mannoprotein, while TLR4
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recognizes fungal mannans and β-glucans. Additionally, TLR2 and TLR4 collaborate with
receptors like Dectin-1 to bolster the immune response against fungi. Activation of TLRs
triggers macrophages, neutrophils, and dendritic cells to produce inflammatory cytokines
and eliminate fungi. Moreover, TLRs influence adaptive immunity by promoting Th1 or
Th17 responses [42,130–132].

The docking complexes BGTV-TLR2, CDPV-TLR2, GMPV-TLR2, and LDPV-TLR2 ex-
hibit distinct free energy changes (dG) for the binding range from −12.7 to −15.1 kcal mol−1,
suggesting favorable binding energies across these complexes along with their dissociation
constants (Kd) at the 25 ◦C span and indicating strong binding affinities (as shown in
Table 8). Analyzing the binding affinity in terms of the lowest energy states, LDPV-TLR2
demonstrates the highest binding affinity, with energies of −1453.9 kcal mol−1. These
binding affinities predominantly stem from electrostatic, hydrophobic, Van der Waals, and
electrostatic interactions with salt bridges, hydrogen bonds, and non-bonded contacts that
play significant roles in binding. For instance, CDPV-TLR2 forms the highest number of
salt bridges (4), whereas BGTV-TLR2 forms the fewest (2). Regarding hydrogen bonds,
LDPV-TLR2 forms the highest number (17), whereas BGTV-TLR4 forms the fewest (14). The
number of non-bonded contacts ranges from 150 to 215, with LDPV-TLR2 demonstrating
the highest count and BGTV-TLR4 the lowest (as shown in Figure 4 and Table 8).
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Table 8. Characteristic features of BGTV, CDPV, GMPV, and LDPV candidate docking complexes against T. rubrum and immune receptors (TLR2 and TLR4).

Docking
Complex

Interface
Residues

Interface
Area (Å2)

dG (kcal
mol−1)

Kd (M) at
25 ◦C

Binding Affinity
in kcalmol−1

(Center, Lower
Energy)

Electrostatic-
Favored

Binding Affinity
in kcal mol−1

(Center, Lower
Energy)

Hydrophobic-
Favored

Binding Affinity
in kcal mol−1

(Center, Lower
Energy)

Van-der Waal
and Electrostatic
Binding Affinity

in kcal mol−1

(Center, Lower
Energy)

Salt
Bridges

Hydrogen
Bonds

Non-
Bonded
Contacts

BGTV-TLR2 28–17 1056–1187 −13.5 1.2 × 10−10 −1077.2,
−1124.9

−1084.7,
−1134.4

−1857.4,
−2124.7 −191.5, −264.3 2 12 150

CDPV-TLR2 29–10 785–1154 −14.5 2.2 × 10−11 −1059.4,
−1114.9

−1003.9,
−1100.0

−1645.9,
−1783.9 −201.9, −247.2 4 146

GMPV-
TLR2 31–13 864–1238 −12.7 5.2 × 10−10 −1062.7,

−1205.8
−1184.4,
−1271.5

−1883.9,
−1962.8 −214.3, −253.6 6 153

LDPV-TLR2 39–27 1376–1709 −15.1 8.6 × 10−12 −1233.6,
−1453.9

−1231.6,
−1546.6

−1926.6,
−2129.6 −242.2, −288.3 3 17 215

BGTV-TLR4 30–22 1205–1418 −13.5 1.4 × 10−10 −902.6, −993.5 −987.4, −1030.1 −941.4, −1189.2 −212.6, −212.6 6 14 150

CDPV-TLR4 51–51 2264–2314 −16.4 8.9 × 10−13 −916.9, −959.9 −883.9, −977.3 −988.9, −1092.8 −188.6, −219.4 3 30 317

GMPV-
TLR4 39–33 1670–1791 −14.8 1.4 × 10−11 −911.4, −911.4 −817.3, −1016.6 −1062.7, −1174 −208.9, −213.5 4 17 226

LDPV-TLR4 49–38 1932–2137 −20.4 1.1 × 10−15 −1109.5,
−1234.4

−1050.2,
−1324.2

−1205.8,
−1390.1 −210.1, −235.8 2 29 229
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The docking complexes involving TLR4 (BGTV, CDPV, GMPV, and LDPV) exhibit
similar trends in interface residues, interface areas, dG values, and Kd values compared
to their TLR2 counterparts. However, notable differences exist in the calculated binding
affinities and intermolecular interactions. For example, LDPV-TLR4 demonstrates the
highest binding affinity, with a dG of −20.4 kcal mol−1, and the lowest dissociation constant
of 1.1 × 10−15 M. Salt bridges, hydrogen bonds, and non-bonded contacts also vary across
the TLR4 complexes, reflecting unique interaction profiles within this receptor system (as
shown in Figure 5 and Table 8).
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Figure 5. Docking complexes of vaccine candidates (red) against T. rubrum and TLR4 receptor (blue).
(a) BGTV-TLR4; (b) CDPV-TLR4; (c) GMPV-TLR4; (d) LDPV-TLR4.

3.9. Normal Mode Analysis

The investigation involved simulations assessing the interactions of vaccine candidates
against T. rubrum with immune receptors through NMA. The outcomes delineate BGTV,
CDPV, GMPV, and LDPV docking complexes with TLR2 and TLR4 receptors, as shown
in Figures 6 and 7, respectively. Within these figures, panels (b, g, l, and q) spotlight the
deformability graphs, emphasizing hinge points denoting notable deformability regions
within the complexes. B-factor values were computed to quantify the uncertainties associ-
ated with the atomic positions within the docking complexes, providing a root mean square
assessment. These values are visually depicted in Figures 6 and 7, specifically in panels



Pharmaceutics 2024, 16, 983 20 of 38

(c, h, m, and r). Eigenvalues pertaining to the BGTV-TLR2, CDPV-TLR2, GMPV-TLR2,
LDPV-TLR2, BGTV-TLR4, CDPV-TLR4, GMPV-TLR4, and LDPV-TLR4 complexes were
determined to be 1.38 × 10−5, 9.3 × 10−7, 2.9 × 10−6, 1.6 × 10−5, 7.4 × 10−5, 1.9 × 10−6,
1.5 × 10−5, and 2.36 × 10−5, respectively (as depicted in Figure 6d,i,n,s and Figure 7d,i,n,s).
Supplementary Figures S4 and S5 augment the analysis by presenting the covariance ma-
trices, delineating the associations between pairs of residues exhibiting correlated (red),
uncorrelated (white), and anti-correlated (blue) motions. Furthermore, the elastic docking
network (dark gray) depicted within these Supplementary Figures elucidates the relational
dynamics between the atoms comprising the vaccine candidates and the TLR2/TLR4
receptor complexes.
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Eigenvalue(1) = 1.384101 x 10-5 Eigenvalue(1) = 9.231169 x 10-7 Eigenvalue(1) = 2.908795 x 10-6 Eigenvalue(1) = 1.608372 x 10-5

