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Based on the density functional theory, the adsorption and decomposition of NOx (x� 1, 2) on Mo (110) surface are studied with
first-principles calculations. Results show that the stable structures of NO2/Mo (110) are MoNO2 (T, μ1-N), MoNO2 (H, μ3-N, O,
O′), MoNO2 (S, η2-O, O′), and MoNO2 (L, η2-O, O′). +e corresponding adsorption energies for the structures are −3.83 eV,
−3.40 eV, −2.81 eV, and −2.60 eV, respectively. Besides, the stable structures of NO/Mo (110) are MoNO (H, μ1-N), MoNO (H, μ2-
N, O), and MoNO (H, η1-N) with the corresponding adsorption energies of −3.75 eV, −3.57 eV, and −3.01 eV, respectively. N and
O atoms are easily adsorbed at the hollow sites on Mo (110) surfaces, and their adsorption energies reach −7.02 eV and −7.70 eV,
respectively. +e preferable decomposition process of MoNO2 (H, μ3-N, O, O′) shows that the first and second deoxidation
processes need to overcome energy barriers of 0.11 eV and 0.64 eV, respectively. All these findings indicate that NO2 is relatively
easy to dissociate on Mo (110) surface.

1. Introduction

NOx (x� 1, 2) gas widely exists in the process of industrial
exhaust and automobile exhaust emission. It is a major cause
of air pollution. It does not only cause a series of envi-
ronmental problems, such as photochemical pollution,
ozone layer destruction, haze, and other pollution but also
causes considerable harm to human health. In order to
reduce the harm of NOx to humans and the environment,
the removal and conversion of NOx (adsorption, decom-
position, desorption, etc.) had always been a hot research
topic. Presently, the mechanism of transition metal surface
and NOx reaction is a hot topic in both experimental and
theoretical simulation [1–11].

Molybdenum (Mo) and Mo-based catalysts exhibit
excellent catalytic activity in many industrial areas, such
as hydrodenitrogenation (HDN) [12–14] and hydro-
desulfurization (HDS) of hydrocarbons, hydrogen evo-
lution reaction (HER) [15–17], Fischer–Tropsch (F–T)
synthesis [18, 19], and solid oxide fuel cell (SOFC)
[20, 21]. Accordingly, a fundamental research focus on the

interactions of nitrogen oxides with Mo and Mo-based
surfaces is helpful to understand the reaction mechanism
between them.

Some experimental studies research on the interaction
between NO2 and well-defined surfaces of Pt (111) [22–24],
Ru (100) [25], Rh (111) [26], Ag (111) [27–29], Pd (111)
[28, 30], and Au(111) [31, 32]. +e results show that the NO2
can be completely dissociated on Rh (111), Pd (111), Pt (111),
Ru (100), and Ag (111), and it is adsorbed in the molecular
form on Au (111). At the same time, these experiment results
indicate that the interaction between NO2 and metal surface
can be generated by N atom or O atom.

Using the technologies of electron stimulated desorption
ion angular distribution (ESDIAD), electron energy loss
spectroscopy (EELS), temperature-programmed desorption
(TPD), and low energy electron diffraction (LEED), the
researchers analyzed the NO2 [33], NO [34, 35], and N2O
[34] dissociative adsorption on Mo (100) and Mo (110). It
indicates that NO2 is easy to decompose to adsorbed NO+O
at the temperature of 100∼150K, while it is further
decomposed into N2 and O at the temperature of 250K,
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showing Mo surface has the good catalytic ability for NOx
removal and conversion.

However, the theoretical calculations on the role of NOx
on transitionmetals surfaces and their alloys surfaces are still
limited. Some basic problems in the experimental studies,
such as the final adsorption structures and decomposition
paths of NOx on the surfaces of transition metals and their
alloys, have not been fully understood. For such microscopic
processes, the experimental tools are not feasible. +e first-
principles calculation based on the density functional theory
as a powerful tool can be used to investigate the reaction
mechanisms of NOx with transition metals surfaces.

In this study, we report our findings about the ad-
sorption and decomposition of NOx on Mo (110) surface
with first-principles calculations. +e goal of this study is to
find out the most possibly dissociative process and the most
stable adsorption structure of NOx on the Mo (110) surface.

2. Computational Method

+e software used for the theoretical calculation is the
Vienna ab initio simulation package (VASP) for total energy
calculation based on the density functional theory [36–38].
+e software package is a first-principles quantum me-
chanics and molecular dynamics composite package. It
calculates the total energy and electronic structure with a
plane wave as the basis function. All electron projector
augmented wave (PAW) is used to deal with the interaction
between ion real and valence electrons [39, 40]. +is is
because the paw method is more accurate than other
pseudopotentials such as ultra-soft pseudopotential (USPP),
so the paw pseudopotential provided by the VASP is used in
this paper. A Methfessel–Paxton [41] electronic energy
smearing of 0.2 eV is used in the self-consistent calculations.
For the exchange-correlation energy function, the Per-
dew–Burke–Enzerhoff (PBE) functional and generalized
gradient approximation (GGA) is used. Spin polarization
and the correction of dipole moment are considered in the
calculation process [42].

