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Abstract

Focusing on the problem incurred during particle swarm optimization (PSO) that tends to fall

into local optimization when solving Nash equilibrium solutions of games, as well as the

problem of slow convergence when solving higher order game pay off matrices, this paper

proposes an improved Predator-Prey particle swarm optimization (IPP-PSO) algorithm

based on a Predator-Prey particle swarm optimization (PP-PSO) algorithm. First, the con-

vergence of the algorithm is advanced by improving the distribution of the initial predator

and prey. By improving the inertia weight of both predator and prey, the problem of “precoc-

ity” of the algorithm is improved. By improving the formula used to represent particle veloc-

ity, the problems of local optimizations and slowed convergence rates are solved. By

increasing pathfinder weight, the diversity of the population is increased, and the global

search ability of the algorithm is improved. Then, by solving the Nash equilibrium solution of

both a zero-sum game and a non-zero-sum game, the convergence speed and global opti-

mal performance of the original PSO, the PP-PSO and the IPP-PSO are compared. Simula-

tion results demonstrated that the improved Predator-Prey algorithm is convergent and

effective. The convergence speed of the IPP-PSO is significantly higher than that of the

other two algorithms. In the simulation, the PSO does not converge to the global optimal

solution, and PP-PSO approximately converges to the global optimal solution after about 40

iterations, while IPP-PSO approximately converges to the global optimal solution after about

20 iterations. Furthermore, the IPP-PSO is superior to the other two algorithms in terms of

global optimization and accuracy.

Introduction

During the strategy selection for a swarm of Unmanned Aerial Vehicles (UAVs), not only the

state of UAV itself but also the strategy of the enemy should be considered. Therefore, more

scientific and reasonable strategies can be made by introducing game theory strategies into the

confrontation decision of UAVs. Thus, game theory was introduced into UAV confrontation
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decision-making [1–5]. Due to the large number of swarming UAVs and the many available

alternative countermeasures, each strategy needs to be evaluated, resulting in the amount of

digital storage space needed for the evaluation values exploding exponentially as the number

of countermeasures increases. Therefore, problems such as slow algorithm convergence or

convergence to the local optimal solution will be encountered when solving the Nash equilib-

rium solution of such a game.

At present, the main methods for solving the Nash equilibrium solution include the game

solution based on an evolutionary algorithm, an ant colony algorithm, application of graph

theory and use of particle swarm optimization (PSO).

Evolutionary Strategies [6–9] are search algorithms proposed by Rechenberg and Schwefel

from Germany. In each iteration of the algorithm, each group of individuals (parent genera-

tion individuals) in the population recombine and mutate (mutation) to produce offspring

individuals. Recombination can be achieved with discrete recombination, median recombina-

tion and mixed recombination. Mutation is added by adding a random vector subject to a nor-

mal distribution, and the randomness thereof is controlled by manipulating the variance with

this variance representing the mutation degree. Using an evolutionary algorithm to solve game

problems [10] will use binary encoding strategies for chromosomes, and each player consti-

tutes a chromosome. The situation faced by a player is converted into two binary chromosome

groups, using different encoding, crossover, mutation and selection strategies, thus generating

new situations through the calculation of fitness functions, and selection of favorable or good

chromosomes. In this manner, the Nash equilibrium solution of the game is obtained.

An Ant Colony System is an intelligent biological algorithm proposed by Italian scholars

Dorigo, Maniezzo et al. [11], through studying the foraging behavior of ants. An improved ant

colony algorithm was proposed for solving Nash equilibrium solutions of finite N-player non-

cooperative games [12]. In this class of analysis, ants are first randomly distributed in the

range of the feasible solution and initial parameters. Thereafter, based on an individual ant’s

variable pheromone strength and fitness function calculation of transition probability, and

global search, an ant deploys a dynamic random search technique for local searches, and then

updates their pheromone strength. When the optimal solution meeting the precision require-

ments of the algorithm reaches the maximum allowed number of iterations, the output is con-

sidered the optimal solution. Compared with the evolutionary algorithm, the improved ant

colony algorithm has better computational performance and can more quickly converge to a

more precise solution.

Graph Theory has its roots in the Konigsberg problem. A solution method of Nash equilib-

rium based on graph theory was proposed to solve two-person non-cooperative pure strategy

games [13]. The problem of solving the Nash equilibrium solution of the game model is trans-

formed into the problem of solving the confluence point of the directed graph. If there is a con-

fluence point in the graph, then that point is a Nash equilibrium solution. If there is no

confluence point in the graph, then the game has no Nash equilibrium solution. Compared

with other methods, the graph theory method finds Nash equilibrium by finding the conflu-

ence point, which is more intuitive and simple, and has lower time complexity that other

options while improving the speed of solving Nash equilibrium solution of two-person non-

cooperative game.

Finally, a PSO method [14, 15] can be used to solve the Nash equilibrium of the attack and

defense confrontation game of clustered UAVs.