Figure 6. Normal mode analysis (NMA) of vaccine candidates against T. rubrum and TLR2 receptor
complexes by iMODs. (a–e) iMODS results of BGTV-TLR2 complex. (a) NMA mobility; (b) main-
chain deformability; (c) B-factor values; (d) the eigenvalue; (e) variance. (f–j) iMODS results of
CDPV-TLR2 complex. (f) NMA mobility; (g) main-chain deformability; (h) B-factor values; (i) the
eigenvalue; (j) variance; (k–o) iMODS results of GMPV-TLR2 complex. (k) NMA mobility; (l) main-
chain deformability; (m) B-factor values; (n) the eigenvalue; (o) variance; (p–t) iMODS results of
LDPV-TLR2 complex. (p) NMA mobility; (q) main-chain deformability; (r) B-factor values; (s) the
eigenvalue; (t) variance.
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(a) (f) (k) (p)

(b) (g) (l) (q)
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Eigenvalue(1) = 7.460817 x 10-5 Eigenvalue(1) = 1.900697 x 10-6 Eigenvalue(1) = 1.498243 x 10-5 Eigenvalue(1) = 2.367145 x 10-5

Figure 7. Normal mode analysis (NMA) of vaccine candidates against T. rubrum and TLR4 receptor
complexes by iMODs. (a–e) iMODS results of BGTV-TLR24 complex. (a) NMA mobility; (b) main-
chain deformability; (c) B-factor values; (d) the eigenvalue; (e) variance. (f–j) iMODS results of
CDPV-TLR4 complex. (f) NMA mobility; (g) main-chain deformability; (h) B-factor values; (i) the
eigenvalue; (j) variance; (k–o) iMODS results of GMPV-TLR4 complex. (k) NMA mobility; (l) main-
chain deformability; (m) B-factor values; (n) the eigenvalue; (o) variance; (p–t) iMODS results of
LDPV-TLR4 complex. (p) NMA mobility; (q) main-chain deformability; (r) B-factor values; (s) the
eigenvalue; (t) variance.

3.10. Molecular Dynamic Simulation

MD simulation revealed the stability and dynamics of these vaccines and TLR com-
plexes. Figure 8a presents the RMSD plot for the vaccine–TLR2 complexes, illustrating
that the RMSD fluctuations for BGTV, CDPV, and LDPV with TLR2 are relatively stable,
remaining below or near 0.9 nm. In contrast, the RMSD values for GMPV-TLR2 exhibit
significant fluctuations after 15 ns, reaching up to 2.0 nm. Similarly, Figure 9a displays the
RMSD plot for the vaccine–TLR4 complexes, indicating that the RMSD fluctuations for
BGTV, CDPV, GMPV, and LDPV with TLR4 are stable, staying below 0.9 nm. Although
CDPV-TLR4 initially shows high fluctuations around 1.0 nm at the beginning of the simu-
lation, it stabilizes to 0.9 nm after 50 ns. These findings suggest that the docked vaccines
exert a stabilizing effect on both TLR2 and TLR4 receptors.
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Figure 8. MD simulation results of dock complexes of potential vaccine candidates (BGTV (black),
CDPV (blue), GMPV (yellow), and LDPV (red)) with TLR2 backbone. (a) Trajectory analysis of the
RMSD between C-alpha atoms of dock complexes over time, (b) RMSF plot, (c) number of hydrogen
bond formations, and (d) radius of gyration (RoG) plot.

The Root Mean Square Fluctuation (RMSF) analysis offers detailed insights into the
regions of the studied proteins responsible for the observed RMSD fluctuations in the vac-
cine/TLR2 and vaccine/TLR4 systems. The RMSF values for the TLR4 backbone and the
vaccine backbones show minimal fluctuations (Figure 9b). In contrast, the RMSF analysis of
the TLR2 backbone indicates that GMPV is highly dynamic and exhibits significant fluctua-
tions, while the other vaccines remain relatively conserved (Figure 8b). Notably, the RMSF
profiles of vaccine–TLR2/TLR4 complexes closely resemble the fluctuation patterns ob-
served in the NMA results from iMODS (as depicted in Figure 6c,h,m,r and Figure 7c,h,m,r).
The radius of gyration, a critical parameter indicating structural compactness, revealed
that the vaccine molecules attained a stable and compact form during the MD simulations
(Figures 8d and 9d). The compactness of the TLR2 and TLR4 complexes is attributed to
the strong binding interactions of the designed vaccines. The stability of these interactions
was evaluated by estimating the hydrogen bonding between the vaccines and TLR2 and
TLR4 systems over 100 ns. The number of hydrogen bonds in the vaccine–TLR2 complexes
remained constant over time (Figure 8c), while the number of hydrogen bonds in the
vaccine–TLR4 complexes (Figure 9c) increased.
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10a,d, 11a,d, and 13a,d). In contrast, after inoculation of three doses of GMPV, no immu-
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Similarly, the active B cell populations remained elevated for up to 150 cells per mm3 
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Figure 9. MD simulation results of dock complexes of potential vaccine candidates (BGTV (black),
CDPV (blue), GMPV (yellow), and LDPV (red)) with TLR4 backbone. (a) Trajectory analysis of the
RMSD between C-alpha atoms of dock complexes over time, (b) RMSF plot, (c) number of hydrogen
bond formations, and (d) radius of gyration (RoG) plot.

3.11. Immune Simulation Analysis

The immune stimulation by the C-ImmSim server showed results consistent with
actual immune responses. Increased levels of IgM, as shown in Figure 10a,d, Figure 11a,d,
Figure 12a,d and a,d, characterized the primary reaction after the first BGTV, CDPV, and
LDPV dose. After the second and third BGTV, CDPV, and LDPV doses, there was a
remarkable increase in IgG1, IgG1 + IgG2, IgM, and IgG + IgM antibody levels. The
IgM + IgG levels peaked after the third dose of BGTV, CDPV, and LDPV, reaching over
200,000, indicating a robust humoral immune response, as evidenced by the subsequent
decrease in antigen population (Figure 10a,d, Figure 11a,d, and Figure 13a,d). In contrast,
after inoculation of three doses of GMPV, no immunogenic response was observed (as
shown in Figure 12a,d).
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Figure 10. A computer-based simulation to model the immune response to the BGTV candidate,
administering three doses over 350 days. Key parameters evaluated included antigen and im-
munoglobulins levels (a), LBLs (b–d), HTLs and CTLs (e–i), natural killer cells (j), dendritic cells
(k), macrophages (l), epithelial presenting cell population (m), and cytokine concentrations (n). The
Simpson index (D) was utilized to assess the simulation outcomes.
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Figure 11. A computer-based simulation to model the immune response to the CDPV candidate,
administering three doses over 350 days. Key parameters evaluated included antigen and im-
munoglobulins levels (a), LBLs (b–d), HTLs and CTLs (e–i), natural killer cells (j), dendritic cells
(k), macrophages (l), epithelial presenting cell population (m), and cytokine concentrations (n). The
Simpson index (D) was utilized to assess the simulation outcomes.
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Figure 12. A computer-based simulation to model the immune response to the GMPV candidate,
administering three doses over 350 days. Key parameters evaluated included antigen and im-
munoglobulins levels (a), LBLs (b–d), HTLs and CTLs (e–i), natural killer cells (j), dendritic cells
(k), macrophages (l), epithelial presenting cell population (m), and cytokine concentrations (n). The
Simpson index (D) was utilized to assess the simulation outcomes.
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Figure 13. A computer-based simulation to model the immune response to the LDPV candidate,
administering three doses over 350 days. Key parameters evaluated included antigen and im-
munoglobulins levels (a), LBLs (b–d), HTLs and CTLs (e–i), natural killer cells (j), dendritic cells
(k), macrophages (l), epithelial presenting cell population (m), and cytokine concentrations (n). The
Simpson index (D) was utilized to assess the simulation outcomes.
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Similarly, the active B cell populations remained elevated for up to 150 cells per mm3