Aiming at the dynamic multi-strategy of UAV cooperative attack, Wang Y et al. [1] com-

bined the dynamic target assignment problem with the Nash equilibrium concept of game the-

ory, and used the improved PSO algorithm based on an elite reselection mechanism to obtain

the optimal strategy combination of both sides in the sense of Nash equilibrium.
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A game theory method based on Predator-Prey Particle Swarms Optimization (PP-PSO)

was proposed [2], which de-composed the dynamic task assignment problem of multiple

UAVs in military operations and modeled it as a two-person game at each decision-making

stage. In each decision stage, both parties seek the best solution for the purpose of maximizing

their own objective function, and use the PP-PSO algorithm to solve the mixed Nash equilib-

rium as the optimal allocation scheme at each stage.

The original PSO algorithm easily falls into local optimum. Inspired by the swarm behavior

of sardines and herring, this algorithm was optimized according to the predation behavior,

and this improved the subject algorithm’s shortcoming regarding its prevalence of local opti-

mization to a certain extent [16–18]. However, due to the use of two populations, the conver-

gence speed of the algorithm is slow when approaching the global optimal value, and the

whole population cannot entirely converge to the global optimal value (that is, the average fit-

ness value of the population cannot converge). This paper mainly studies a generally improved

Predator-Prey Particle Swarm Optimization(IPP-PSO) algorithm to solve the Nash equilib-

rium of the game. This algorithm can also be used to solve the Nash equilibrium of the game

problem of the attack and defense of UAV swarms.

The main contributions of this paper are summarized as follows:

• Improved initial predator and prey distribution. During initialization, some particles with

better fitness values are deemed as prey, and the remaining particles with poorer fitness val-

ues are set as predators. The predators can improve the convergence of the algorithm by

simultaneously chasing the target and prey;

• Improved inertia weights in predators and prey. In the inertial weight value, the average fit-

ness value of the population of particles is considered, so that the nearer the particle is to the

global optimal, the smaller the inertial weight value is, so as to improve the “precocity” prob-

lem of the algorithm;

• Improved particle velocity calculation formula. When the fitness value of a particle is less

than a certain threshold value, the particle no longer considers its own population optimal,

but approaches the global optimal, so as to solve the problems of global optimal and algo-

rithm convergence speed;

• Add pathfinder to increase the diversity of the population. Pathfinder can be a particle ran-

domly distributed in the solution space, or it can be a particle evolved from the current

global optimal solution. Pathfinder can improve the global search ability of the algorithm,

the “precocity” of the better algorithm and the problem of the global optimal solution.

This paper is organized as follows: Section I introduces the reason why we establish the

IPP-PSO. Section II introduces the related word of the PSO. Section III introduces the PSO

and PP-PSO. In section IV the IPP-PSO algorithm is established. Section V shows the simula-

tion results and analysis. Finally, conclusions are set forth in Section VI.

Related work

The implementation process of the PSO algorithm has a great relationship with the value of its

parameters. How to select these parameters is an urgent problem to be solved. When a PSO

algorithm is applied to the optimization of complex high-dimensional problems, premature

convergence and other problems are often encountered [19]. In the past two decades, a large

number of scholars have conducted in-depth research on the improvement of the PSO

algorithm.
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The theoretical research of the PSO algorithm includes improved strategy research of PSO

algorithm. Among them, the theoretical study of PSO algorithms focuses on the dynamic char-

acteristics of such algorithms and the topological structure of PSO algorithm. Furthermore,

the research studies the control parameters of PSO algorithms. The improved strategy

deployed therein mainly focused on adaptive PSO control parameters, improved learning

strategies, and mixed PSO strategies [20].

The problems of the multi-objective PSO algorithm are as follows:

1). How to select “leader” particles in the optimization process to lead the entire population

to quickly approach the Pareto front under the premise of retaining some individual

information, that is, the optimal particle selection strategy;

2). In PSO, the population individuals are affected by the “optimal” particles, and the rapid

convergence leads to “precocity”. This then presents the question of how to guide the par-

ticles to “jump out” of the local optimal, that is, the diversity preservation mechanism;

3). As the number of non-dominated solutions in the external storage concentration

increases rapidly, then how to guide the population to further improve the search effi-

ciency under the premise of ensuring the diversity of the population, so as to strengthen

the advantages of the algorithm in the convergence rate, that is, the means to improve the

convergence;

4). How to dynamically coordinate the relationship between the whole development and

local search in different stages of the optimization process to obtain the best optimization

results, that is, the balance method of diversity and convergence.

In order to improve the performance of the algorithm, iterative formula improvement,

dynamic tuning of important parameters and adjustment of information interaction between

particles are carried out, that is, the iterative formula, parameters and topology improvement

scheme [21]. The algorithm improvement measures for these problems include: the selection

of optimal particles, the preservation of diversity, the improvement of convergence, the bal-

ance of diversity and convergence, and the improvement of iterative formula, parameters and

topology structure.

As a group optimization algorithm, in order to improve the search ability and avoid falling

into local optimal, the PSO should maintain diversity in the early stage of the algorithm. In the

later stages of the algorithm, it is particularly important to improve its convergence ability

[22]. Common diversity control methods are as follows: diversity control based on particle

spacing, diversity control based on exclusion and disturbance, diversity control based on mul-

tiple subgroups, and population diversity detection.

The improvement measures of the PSO algorithm are as follows [23]: 1) Increase the inertia

weight and convergence factor to improve the convergence speed; 2) PSO with a selection

mechanism will inhibit the control effect of a few super particles and improves the success rate

of convergence; 3) PSO with a mutation operator can adjust the search speed of particles and

improve the convergence speed and accuracy; 4) Based on the improvement of neighborhood

operators and topology structure, different neighborhood topologies are used to study the per-

formance of guaranteed convergence PSO; 5) A new particle structure or group structure is

constructed to effectively improve the global convergence ability of the algorithm; 6) Improve

or use the new position/speed update formula and improve the global and local search ability,

thereby avoiding the algorithm falling into the local optimal; 7) The organic combination of

other evolutionary optimization technology PSO algorithm.
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Two traditional particle swarm optimization algorithms

Particle swarm optimization

PSO is an algorithm that simulates the foraging behavior of birds. If a flock of birds in a ran-

dom search of their area for food, and all the birds do not know the exact location of food, but

they know that others in their location will be searching together for the flock to find the near-

est food, then during the process of search and to avoid any adjacent bird collision, they match

both the surrounding birds’ speed, and their own vector to the target.

The foraging behavior of birds is the origin of the idea of the PSO algorithm. A particle is

used to represent a bird, then the current position of each particle is a feasible solution of the

problem to be solved. The particle searches in the n-dimensional space, and the search process

of the particle is factored into the flight process. The velocity is adjusted according to the his-

torical optimal solution of the particle itself and the optimal solution of the population. The

adjustment method is shown in Fig 1:

In Fig 1,~xðtÞ is the position of the particle at time t,~xðt þ 1Þ is the position of the particle at

the next unit of time (time t+1),~vðtÞ is the velocity of the particle at time t,~vðt þ 1Þ is the

velocity of the particle at time t,~pðtÞ is the optimal solution of the particle before time t, and

~gðtÞ is the historical optimal solution of the whole particle swarm. Therefore, the formula for

particle I to update its own velocity and position is shown in (1) and (2):

viðt þ 1Þ ¼ w� viðtÞ þ c1r1ðpiðtÞ � xiðtÞÞ þ c2r2ðgðtÞ � xiðtÞÞ ð1Þ

xiðt þ 1Þ ¼ xiðtÞ þ viðtÞ ð2Þ

In (1), w is the inertia factor; c1,c2 are learning factors, also known as the acceleration con-

stants; and r1,r2 are each a uniform random number within the range [0, 1].

It is assumed that the feasible solution space is D- dimensional, and the particle swarm con-

sists of N particles. The relevant symbols are as follows:

Position of the ith particle:

Xi ¼ ðxi1; xi2; . . . ; xiDÞ; i ¼ 1; 2; . . . ;N ð3Þ

Fig 1. Particle flight velocity diagram.

https://doi.org/10.1371/journal.pone.0260231.g001
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The flight speed of the ith particle:

Vi ¼ ðvi1; vi2; . . . ; viDÞ; i ¼ 1; 2; . . . ;N ð4Þ

The historical optimal solution of the ith particle is the individual extreme value:

Pi
best ¼ ðpi1; pi2; . . . ; piDÞ; i ¼ 1; 2; . . . ;N ð5Þ

The historical optimal solution of the entire particle swarm is the global extremum:

gbest ¼ ðpg1; pg2; . . . ; pgDÞ ð6Þ

The degree of the solution represented by the particle is judged according to the fitness

function value.

The steps of the PSO algorithm are as follows:

Step 1: Initialization of the population, including size N of the particle swarm, position Xi and

velocity Vi of each particle;

Step 2: Set the maximum number of iterations CycleMax, and make the current number of

iterations t = 1;

Step 3: Calculate the fitness value Fi(t) of each particle;

Step 4: Compare the fitness value Fi(t) of each particle with the fitness value Fi
pbest of pbest Pi

best.

If FiðtÞ < Fi
pbest, replace Pi

best with Xi(t) and Fi
pbest with Fi(t).

Step 5: Compare the fitness value Fi(t) of each particle with the fitness value Fi
gbest of gibest. If

Fi(t)<Fgbest, replace gbest with Xi(t) and Fgbest with Fi(t).

Step 6: Update the velocity vector of each particle according to (1);

Step 7: Update the position vector of each particle according to (1);

Step 8: Judge whether the maximum number of iterations CycleMax or the accuracy require-

ments are reached. If yes, the simulation ends. Otherwise, return to Step 3.