after three BGTV, CDPV, and LDPV doses, as shown in Figure 10b,c, Figure 11a,d, and
Figure 13b,c. For the GMPV, no active B cells were observed in all three doses (Figure 12b,c).
The total active HTL was sustainably elevated after inoculating the BGTV, CDPV, GMPV,
and LDPV (Figure 10e,f, Figure 11e,f, and Figure 13e,f). The resting active regulatory HTL
concentrations were high after the first dose of BGTV, CDPV, GMPV, and LDPV and gradu-
ally decreased over time (Figures 10g, 11g, 12g and 13g). The cytotoxic HTL concentration
also varied for BGTV, CDPV, GMPV, and LDPV (Figures 10h, 11h, 12h and 13h). Their ac-
tive form constantly decreased with vaccination (Figures 10i, 11i, 12i and 13i). The natural
killer cell (NKC) population also varied (Figures 10j, 11j, 12j and 13j), as the numbers of
dendritic cells, macrophages, and epithelial presenting cells were constant in cells per mm3,
as shown in Figure 10k–m, Figure 11k–m, Figures 12k–m and 13k–m. After the injection
of vaccine candidates, different cell activations elevated the immune response, activating
cytokines and interleukins, primarily IFN-γ and IL-2 (Figures 10n, 11n, 12n and 13n).

In parallel, immunoglobulin levels of BGTV, CDPV, GMPV, and LDPV without adju-
vants were evaluated, as shown in Supplementary Figure S6. Interestingly, the immunoglob-
ulin production patterns of all the vaccines without adjuvants were similar to those with
adjuvants; for instance, the primary reaction after the first dose showed increased levels of
IgM. After the second and third doses, there was a significant rise in IgG1, IgG1 + IgG2,
IgM, and IgG + IgM antibodies. IgM + IgG levels peaked after the third dose of BGTV,
CDPV, and LDPV without adjuvant, surpassing 200,000, indicating a strong humoral im-
mune response, which led to a decrease in the antigen population. In contrast, three doses
of GMPV without adjuvant did not induce any immunogenic response.

4. Discussion

Recent advances in bioinformatics, structural biology, and computational tools have
revolutionized vaccine development [133]. In silico studies for predicting and designing
vaccines have expanded significantly, encompassing bacteria, viruses, fungi, and even
cancer [134]. The ongoing COVID-19 pandemic underscores the urgent need for effective
strategies to manage opportunistic infections and safeguard immunocompromised individ-
uals [135]. Developing an efficacious vaccine against tinea cruris has become a paramount
health priority.

Applying in silico approaches in vaccine design and validation offers considerable
time and cost savings. Computational tools expedite proteome analysis and identification of
potential vaccine candidates, thus proving particularly beneficial for infections challenging
to cultivate or caused by diverse infectious agents, like T. rubrum. Mapping epitopes and
conducting docking analyses with corresponding receptors provide valuable insights into
epitope behavior upon encountering human immune receptors. As a result, computational
tools offer initial validation before costly laboratory experiments, representing a cost-
effective approach. Given these advantages, reverse vaccinology and immunoinformatics
approaches centered on computational vaccine design and analysis have gained traction
in recent years. These methods have demonstrated promising results in various studies,
offering practical validation of computational prediction methods when coupled with
wet-lab experiments on designed vaccines [136–140].

Treating fungal infections, notably tinea cruris, poses several hurdles. Recalcitrant in-
fections and fungal resistance are significant challenges, often exacerbated by self-treatment
with over-the-counter topical antifungal and steroid preparations [141,142]. Emerging for-
mulations like luliconazole and overlooked agents like ciclopirox offer potential solutions
against fungal resistance [143]. However, the use of topical steroids for tinea cruris re-
mains contentious due to conflicting data and ongoing investigations into their efficacy [3].
Moreover, determining the appropriate dose and duration of systemic therapies for tinea
cruris and tinea pedis remains uncertain, highlighting the need for well-designed trials
and evidence-based guidelines. The shifting epidemiology of dermatophytosis, particu-
larly its rising prevalence in tropical and subtropical regions like India, raises concerns.
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Urbanization and factors like occlusive footwear and tight clothing contribute to this
trend [9].

The pathogenesis of dermatophytosis often involves genetic predispositions, poten-
tially influenced by specific defects in innate and adaptive immunity [144]. Topical antifun-
gals such as butenafine and terbinafine have demonstrated superiority over clotrimazole,
with terbinafine outperforming ciclopirox and naftifine surpassing oxiconazole [9]. Proper
diagnosis, appropriate selection of antifungal agents, adherence to recommended ther-
apy duration, avoidance of steroids, patient education on lifestyle modifications, and
responsible use of antifungal medications are potential strategies to address current chal-
lenges [3,9,141,144]. Efforts to combat fungal infections through vaccine development are
advancing, driven by the rising prevalence and resistance to antifungal drugs. The current
study investigated the whole proteome of T. rubrum (the leading cause of tinea cruris)
to recruit potential protein candidates for vaccine targets. For this reason, we recruited
four proteins (1,3-beta-glucanosyltransferase, CFEM domain-containing protein, cell wall
galactomannoprotein, and LysM domain-containing protein) that not only meet the criteria
of vaccine targets (Table 1) but also play pivotal roles in cell wall biosynthesis, pathogenesis,
virulence, and interactions with the host immune system in T. rubrum.

1,3-beta-glucanosyltransferase involves elongating and branching beta-(1,3)-glucan, a
fundamental constituent of the fungal cell wall meshwork. Its activity is indispensable for
the fungal cell wall’s structural integrity, complexity, and functionality [145–147]. CFEM
domain-containing proteins, characterized by eight conserved cysteine residues, are integral
to numerous fungal functions, encompassing iron acquisition, cell wall stability, and
pathogenesis. These proteins mediate interactions with host organisms, influencing fungal
survival strategies and virulence [148–152].