The flow chart of particle swarm optimization algorithm is shown in Fig 2.

Predator-prey particle swarm optimization

Because the original PSO algorithm easily falls into the local optimum, the PSO algorithm was

optimized according to the predation behavior [16–18]. This optimization idea was was

inspired by the swarm behavior of sardines and herring. Particles are divided into two catego-

ries, predator and prey. Predators (particles that prey on) pursue their prey and move toward

the center of the prey group; The prey (the escaping particle) escapes from the predator within

the range of feasible solutions, and the prey adopt different escape behaviors by weighing the

predator risk and energy. The velocity and position of predator and prey in the particle swarm
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Fig 2. Flow chart of the particle swarm optimization.

https://doi.org/10.1371/journal.pone.0260231.g002
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optimization algorithm are defined as (7) and (8):

vdiðt þ 1Þ ¼ wdvdiðtÞ þ c1r1ðpdiðtÞ � xdiðtÞÞþ

c2r2ðgdðtÞ � xdiðtÞÞ þ c3r3ðgðtÞ � xdiðtÞÞ
ð7Þ

vriðt þ 1Þ ¼ wrvriðtÞ þ c4r4ðpriðtÞ � xriðtÞÞ þ c5r5ðgrðtÞ � xriðtÞÞ þ c6r6ðgðtÞ � xriðtÞÞ

� P � a � sign½xdIðtÞ � xriðtÞ� � expð� bjxdIðtÞ � xriðtÞjÞ
ð8Þ

xdiðt þ 1Þ ¼ xdi þ vdiðt þ 1Þ ð9Þ

xriðt þ 1Þ ¼ xri þ vriðt þ 1Þ ð10Þ

The d and r in the subscripts of (6) and (7) denote predator and prey, respectively.

pdi is the historical best solution for the ith predator (individual extremum), pri is the histori-

cal best location for the ith prey, gd is the historical best solution of the predator population

(population extremum), gr is the historical best solution of prey population (population extre-

mum), g is the best position (global extremum) found in the whole particle swarm so far. The

definitions of wd and wr are shown in Eqs (11) and (12).

wd ¼ 0:2 exp � 10
iteration

iterationmax

� �

þ 0:4 ð11Þ

wr ¼ wmax �
wmax � wmin

iterationmax
iteration ð12Þ

wd and wr are the inertia weights of predator and prey, respectively. The value that inertia

weights plays an important role in the global and local search ability and algorithm conver-

gence of the algorithm. iterationmax represents the maximum number of iterations. wmax and

wmin represent the maximum and minimum values of wr, respectively. The definition of I in

(8) is shown in (13)

I ¼ fkjmin
k
ðjxdk � xrijÞg ð13Þ

I is the number of predators around the ith prey. In (8), P indicates whether the prey is able

to escape (P = 0(yes) or P = 1 (no)), and a and b are the parameters that determine how diffi-

cult it is for the prey to escape the predator. The closer the predator is to the prey, the harder it

is for the prey to escape the predator. sign is a symbolic function, defined as Formula (14):

signðxÞ ¼

� 1 x < 0

0 x ¼ 0

1 x > 0

8
>>><

>>>:

ð14Þ

Then the flow chart of Predator-Prey Particle Swarms Algorithm is shown in Fig 3.

The algorithm steps are as follows:

Step 1: Initialization of the population. Set particle swarm size N, predator group size D, prey

group size R to satisfy N = D + R, the initial position and initial velocity of each particle;

Step 2: Set the maximum number of iterations to iterationmax, and set the current number of

iterations to iteration = 1;
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Fig 3. Flow chart of predator-prey particle swarm optimization.

https://doi.org/10.1371/journal.pone.0260231.g003
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Step 3: Calculate the fitness values Fdi(t) and Fri(t) of each particle in predator group and prey

group respectively;

Step 4: Compare the fitness value Fdi(t) of each particle in the predator swarm with the fitness

value Fdi
pbest of the individual extreme value Pbest

di . If FdiðtÞ < Fdi
pbest, P

best
di will be replaced by

Xdi(t), and Fdi
pbest will be replaced by Fdi(t).

The fitness value Fri(t) of each particle in the prey group was compared with the fitness

value Fri
pbest of the individual extreme value Pbest

ri . If FriðtÞ < Fri
pbest, P

best
ri was replaced with Xri(t),

and Fri
pbest was replaced with Fri(t).

Step 5: Compare the fitness value Fdi(t) of each particle in the predator population with the fit-

ness value Fd
pbest of the extreme population gd of the predator population. If FdiðtÞ < Fd

pbest,

then replace gd with Xdi(t) and Fd
pbest with Fdi(t).

The fitness value Fri(t) of each particle in the prey group was compared with the fitness

value Fr
pbest of the population extreme value gr of the prey group. If FriðtÞ < Fr

pbest, gr was

replaced by Xri(t), and Fr
pbest was replaced by Fri(t).

Step 6: Compare the fitness value Fi(t) of each particle in the population with the fitness value

Fgbest of the global extreme value gbest. If Fi(t) < Fgbest, replace gbest with Xi(t) and Fgbest with

Fi(t).

Step 7: Update the velocity vector of each particle in the predator swarm according to (7);

Step 8: Update the velocity vector of each particle in the prey group according to (8);

Step 9: Update the position vectors of each particle in the predator group and prey group

according to (9) and (10) respectively;

Step 10: Determine whether the maximum number of iterations is iterationmax or the accuracy

requirements are met. If yes, output the optimal solution and end; otherwise, return to

Step 3.

Improved predator-prey particle swarm optimization

When two populations are used, the convergence speed of the algorithm is slow as it

approaches the global optimal value, and the whole population cannot all converge to the

global optimal value (that is, the average fitness value of the population cannot converge).

According to the above shortcomings, the PP-PSO algorithm is improved as follows:

1) Improved initial predator and prey distribution. For the randomly distributed particles

in the solution space, because predators can hunt prey close to the target, during initialization

one calculates the population fitness function value for all the particles. The fitness value is set

higher for prey particles, with the remainder of the poor fitness values set as predators, and

predators (by chasing targets at the same time) and prey improve the convergence of the

algorithm.

2) Improved inertia weights in predators and prey. In the PP-PSO algorithm, the inertia

weight is related to the number of iterations. With an increase in the number of iterations, the

inertia weight gradually decreases. However, the increase of the number of iterations does not

mean that the algorithm has converged to the global optimal. Therefore, the average fitness

value of the population particle is considered in the inertia weight value, that is, the closer the
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particle is to the global optimal, the smaller the inertia weight is, thus improving the problem

of “precocity” of the algorithm. The improved definitions of wd and wr are shown in (15) and

(16):

wd ¼ 0:2 exp � 10
iteration

iterationmax

� �

þ 0:4

� �

� 1 � exp
� 1

D

XD

i¼1

FdiðtÞ

 ! !

ð15Þ

wr ¼ wmax �
wmax � wmin

iterationmax
iteration

� �

� 1 � exp
� 1

R

XR

i¼1

FriðtÞ

 ! !

ð16Þ

3) Improved particle velocity calculation formula. In the PP-PSO algorithm, the velocity

formulas of predator and prey particles do not change in the iterative process. As the predator

population is affected by the optimal solution of prey population and its own population, the

whole population cannot converge to the global optimal value. According to this shortcoming,

the velocity calculation formula of the particle is improved. When the fitness value of the parti-

cle is less than a certain threshold, the particle no longer considers the population optimization

and approaches the global optimization. The threshold can be determined by Monte Carlo

simulation thusly: Within the range of the fitness function, p as the step length, generate q
threshold points (q = the range divided by p, round operation); The threshold points are

obtained with equal probability, and simulation is performed every time a threshold point is

obtained; The simulation runs n times; The number of iterations of global optimization calcu-

lated for the same threshold point is statistically processed, and the threshold point with the

best performance is selected as the final threshold point of the entire algorithm. Then, the

velocity definitions of predator and prey in the improved predator-prey particle swarm opti-

mization algorithm are shown in Eqs (17) and (18):

vdiðt þ 1Þ ¼

wdvdiðtÞ þ c1r1ðpdiðtÞ � xdiðtÞÞ þ c2r2ðgdðtÞ � xdiðtÞÞþ

c3r3ðgrðtÞ � xdiðtÞÞ þ c4r4ðgðtÞ � xdiðtÞÞ FdiðtÞ > threshold

wdvdiðtÞ þ c1r1ðpdiðtÞ � xdiðtÞÞ þ c3r3ðgðtÞ � xdiðtÞÞ FdiðtÞ � threshold

ð17Þ

8
>>>><

>>>>:

vriðt þ 1Þ ¼

wrvriðtÞ þ c5r5ðpriðtÞ � xriðtÞÞ þ c6r7ðgrðtÞ � xriðtÞÞþ

c7r7ðgrðtÞ � xriðtÞÞ FriðtÞ > threshold

wrvriðtÞ þ c5r5ðpriðtÞ � xriðtÞÞ þ c7r7ðgðtÞ � xriðtÞÞ FriðtÞ � threshold

ð18Þ

8
>>>><

>>>>:

4) Add pathfinder to increase the diversity of the population. Through improving the distri-

bution of the initial predator and prey inertia weight values while improving the particle veloc-

ity formula we can improve the convergence speed of algorithm in theory, but it may make the

algorithm demonstrate a “premature” phenomenon. Therefore, introducing the pathfinder to

a random distribution in the solution space of particles can also be used for the current global

optimal solutions evolved particles. In this manner, the global searching ability of the algo-

rithm is improved by means of pathfinder. According to the algorithm principle, the optimiza-

tion degree of the individual extremum δp(t) and the global extremum δg(t) in the t iteration
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can be obtained, as shown in (19) and (20):

dpðtÞ ¼
XD

i¼1

FdiðtÞ þ
XR

i¼1

FriðtÞ � ð
XD

i¼1

Fdiðt � 1Þ þ
XR

i¼1

Friðt � 1ÞÞ ð19Þ

dgðtÞ ¼ FgbestðtÞ � Fgbestðt � 1Þ ð20Þ

If the individual optimization threshold OptimalValue is set, when

dpðtÞ < OptimalValue� N ð21Þ

and

dgðtÞ < OptimalValue ð22Þ

This then indicates that the optimization degree of the algorithm in the t iteration is low.

Therefore, the pathfinder is added, and the pathfinder can evolve a new solution in the feasible

solution space according to the current global extreme value, or generate a new solution ran-

domly in the feasible solution space. Pathfinder evolves according to the evolutionary formula

(23) of the evolutionary strategy:

Xk
tiðtÞ ¼ gkðtÞ þ Nð0; sÞ ð23Þ

In (23), Xk
tiðtÞ is the kth component of the ith pathfinder particle; gk(t) is the kth component

of the global extremum; and N(0, σ) is a random number following a normal distribution, with

a mean of zero and a standard deviation of σ.

According to the above improvements, the flow chart of the improved predator-prey parti-

cle swarm optimization is shown in Fig 4. The steps of the algorithm are as follows:

Fig 4. Improved predator-prey particle swarm optimization flow chart.

https://doi.org/10.1371/journal.pone.0260231.g004
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Step 1: Initialization of the population. Set particle swarm size N, predator group size D, prey

group size R to satisfy N = D + R, giving the initial position and initial velocity of each

particle.

Step 2: Calculate the fitness value Fi(0) of each initial particle, and sort the fitness value from

small to large. The particle corresponding to the fitness value of the first ranked R is prey,

and the remaining particles are predators.

Step 3: Set the maximum number of iterations iterationmax, and set the current number of iter-

ations to iteration = 1;

Step 4: Calculate the fitness values Fdi(t) and Fri(t) of each particle in predator group and prey

group respectively;

Step 5: Compare the fitness value Fdi(t) of each particle in the predator group with the fitness

value Fdi
pbest of individual extreme value Pbest

di , if FdiðtÞ < Fdi
pbest, replace Pbest

di with Xdi(t), and

Fdi
pbest with Fdi(t);

By comparing the fitness value Fri(t) of each particle in the prey group with the fitness value

Fri
pbest of individual extreme value Pbest

ri , if FriðtÞ < Fri
pbest, replace Pbest

ri with Xri(t), and Fri
pbest with Fri(t);

Step 6: Compare the fitness value Fdi(t) of each particle in the predator population with the fit-

ness value Fd
pbest of the population extreme value gd of the predator population, if

FdiðtÞ < Fd
pbest, replace gd with Xdi(t), and Fd

pbest with Fdi(t);

The fitness value Fri(t) of each particle in the prey group is compared with the fitness value

Fr
pbest of the population extremum gr of the prey group, if FriðtÞ < Fr

pbest, replace gr with Xri(t),
and Fr

pbest with Fri(t);

Step 7: Compare the fitness value Fi(t) of each particle in the population with the fitness value

Fgbest of the global extreme value gbest, if Fi(t)< Fpbest, replace gbest with Xi(t), and Fpbest with

Fi(t);

Step 8: Update the velocity vector of each particle in the predator swarm according to (17);

Step 9: Update the velocity vector of each particle in the prey group according to (18);

Step 10: Update the position vectors of each particle in the predator group and prey group

according to (9) and (10) respectively;

Step 11: Determine if Pathfinder added is needed. If “No”, go to Step 12. If “yes”, l1 pathfinders

are generated according to Formula (17), l2 pathfinders are randomly generated in the solu-

tion space, and fitness function values of l1 + l2 pathfinders are calculated, among which the

optimal individual Xtbest is selected and compared with the global extremum. If it is better

than the global extremum, gbest is replaced by Xtbest, and Fgbest is replaced by Ftbest.

Step 12: Judge whether the maximum number of iterations iterationmax or the accuracy

requirements are met. If “yes”, the optimal solution will be the output and the end will be

concluded. If “No”, go back to Step 3.