Galactomannoproteins are essential constituents of the fungal cell wall, contributing
significantly to its structural integrity and functional properties. Their involvement spans
fungal pathogenesis, virulence, and host immune system interactions. Notably, their
absence in humans makes them promising targets for antifungal therapies [55,153,154].
LysM domain-containing proteins play pivotal roles in fungal biology, particularly in
interactions with the environment and host organisms. These proteins are implicated in
pathogenesis, virulence, fungal growth, morphogenesis, spore germination, and immune
evasion. Through binding to chitin, a major component of fungal cell walls, LysM proteins
influence fungus–host interactions, potentially altering host physiology to facilitate fungal
colonization and pathogenicity [155–159].

The physicochemical properties of four recruited proteins (Table 2) exploited valuable
knowledge about protein characteristics, contributing significantly to diverse scientific
domains, including pharmaceutical research, personalized medicine, and biomarker dis-
covery. For instance, identifying the optimal pI value of a protein intended for vaccination
can enhance its ability to trigger a robust immune response. Furthermore, it can ensure the
protein’s stability, solubility, and effective interaction with the immune system, augment-
ing its capacity to elicit protective immune responses [160–162]. The sorted sequences of
the CFEM domain-containing protein and cell wall galactomannoprotein were unstable.
However, these proteins’ avirulence factors and other functions, which may not necessarily
imply instability, are noteworthy. For instance, fungi’s cell wall/membrane CFEM domains
are unique and closely related to pathogenicity. Therefore, the stability of these proteins in
T. rubrum cannot be directly inferred. [150,163].

Further, the computational antigenic, immunogenic, non-toxic, and non-allergenic
epitope profiling explored the candidates for vaccine construction (as shown in Tables 3–5).
The epitopes were linked via linkers that are pivotal in designing multi-epitope vaccine
constructs, contributing to their structural integrity and immunogenicity. For example,
the AAY linker prevents domain disruption within the vaccine construct. The GPGPG
linker, comprising flexible and hydrophilic amino acids, is instrumental in maintaining
structural integrity. The KK linker facilitates the effective connection of linear B-cell epitopes.
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Additionally, the EAAAK linker enhances the immunogenic properties of the vaccine by
leveraging its rigidity and propensity for helix formation [87,164–167].

Including Toll-like receptor (TLR) ligands, such as RS09, as adjuvants in human vac-
cines has demonstrated promising results in augmenting protection against infectious
diseases. TLR-based adjuvants, like Pam3CysSerLys4 (Pam3CSK4), have been identified as
potent stimulators of B-cell responses and T-cell activation, thereby enhancing vaccine effi-
cacy [168]. Incorporating RS09 and other TLR agonists into vaccine formulations represents
a significant advancement in vaccine development, aiming to elicit robust and targeted
immune responses against pathogens, including fungi and viruses [168–170]. Research has
explored the TLR4 agonist RS09 as an adjuvant in fungus vaccine development [88–90].
RS09, which mimics lipopolysaccharide (LPS), a natural TLR4 ligand, has been incorpo-
rated into vaccine constructs to enhance immune responses. In designing a multivalent
vaccine against Candida albicans, RS09 was strategically positioned at the N-terminal end of
the final vaccine construct to facilitate co-stimulation of T-cell receptors (TCRs), leading to
heightened immune activation [88]. This synthetic adjuvant, RS09, offers a safer alternative
to traditional adjuvants like Freund’s adjuvant, with its presence in the vaccine construct
aimed at effectively stimulating TCRs to drive a robust immune response.

The protein-based vaccines underwent reverse translation to construct the mRNA
vaccines along with 5′ m7GCap, 5′ UTR, Kozak sequence, tPA signal peptide, and EAAAK
linker at the N-terminal and MITD sequence, stop codon, 3′ UTR, and poly (A) tail at the
C-terminal (as shown in Supplementary Table S1). The mRNA vaccine is first delivered
into immune cells, such as dendritic cells and macrophages [101]. Once inside the immune
cells, the mRNA escapes the endosomes and releases into the cytosol. The host cell’s ribo-
somes translate the mRNA into the desired antigenic protein. This protein is subsequently
degraded in the proteasomes and presented to the immune system via MHC class I and
II pathways, triggering an adaptive immune response. Additionally, the mRNA vaccine
stimulates the innate immune response by activating pattern recognition receptors (PRRs)
and releasing pro-inflammatory cytokines, further enhancing the immune response. This
immune activation produces antibodies that recognize and mark the pathogen for destruc-
tion, protecting against future infections. The vaccine also induces cellular immunity by
activating CD8+ and CD4+ T cells, which help eliminate infected cells and provide long-
term immunity. These steps collectively enable mRNA vaccines to elicit a robust immune
response against specific pathogens, making them a promising alternative to traditional
vaccine approaches [49,101].

The docking and NMA analysis of vaccine candidates with TLRs confirmed a signifi-
cant binding affinity and structural deformability, showing the stability of complexes and
the vaccines’ promising ability to activate the immune response. The immune simulation
analysis of vaccines with and without adjuvants confirmed the claim of immune response
activation by showing elevated results of IgG1, IgG1 + IgG2, IgM, and IgG + IgM anti-
bodies and immune cells activating cytokines and interleukins. No significant change was
observed in antibody production between vaccines with and without adjuvants. However,
the adjuvant plays a crucial role in activating the innate immune response by interacting
with TLRs [88–90].

Currently, no mRNA vaccines have been approved to prevent or treat fungal infections.
However, research is ongoing to explore the potential of mRNA vaccines in this area. For
example, a recent study investigated the use of mRNA vaccines to protect against the
fungal pathogen Candida albicans. The study found that mRNA vaccines encoding specific
fungal antigens could induce a protective immune response in mice, suggesting that mRNA
vaccines could be a promising approach for preventing and treating fungal infections [21].
In the context of fungal infections, mRNA vaccines could stimulate the immune system to
produce antibodies against specific fungal antigens, potentially leading to protection against
infection. However, more research is needed to determine the safety and effectiveness
of mRNA vaccines against fungal infections. Although the immunoinformatic approach
holds promise, the lack of a standardized benchmark for fungal vaccine development and
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limited understanding of their pathogenesis and adaptive immune system response may
hinder its efficacy. As a result, experimental validation, encompassing both in vivo and
in vitro studies, is essential to assess the immunogenicity, effectiveness, and safety of newly
developed vaccines.