Simulation and analysis

The Nash equilibrium solution of the two-player non-cooperative game must be solved, and

the payment matrix of both players needs to be calculated by the objective function [24–26].
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The payoff matrix for player 1 is MAm×n. The payoff matrix for Player 2 is MBm×n. m is the

number of pure strategies for Player 1, and n is the number of pure strategies for player 2. Set

the mixed strategy vector of both players as:

Xi ¼ ðxi1; � � � ; xim; yi1; � � � ; yinÞ ð24Þ

In (24),

xik � 0 ð25Þ

yik � 0 ð26Þ

Xm

k¼1

xik ¼ 1 ð27Þ

Xn

k¼1

yik ¼ 1 ð28Þ

Therefore, for any mixed strategy Xi, the Nash equilibrium solution (X�, Y�) must satisfy

the formula:

(
MAðY�Þ0 � MAðXiðmþ 1 : mþ nÞÞ0

X�MB � Xið1 : mÞMB
ð29Þ

Each particle is represented by a mixed strategy of all players in IPP-PSO algorithm. To

solve the Nash equilibrium, the fitness function is defined as shown in formula (30) and for-

mula (31):

f ½Xt
di� ¼ maxfmax

1�j�m
fMAðj; :Þ � ðXt

di;mþ1:mþnÞ
0
� Xt

di;1:m �MA� ðXt
di;mþ1:mþnÞ

0
g; 0g

þmaxfmax
1�j�n
fXt

di;1:m �MBð:; jÞ0 � Xt
di;1:m �MB� ðXt

di;mþ1:mþnÞ
0
g; 0g

ð30Þ

f ½Xt
ri� ¼ maxfmax

1�j�m
fMAðj; :Þ � ðXt

ri;mþ1:mþnÞ
0
� Xt

ri;1:m �MA� ðXt
ri;mþ1:mþnÞ

0
g; 0g

þmaxfmax
1�j�n
fXt

ri;1:m �MBð:; jÞ0 � Xt
ri;1:m �MB� ðXt

ri;mþ1:mþnÞ
0
g; 0g

ð31Þ

The above fitness function derivation can be found in Jia W et al [27] and Duan H et al [2].

Xt
di;1:m and Xt

di;mþ1:mþn represent the mixed strategy of player 1 and player 2 in predator i respec-

tively in (30).Xt
ri;1:m and Xt

ri;mþ1:mþn represent the mixed strategy of player 1 and player 2 in prey

i respectively in (31). The constraint conditions of the mixed strategy are shown in formula

(32) and (33):

xdi;jðtÞ � 0; xri;jðtÞ � 0 ð32Þ

Xm

j¼1

xdi;j ¼ 1;
Xmþn

j¼mþ1

xdi;j ¼ 1

Xm

j¼1

xri;j ¼ 1;
Xmþn

j¼mþ1

xri;j ¼ 1

8
>>>>><

>>>>>:

ð33Þ
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In order to verify the effectiveness of the proposed algorithm, the performance results of

PSO, PP-PSO and IPP-PSO are compared by solving the Nash equilibrium solution of a zero-

sum game and a non-zero-sum game.

The relevant initial parameters of the algorithm are set: the maximum number of iterations

iterationmax = 100, particle swarm size N = 30, inertia weight wmax = 0.9, wmin = 0.2. In the

PP-PSO and IPP-PSO algorithms, the population sizes of predators and prey are respectively

D = 20 and R = 10, while in IPP-PSO algorithm, pathfinder l1 = 15 and l2 = 15.

The payment function of the two-person zero-sum game and non-zero-sum game [28] are

shown in Tables 1 and 2 respectively:

In Tables 1 and 2, the first column and the first row represent the policies for Player 1 and

Player 2, respectively. For example, in a zero-sum game, each player has three strategies that

represent the number of rows and columns in the payoff matrix, respectively. Payments (or

benefits) are set forth inside the table with the first number is the payout for the column player

(Player 1), and the second is the payout for the row player (Player 2). To reduce statistical

errors, each algorithm runs 100 independent tests on the two games. Figs 5 to 7 respectively

present the simulation result curves of the three algorithms in terms of the global extreme

value, the average fitness function value and the average error. Tables 3 and 4 show the average

fitness function value, optimal fitness function value, mean minimum error, and the number

of times of average error less than 0.0001 (the number of successes) of the three algorithms in

100 tests.

The definition of average error is shown in (34) and (35):

eppðtÞ ¼
PD

i¼1
jjXdiðtÞ � ESjj þ

PR
i¼1
jjXriðtÞ � ESjj

Dþ R
ð34Þ

epðtÞ ¼
PN

i¼1
jjXiðtÞ � ESjj

N
ð35Þ

In (34), epp(t) represents the average error of PP-PSO and IPP-PSO; in (35), ep(t) represents

the average error of the original particle swarm optimization algorithm. ES represents the

Table 1. Two-person zero-sum game payment function.

palyer2 strategy1 palyer2 strategy2 palyer2 strategy3

palyer1 strategy1 (8,-8) (9,-9) (3,-3)

palyer1 strategy2 (2,-2) (5,-5) (6,-6)

palyer1 strategy3 (4,-4) (1,-1) (7,-7)

https://doi.org/10.1371/journal.pone.0260231.t001

Table 2. Two-person zero-sum game payment function.

palyer2 strategy1 palyer2 strategy2 palyer2 strategy3 palyer2 strategy4

palyer1 strategy1 (1,1) (235,0) (0,235) (0.1,1.1)

palyer1 strategy2 (0,235) (1,1) (235,0) (0.1,1.1)

palyer1 strategy3 (235,0) (0,235) (1,1) (0.1,1.1)

palyer1 strategy4 (1.1,0.1) (1.1,0.1) (1.1,0.1) (0,0)

https://doi.org/10.1371/journal.pone.0260231.t002
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mixed strategy Nash equilibrium solution. The ES in Table 1 is:

ES ¼
21

52
;
12

52
;
19

52
;

2

13
;

3

13
;

8

13

� �

ð36Þ

The ES in Table 2 is:

ES ¼
1

3
;
1

3
;
1

3
; 0;

1

3
;
1

3
;
1

3
; 0

� �

ð37Þ

Fig 5 shows that the global optimal solution is the global optimal fitness function value, and

the smaller the fitness value, the better the result. IPP-PSO approximately converges to the

global optimal solution after about 20 iterations, PP-PSO approximately converges to the

global optimal solution after about 40 iterations, and the PSO algorithm does not converge to

the global optimal solution in this simulation. The convergence speed of IPP-PSO algorithm is

faster than that of PP-PSO and PSO algorithm, and it can converge to the global optimal solu-

tion. Fig 6 shows the change of the average fitness function value with the number of iterations.

The average fitness value represents the average level of fitness values of all particles in the

algorithm. It can be seen from Fig 6 that the IPP-PSO algorithm improves the problem that

the average fitness function value of PP-PSO algorithm cannot converge, and the convergence

speed is better than that of the PSO algorithm. Fig 7 shows the variation of the average error

with the number of iterations. The PP-PSO algorithm and PSO algorithm fail to converge near

the global optimum, and the average error is large. The improved IPP-PSO algorithm

improves this problem, and the “precocity” problem of the algorithm is improved because

pathfinder is added to improve the population diversity. This addition also speeds up the con-

vergence speed of the algorithm.

Tables 3 and 4 show the simulation results of 100 tests, which reduces the contingency of

the algorithm in a simulation and can better show the real performance of the algorithm. The

average fitness value is the average of the optimal fitness value of each test, the optimal fitness

Fig 5. Figure of global optimal solution simulation results of two-person zero-sum game.

https://doi.org/10.1371/journal.pone.0260231.g005
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Fig 7. Average error simulation results of two-person zero-sum game.

https://doi.org/10.1371/journal.pone.0260231.g007

Table 3. Simulation results of two-person zero-sum game.

Average fitness value Optimal fitness value Mean minimum error Standard deviation Number of successful

PSO 0.0675 4.8357e-8 0.0120 0.1279 4

PP-PSO 0.0128 5.9138e-4 0.0051 0.0731 0

IPP-PSO 0.0015 1.4794e-9 8.0634e-4 0.0047 97

https://doi.org/10.1371/journal.pone.0260231.t003

Fig 6. The average fitness function value of two—person zero—sum game simulation results.

https://doi.org/10.1371/journal.pone.0260231.g006
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value is the minimum fitness value of the 100 tests, the mean minimum error is the average of

the mean minimum error of each test, and the number of successes is the number of times the

mean error is less than 0.0001. By comparing the three algorithms in Tables 3 and 4, it can be

concluded that the IPP-PSO algorithm has the minimum average fitness value, minimum

average error, minimum optimal fitness value and the most successful times, which further

demonstrates that the IPP-PSO algorithm has better performance than both the PP-PSO algo-

rithm and the PSO algorithm in solving Nash equilibrium problems.

According to the above analysis, the IPP-PSO algorithm is superior to the PP-PSO algo-

rithm and the original PSO algorithm in terms of solving accuracy, convergence speed and

reliability of Nash equilibrium calculation. It can be used to solve the Nash equilibrium of the

game problem of attack and defense confrontation of clustered UAVs.

Conclusion

When we study the game model of attack and defense confrontation of swarm UAVs, we

encounter the problem of choosing the best algorithm to solve the game model. In the process

of trying to solve Nash equilibrium with PSO and PP-PSO, combined with the results of previ-

ous studies, we find the convergence and local optimality of these two algorithms. An IPP-PSO

algorithm is proposed to solve the Nash equilibrium of the game. By improving the distribu-

tion of predator and prey, the formula of inertia weight and velocity of predator and prey parti-

cles, and adding pathfinder particles, the algorithm improves the problems of the original

algorithm, such as “precocity”, slow convergence and local optimum. The performance of

PSO, PP-PSO and IPP-PSO algorithm in solving Nash equilibrium of a game is compared

with simulation examples. Simulation results show that the IPP-PSO algorithm is convergent

and effective, and the convergence speed and global optimal performance are better than the

other two algorithms. The improved algorithm can be used to solve the game model of attack

and defense confrontation of clustered UAVs.
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