5. Conclusions

Based on the immunoinformatic analyses, our designed mRNA-based fungal vaccines
exhibit promising potential to induce efficient immunogenicity against T. rubrum fungal
infections. Scalable and cost-effective production and comprehensive product character-
ization can address the increasing need for mRNA vaccines targeting various infectious
diseases, particularly challenging fungal infections, which have thick fungal cell walls,
similarities between fungal and human cells, antigenic variation, and evolutionary resem-
blance to animals. The proposed mRNA vaccine constructs meet criteria for antigenicity,
immunogenicity, allergenicity, toxicity, and other physicochemical properties, indicating
stability and safety, potentially offering long-term immunity and reducing reliance on
antifungal medications. Nevertheless, further preclinical studies and validation are imper-
ative before initiating both in vivo and in vitro experimental clinical trials to validate the
study findings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics16080983/s1, Figure S1: Revealing the minimal
free energy (MFE) and stability of optimal secondary structures of mRNA BGTV (MFE (a) and
Centroid (b)), CDPV (MFE (c) and Centroid (d)), GMPV (MFE (e) and Centroid (f)), and LDPV (MFE
(g) and Centroid (h)) candidates; Figure S2: Ramachandran plots of 3D modeled structures of vaccines,
i.e., BGTV (a), CDPV (b), GMPV (c), and LDPV (d); Figure S3: Spatial Distribution of Continuous and
Discontinuous B-cell Epitopes in BGTV, CDPV, GMPV, and LDPV. Continuous (a) and Discontinuous
(b) B-cell Epitopes of BGTV are shown in different color surfaces. Continuous (c) and Discontinuous
(d) B-cell Epitopes of CDPV are shown in different color surfaces. Continuous (e) and Discontinuous
(f) B-cell Epitopes of GMPV are shown in different color surfaces. Continuous (g) and Discontinuous
(h) B-cell Epitopes of LDPV are shown in different color surfaces; Figure S4: Covariance and elastic
network maps of vaccine candidates against T. rubrum and TLR2 receptor complexes by iMODs.
(a) Covariance map and (b) elastic network of BGTV- TLR2; (c) Covariance map and (d) elastic
network of CDPV-TLR2; (e) Covariance map and (f) elastic network of GMPV-TLR2; (g) Covariance
map and (h) elastic network of LDPV- TLR2 docked complex; Figure S5: Covariance and elastic
network maps of vaccine candidates against T. rubrum and TLR4 receptor complexes by iMODs.
(a) Covariance map and (b) elastic network of BGTV- TLR4; (c) Covariance map and (d) elastic
network of CDPV-TLR4; (e) Covariance map and (f) elastic network of GMPV-TLR4; (g) Covariance
map and (h) elastic network of LDPV- TLR4 docked complex; Figure S6: A computer-based simulation
to model the immune response of antigen and immunoglobulins levels to the BGTV (a), CDPV (b),
GMPV (c), and LDPV (d) vaccine candidates without adjuvant, administering three doses over
350 days; Table S1: Nucleotide Sequences of mRNA-Constructed Vaccine Candidates BGTV, CDPV,
GMPV, and LDPV for T. rubrum; Table S2: Refined Structures Obtained for BGTV, CDPV, GMPV, and
LDPV Vaccine Constructs Using GalaxyRefine Server.

Author Contributions: Conceptualization, A.E.; methodology, A.E., H.M. and A.Y.R.; validation,
A.E., H.M. and A.Y.R.; formal analysis, A.E.; investigation, A.E.; resources, A.E.; writing—original
draft preparation, A.E.; writing—review and editing, A.E., H.M. and A.Y.R.; visualization, A.E.;
supervision, A.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.mdpi.com/article/10.3390/pharmaceutics16080983/s1
https://www.mdpi.com/article/10.3390/pharmaceutics16080983/s1


Pharmaceutics 2024, 16, 983 32 of 38

References
1. Khurana, A.; Sardana, K.; Chowdhary, A. Antifungal Resistance in Dermatophytes: Recent Trends and Therapeutic Implications.

Fungal Genet. Biol. 2019, 132, 103255. [CrossRef]
2. Sardana, K.; Kaur, R.; Arora, P.; Goyal, R.; Ghunawat, S. Is Antifungal Resistance a Cause for Treatment Failure in Dermatophytosis:

A Study Focused on Tinea Corporis and Cruris from a Tertiary Centre? Indian Dermatol. Online J. 2018, 9, 90. [CrossRef]
3. Bishnoi, A.; Mahajan, R. Tinea Cruris. In Diagnostics to Pathogenomics of Sexually Transmitted Infections; John Wiley & Sons Ltd.:

Hoboken, NJ, USA, 2023; pp. 329–340. [CrossRef]
4. Ismail, F.; Ghani, A.; Akbar, S. Emergence of Antifungal Azole Resistance in the Fungal Strains of Tinea Corporis, Tinea Capitis,

Tinea Cruris and Tinea Pedis from the Locality of Southern Punjab, Pakistan. RADS J. Biol. Res. Appl. Sci. 2021, 12, 24–38.
[CrossRef]

5. Kashif, S.; Uddin, F.; Nasir, F.; Zafar, S.; Shahjabee; Kumar, S. Prevalence of Dermatophytes in Superficial Skin Infections in a
Tertiary Care Hospital. J. Pak. Assoc. Dermatol. 2021, 31, 484–488.

6. Ahmed, L.T.; Darweesh, Z.A.; Hussain, W.M. Prevalence of Dermatophytes Fungal Infection among Different Gender. Indian J.
Forensic Med. Toxicol. 2020, 14, 1717–1722. [CrossRef]

7. Khurana, A.; Agarwal, A.; Agrawal, D.; Panesar, S.; Ghadlinge, M.; Sardana, K.; Sethia, K.; Malhotra, S.; Chauhan, A.; Mehta, N.
Effect of Different Itraconazole Dosing Regimens on Cure Rates, Treatment Duration, Safety, and Relapse Rates in Adult Patients
with Tinea Corporis/Cruris: A Randomized Clinical Trial. JAMA Dermatol. 2022, 158, 1269–1278. [CrossRef]

8. Ameen, M. Epidemiology of Superficial Fungal Infections. Clin. Dermatol. 2010, 28, 197–201. [CrossRef]
9. Sahoo, A.; Mahajan, R. Management of Tinea Corporis, Tinea Cruris, and Tinea Pedis: A Comprehensive Review. Indian Dermatol.

Online J. 2016, 7, 77. [CrossRef]
10. Gupta, A.K.; Foley, K.A.; Versteeg, S.G. New Antifungal Agents and New Formulations Against Dermatophytes. Mycopathologia

2017, 182, 127–141. [CrossRef]
11. Chen, M.; Xu, Y.; Hong, N.; Yang, Y.; Lei, W.; Du, L.; Zhao, J.; Lei, X.; Xiong, L.; Cai, L.; et al. Epidemiology of Fungal Infections in

China. Front. Med. 2018, 12, 58–75. [CrossRef] [PubMed]
12. Girish, V.N.; Veerabhadra Goud, G.K.; Sudha, P.; Jagadevi. Prevalence of Tinea Corporis and Tinea Cruris in Chitradurga Rural

Population. IP Indian J. Clin. Exp. Dermatol. 2020, 4, 221–225. [CrossRef]
13. Patel, G.A.; Wiederkehr, M.; Schwartz, R.A. Tinea Cruris in Children. Cutis 2009, 84, 133–137.
14. Keshwania, P.; Kaur, N.; Chauhan, J.; Sharma, G.; Afzal, O.; Alfawaz Altamimi, A.S.; Almalki, W.H. Superficial Dermatophytosis

across the World’s Populations: Potential Benefits from Nanocarrier-Based Therapies and Rising Challenges. ACS Omega 2023,
8, 31575–31599. [CrossRef]

15. Van Zuuren, E.J.; Fedorowicz, Z.; El-Gohary, M. Evidence-Based Topical Treatments for Tinea Cruris and Tinea Corporis:
A Summary of a Cochrane Systematic Review. Br. J. Dermatol. 2015, 172, 616–641. [CrossRef]

16. Mijaljica, D.; Spada, F.; Harrison, I.P. Emerging Trends in the Use of Topical Antifungal-Corticosteroid Combinations. J. Fungi
2022, 8, 812. [CrossRef]

17. Hay, R. Therapy of Skin, Hair and Nail Fungal Infections. J. Fungi 2018, 4, 99. [CrossRef]
18. Paiva, J.A.; Pereira, J.M. New Antifungal Antibiotics. Curr. Opin. Infect. Dis. 2013, 26, 168–174. [CrossRef]
19. Sahni, K.; Singh, S.; Dogra, S. Newer Topical Treatments in Skin and Nail Dermatophyte Infections. Indian Dermatol. Online J.

2018, 9, 149. [CrossRef]
20. Abdallah, B.M.; Rajendran, P.; Ali, E.M. Potential Treatment of Dermatophyte Trichophyton rubrum in Rat Model Using Topical

Green Biosynthesized Silver Nanoparticles with Achillea Santolina Extract. Molecules 2023, 28, 1536. [CrossRef]
21. Kumar, R.; Srivastava, V. Application of Anti-Fungal Vaccines as a Tool against Emerging Anti-Fungal Resistance. Front. Fungal

Biol. 2023, 4, 1241539. [CrossRef] [PubMed]
22. Williams, T.J.; Harvey, S.; Armstrong-James, D. Immunotherapeutic Approaches for Fungal Infections. Curr. Opin. Microbiol. 2020,

58, 130–137. [CrossRef]
23. Nanjappa, S.G.; Klein, B.S. Vaccine Immunity against Fungal Infections. Curr. Opin. Immunol. 2014, 28, 27–33. [CrossRef]
24. Lionakis, M.S. Exploiting Antifungal Immunity in the Clinical Context. Semin. Immunol. 2023, 67, 101752. [CrossRef]
25. Inácio, M.M.; Moreira, A.L.E.; Cruz-Leite, V.R.M.; Mattos, K.; Silva, L.O.S.; Venturini, J.; Ruiz, O.H.; Ribeiro-Dias, F.; Weber, S.S.;

Soares, C.M.d.A.; et al. Fungal Vaccine Development: State of the Art and Perspectives Using Immunoinformatics. J. Fungi 2023,
9, 633. [CrossRef]

26. The Last of Us Raises the Question: Why Don’t We Have Vaccines for Fungal Infections?—Vox. Available online: https:
//www.vox.com/science-and-health/2023/2/11/23592955/last-of-us-fungal-vaccines-infections-cordyceps (accessed on 12
April 2024).

27. Edwards, J.E., Jr.; Schwartz, M.M.; Schmidt, C.S.; Sobel, J.D.; Nyirjesy, P.; Schodel, F.; Marchus, E.; Lizakowski, M.;
DeMontigny, E.A.; Hoeg, J.; et al. A Fungal Immunotherapeutic Vaccine (NDV-3A) for Treatment of Recurrent Vulvovaginal
Candidiasis-A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Infect. Dis. 2018, 66, 1928–1936. [CrossRef]

28. Da Silva, L.B.R.; Taborda, C.P.; Nosanchuk, J.D. Advances in Fungal Peptide Vaccines. J. Fungi 2020, 6, 119. [CrossRef]
29. Rachini, A.; Pietrella, D.; Lupo, P.; Torosantucci, A.; Chiani, P.; Bromuro, C.; Proietti, C.; Bistoni, F.; Cassone, A.; Vecchiarelli, A.

An Anti-β-Glucan Monoclonal Antibody Inhibits Growth and Capsule Formation of Cryptococcus neoformans In Vitro and Exerts
Therapeutic, Anticryptococcal Activity In Vivo. Infect. Immun. 2007, 75, 5085–5094. [CrossRef]

https://doi.org/10.1016/j.fgb.2019.103255
https://doi.org/10.4103/idoj.idoj_137_17
https://doi.org/10.1002/9781119380924
https://doi.org/10.37962/jbas.v12i1.348
https://doi.org/10.37506/ijfmt.v14i2.3184
https://doi.org/10.1001/jamadermatol.2022.3745
https://doi.org/10.1016/j.clindermatol.2009.12.005
https://doi.org/10.4103/2229-5178.178099
https://doi.org/10.1007/s11046-016-0045-0
https://doi.org/10.1007/s11684-017-0601-0
https://www.ncbi.nlm.nih.gov/pubmed/29380297
https://doi.org/10.18231/2581-4729.2018.0047
https://doi.org/10.1021/acsomega.3c01988
https://doi.org/10.1111/bjd.13441
https://doi.org/10.3390/jof8080812
https://doi.org/10.3390/jof4030099
https://doi.org/10.1097/QCO.0b013e32835ebcb7
https://doi.org/10.4103/idoj.idoj_281_17
https://doi.org/10.3390/molecules28041536
https://doi.org/10.3389/ffunb.2023.1241539
https://www.ncbi.nlm.nih.gov/pubmed/37746132
https://doi.org/10.1016/j.mib.2020.09.007
https://doi.org/10.1016/j.coi.2014.01.014
https://doi.org/10.1016/j.smim.2023.101752
https://doi.org/10.3390/jof9060633
https://www.vox.com/science-and-health/2023/2/11/23592955/last-of-us-fungal-vaccines-infections-cordyceps
https://www.vox.com/science-and-health/2023/2/11/23592955/last-of-us-fungal-vaccines-infections-cordyceps
https://doi.org/10.1093/cid/ciy185
https://doi.org/10.3390/jof6030119
https://doi.org/10.1128/IAI.00278-07


Pharmaceutics 2024, 16, 983 33 of 38

30. Cassone, A.; Casadevall, A. Recent Progress in Vaccines against Fungal Diseases. Curr. Opin. Microbiol. 2012, 15, 427–433.
[CrossRef]

31. Oliveira, L.V.N.; Wang, R.; Specht, C.A.; Levitz, S.M. Vaccines for Human Fungal Diseases: Close but Still a Long Way to Go. npj
Vaccines 2021, 6, 33. [CrossRef]

32. Posch, W.; Steger, M.; Wilflingseder, D.; Lass-Flörl, C. Promising Immunotherapy against Fungal Diseases. Expert Opin. Biol. Ther.
2017, 17, 861–870. [CrossRef]

33. Ba, A.; Umitzhanov, M.; Umitzhanov, M.; Aa, I.; Gk, O.; Nz, B. Characteristics of the Trichophyton Mentagrophytes F-01 Strain
Used for the Manufacture of Biologics against Bovine Trichophyton OPEN ACCESS Citation. World J. Surg. Surg. Res. 2022,
5, 1397.

34. Abo-Elyazeed, H.; Soliman, R.; Hassan, H.; El-Seedy, F.R.; Aboul-Ella, H. Development, Preparation, and Evaluation of a Novel
Non-Adjuvanted Polyvalent Dermatophytes Vaccine. Sci. Rep. 2023, 13, 157. [CrossRef]

35. Rayens, E.; Rabacal, W.; Willems, H.M.E.; Kirton, G.M.; Barber, J.P.; Mousa, J.J.; Celia-Sanchez, B.N.; Momany, M.; Norris, K.A.
Immunogenicity and Protective Efficacy of a Pan-Fungal Vaccine in Preclinical Models of Aspergillosis, Candidiasis, and
Pneumocystosis. PNAS Nexus 2022, 1, pgac248. [CrossRef]

36. Hataway, L. New Vaccine Targets Life-Threatening Fungal Infections. Available online: https://news.uga.edu/new-vaccine-
targets-fungal-infections/ (accessed on 13 April 2024).

37. Rodríguez-Cerdeira, C.; Molares-Vila, A.; Sánchez-Cárdenas, C.D.; Velásquez-Bámaca, J.S.; Martínez-Herrera, E. Bioinformatics
Approaches Applied to the Discovery of Antifungal Peptides. Antibiotics 2023, 12, 566. [CrossRef]

38. Avina, S. Breakthroughs and Challenges in Fungal Vaccine Development. Available online: https://asm.org/articles/2023
/november/breakthroughs-and-challenges-in-fungal-vaccine-dev (accessed on 12 April 2024).

39. Basu, A. In Silico Epitope-Based Vaccine Prediction against Fungal Infection Aspergillosis. Challenges 2022, 13, 29. [CrossRef]
40. Bidmos, F.A.; Siris, S.; Gladstone, C.A.; Langford, P.R. Bacterial Vaccine Antigen Discovery in the Reverse Vaccinology 2.0 Era:

Progress and Challenges. Front. Immunol. 2018, 9, 2315. [CrossRef]
41. Delany, I.; Rappuoli, R.; Seib, K.L. Vaccines, Reverse Vaccinology, and Bacterial Pathogenesis. Cold Spring Harb. Perspect. Med.

2013, 3, a012476. [CrossRef]
42. Elalouf, A.; Yaniv-Rosenfeld, A. Immunoinformatic-Guided Designing and Evaluating Protein and MRNA-Based Vaccines

against Cryptococcus neoformans for Immunocompromised Patients. J. Genet. Eng. Biotechnol. 2023, 21, 108. [CrossRef]
43. Zhang, L. Multi-Epitope Vaccines: A Promising Strategy against Tumors and Viral Infections. Cell. Mol. Immunol. 2018,

15, 182–184. [CrossRef]
44. Nosrati, M.; Behbahani, M.; Mohabatkar, H. Towards the First Multi-Epitope Recombinant Vaccine against Crimean-Congo

Hemorrhagic Fever Virus: A Computer-Aided Vaccine Design Approach. J. Biomed. Inform. 2019, 93, 103160. [CrossRef]
45. Hajighahramani, N.; Nezafat, N.; Eslami, M.; Negahdaripour, M.; Rahmatabadi, S.S.; Ghasemi, Y. Immunoinformatics Analysis

and In Silico Designing of a Novel Multi-Epitope Peptide Vaccine against Staphylococcus aureus. Infect. Genet. Evol. 2017, 48, 83–94.
[CrossRef]

46. Sette, A.; Livingston, B.; McKinney, D.; Appella, E.; Fikes, J.; Sidney, J.; Newman, M.; Chesnut, R. The Development of
Multi-Epitope Vaccines: Epitope Identification, Vaccine Design and Clinical Evaluation. Biologicals 2001, 29, 271–276. [CrossRef]

47. Mahmoodi, S.; Nezafat, N.; Barzegar, A.; Negahdaripour, M.; Nikanfar, A.R.; Zarghami, N.; Ghasemi, Y. Harnessing Bioinformatics
for Designing a Novel Multiepitope Peptide Vaccine Against Breast Cancer. Curr. Pharm. Biotechnol. 2016, 17, 1100–1114.
[CrossRef]

48. Al Fayez, N.; Nassar, M.S.; Alshehri, A.A.; Alnefaie, M.K.; Almughem, F.A.; Alshehri, B.Y.; Alawad, A.O.; Tawfik, E.A. Recent
Advancement in MRNA Vaccine Development and Applications. Pharmaceutics 2023, 15, 1972. [CrossRef]

49. Gote, V.; Bolla, P.K.; Kommineni, N.; Butreddy, A.; Nukala, P.K.; Palakurthi, S.S.; Khan, W. A Comprehensive Review of MRNA
Vaccines. Int. J. Mol. Sci. 2023, 24, 2700. [CrossRef]

50. Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. MRNA Vaccines—A New Era in Vaccinology. Nat. Rev. Drug Discov. 2018,
17, 261–279. [CrossRef]

51. Hu, C.; Bai, Y.; Liu, J.; Wang, Y.; He, Q.; Zhang, X.; Cheng, F.; Xu, M.; Mao, Q.; Liang, Z. Research Progress on the Quality Control
of MRNA Vaccines. Expert Rev. Vaccines 2024, 23, 570–583. [CrossRef]

52. Chavda, V.P.; Soni, S.; Vora, L.K.; Soni, S.; Khadela, A.; Ajabiya, J. MRNA-Based Vaccines and Therapeutics for COVID-19 and
Future Pandemics. Vaccines 2022, 10. [CrossRef]

53. Szabó, G.T.; Mahiny, A.J.; Vlatkovic, I. COVID-19 MRNA Vaccines: Platforms and Current Developments. Mol. Ther. 2022,
30, 1850–1868. [CrossRef]

54. Latge, J.P.; Debeaupuis, J.P.; Sarfati, J.; Diaquin, M.; Paris, S. Cell Wall Antigens in Aspergillus fumigatus. Arch. Med. Res. 1993,
24, 269–274.

55. Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus
Species. Front. Microbiol. 2020, 10, 492056. [CrossRef]

56. Gow, N.A.R.; Latge, J.P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017,
5, 28513415. [CrossRef]

57. López-Ribot, J.L.; Casanova, M.; Murgui, A.; Martínez, J.P. Antibody Response to Candida albicans Cell Wall Antigens. FEMS
Immunol. Med. Microbiol. 2004, 41, 187–196. [CrossRef]

https://doi.org/10.1016/j.mib.2012.04.004
https://doi.org/10.1038/s41541-021-00294-8
https://doi.org/10.1080/14712598.2017.1322576
https://doi.org/10.1038/s41598-022-26567-3
https://doi.org/10.1093/pnasnexus/pgac248
https://news.uga.edu/new-vaccine-targets-fungal-infections/
https://news.uga.edu/new-vaccine-targets-fungal-infections/
https://doi.org/10.3390/antibiotics12030566
https://asm.org/articles/2023/november/breakthroughs-and-challenges-in-fungal-vaccine-dev
https://asm.org/articles/2023/november/breakthroughs-and-challenges-in-fungal-vaccine-dev
https://doi.org/10.3390/challe13020029
https://doi.org/10.3389/fimmu.2018.02315
https://doi.org/10.1101/cshperspect.a012476
https://doi.org/10.1186/s43141-023-00560-3
https://doi.org/10.1038/cmi.2017.92
https://doi.org/10.1016/j.jbi.2019.103160
https://doi.org/10.1016/j.meegid.2016.12.010
https://doi.org/10.1006/biol.2001.0297
https://doi.org/10.2174/1389201017666160914191106
https://doi.org/10.3390/pharmaceutics15071972
https://doi.org/10.3390/ijms24032700
https://doi.org/10.1038/nrd.2017.243
https://doi.org/10.1080/14760584.2024.2354251
https://doi.org/10.3390/vaccines10122150
https://doi.org/10.1016/j.ymthe.2022.02.016
https://doi.org/10.3389/fmicb.2019.02993
https://doi.org/10.1128/microbiolspec.FUNK-0035-2016
https://doi.org/10.1016/j.femsim.2004.03.012


Pharmaceutics 2024, 16, 983 34 of 38

58. Kaur, G.; Chawla, S.; Kumar, P.; Singh, R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers.
Vaccines 2023, 11, 1658. [CrossRef]

59. Gu, Y.; Duan, J.; Yang, N.; Yang, Y.; Zhao, X. MRNA Vaccines in the Prevention and Treatment of Diseases. MedComm 2022,
3, e167. [CrossRef]

60. Doytchinova, I.A.; Flower, D.R. VaxiJen: A Server for Prediction of Protective Antigens, Tumour Antigens and Subunit Vaccines.
BMC Bioinform. 2007, 8, 4. [CrossRef]

61. Thumuluri, V.; Almagro Armenteros, J.J.; Johansen, A.R.; Nielsen, H.; Winther, O. DeepLoc 2.0: Multi-Label Subcellular
Localization Prediction Using Protein Language Models. Nucleic Acids Res. 2022, 50, W228–W234. [CrossRef]

62. Bagheri, S.H.; Asghari, A.; Farhadi, M.; Shamshiri, A.R.; Kabir, A.; Kamrava, S.K.; Jalessi, M.; Mohebbi, A.; Alizadeh, R.;
Honarmand, A.A.; et al. Coincidence of COVID-19 Epidemic and Olfactory Dysfunction Outbreak in Iran. Med. J. Islam. Repub.
Iran 2020, 34, 62. [CrossRef]

63. Naveed, M.; Sheraz, M.; Amin, A.; Waseem, M.; Aziz, T.; Khan, A.A.; Ghani, M.; Shahzad, M.; Alruways, M.W.; Dablool, A.S.; et al.
Designing a Novel Peptide-Based Multi-Epitope Vaccine to Evoke a Robust Immune Response against Pathogenic Multidrug-
Resistant Providencia Heimbachae. Vaccines 2022, 10, 1300. [CrossRef]

64. Krogh, A.; Larsson, B.; Von Heijne, G.; Sonnhammer, E.L.L. Predicting Transmembrane Protein Topology with a Hidden Markov
Model: Application to Complete Genomes. J. Mol. Biol. 2001, 305, 567–580. [CrossRef]

65. Walker, J.M. The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005.
66. Rawal, K.; Sinha, R.; Abbasi, B.A.; Chaudhary, A.; Nath, S.K.; Kumari, P.; Preeti, P.; Saraf, D.; Singh, S.; Mishra, K.; et al.

Identification of Vaccine Targets in Pathogens and Design of a Vaccine Using Computational Approaches. Sci. Rep. 2021,
11, 17626. [CrossRef] [PubMed]

67. Liu, L.; Yu, W.; Cai, K.; Ma, S.; Wang, Y.; Ma, Y.; Zhao, H. Identification of Vaccine Candidates against Rhodococcus equi by
Combining Pangenome Analysis with a Reverse Vaccinology Approach. Heliyon 2023, 9, e18623. [CrossRef]

68. Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and
Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607.
ISBN 978-1-59259-890-8.

69. Madeira, F.; Madhusoodanan, N.; Lee, J.; Eusebi, A.; Niewielska, A.; Tivey, A.R.N.; Lopez, R.; Butcher, S. The EMBL-EBI Job
Dispatcher Sequence Analysis Tools Framework in 2024. Nucleic Acids Res. 2024, 52, W521–W525. [CrossRef] [PubMed]

70. Hon, J.; Marusiak, M.; Martinek, T.; Kunka, A.; Zendulka, J.; Bednar, D.; Damborsky, J. SoluProt: Prediction of Soluble Protein
Expression in Escherichia coli. Bioinformatics 2021, 37, 23–28. [CrossRef] [PubMed]

71. Fleri, W.; Paul, S.; Dhanda, S.K.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The Immune Epitope Database and Analysis Resource in
Epitope Discovery and Synthetic Vaccine Design. Front. Immunol. 2017, 8, 278. [CrossRef] [PubMed]

72. Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC
Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res.
2021, 48, W449–W454. [CrossRef] [PubMed]

73. Singh, H.; Raghava, G.P.S. ProPred1: Prediction of Promiscuous MHC Class-I Binding Sites. Bioinformatics 2003, 19, 1009–1014.
[CrossRef] [PubMed]

74. Sharma, N.; Naorem, L.D.; Jain, S.; Raghava, G.P.S. ToxinPred2: An Improved Method for Predicting Toxicity of Proteins. Brief.
Bioinform. 2022, 23, bbac174. [CrossRef] [PubMed]

75. Calis, J.J.A.; Maybeno, M.; Greenbaum, J.A.; Weiskopf, D.; De Silva, A.D.; Sette, A.; Keşmir, C.; Peters, B. Properties of MHC Class
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