+e surface structure of Mo (110) is simulated by a slab
normal to Z direction. +e repeated slab is composed of 7
layers of molybdenum (Mo) atoms, with 4 layers for the
substrate in which the positions of Mo atoms are fixed.
+e other remaining 3 layers of Mo atoms can relax their
positions to optimize the total energy of the system when
other species of atoms or molecules are adsorbed on the
outer surfaces of the layers. A vacuum region with a
thickness larger than 10 Å is inserted between the adjacent
crystal layers to avoid interference between the crystal
layers.

+e periodic supercell p (2× 2) of the system is used to
calculate the adsorption of NO2, NO, N, and O. +e self-
consistent calculation is carried out according to the irre-
ducible k-point automatically generated by the Mon-
khorst–Pack scheme [41]. To optimize the total energy of the
whole system, k-point grid sizes of (21× 21× 21) and
(4× 4×1) are used alternatively. In the calculation, the cut-
off energy of plane wave expansion is taken as 400 eV. By
changing the sampling point density and cut-off energy in K

space to test the convergence, these settings are sufficient to
ensure the accuracy of the calculation.

+ere are four possible positions for the adsorption,
namely top (T for short), long bridge (L for short), short
bridge (S for short), and hole (H for short), as shown in
Figure 1(a). +e adsorption energy Eads is defined by the
following expression

Eads � E(absorbate+slab) − E(slab) + E(adsorbate)􏽨 􏽩. (1)

In the abovementioned expression, E(adsorbate + slab) is the
total energy of the optimized system with atoms adsorbed.
E(slab) is the energy of the clean substrate surface and
E(adsorbate) is for the gas phase adsorbed by the substrate.
According to this definition, the adsorption energy is
negative, which means that the process is exothermic.

+e surface energy σ is calculated using the equation

σ �
1
A

Erelax −
1
2

Eunrelax + NEbulk􏼂 􏼃􏼔 􏼕, (2)

where Erelax, Eunrelax, and Ebulk represent the relaxed surface
total energy, unrelaxed surface total energy, and the bulk
total energy, respectively. A and N represent the surface area
of the slab and the number of atoms in the cell, respectively.

To study the decomposition of NOx, the climbing image
nudged elastic band (CI-NEB) [43, 44] is used to search the
transition state (TS). In this way, the path between the TSs is
determined with the minimum energy. Practicably, eight
images are set between the initial state (IS) and the final state
(FS) for searching and locating the minimum energy paths
(MEPs) of the decomposition reaction.

3. Results and Discussion

3.1. BulkMoandCleanMo(110) Surface. Before studying the
NOx adsorption, let us study the structure of bulk Mo and
clean Mo (110) surface at first. After the optimization in the
calculation, the lattice parameter of the crystal molybdenum
with body-centered cubic (BCC) structure is 3.146 Å, which
is in good agreement with the experimental results (∼3.15 Å)
[45, 46] and other calculated data (∼3.16 Å) [47, 48]. +e p
(2× 2)-layer crystal model of 7-layer Mo (110) is used to
simulate the clean Mo (110) surface shown in Figure 1(b). It
is found that the relaxation between the first and second
layers, noted by Δd12, and the relaxation between the second
and third layers, noted by Δd23, are −4.95% and 0.75%,
respectively. +e relaxation between the third and fourth
layers is calculated to be Δd34 � 0.26%, which is too small
compared to Δd12 and Δd23 and can be ignored. +e surface
energy σ calculated for clean Mo (110) is 2.94 J/m2 and the
work function (W) is 4.57 eV, respectively. +e data ob-
tained above in this study are in good agreement with other
reported values [49–52] and experimental measurements
[53].

3.2. Gas-Phase NO2 and NO Molecules. +e gas-phase NO2
and NO molecules are simulated. After optimization, the
N–O bond length of the NO molecule is 1.172 Å. +e bond
length of the NO2 molecule is 1.212 Å, and the angle of
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O–NO is 133.8°. Table 1 lists bond length, bond angle,
asymmetric stretching ]a, symmetric stretching ]s, and
bending frequencies ]b. It can be seen that the calculated
data in this paper are in good agreement with the experi-
mental values.

3.3. N and O Atoms Adsorption on Mo (110) Surface.
Generally, NO2 molecules are decomposed to be NO, N, and
O. In order to study the possible decomposition and ad-
sorption process of NO2 on the surface of Mo (110), it is
necessary to understand many possible stable adsorption
structures including NO2/Mo (110), NO/Mo (110), N/Mo
(110), and O/Mo (110). As discussed above, the four different
adsorption sites, namely, T, S, L, andH, are considered. +e
symbols η and µ represent that the molecular plane of NOx is
perpendicular and parallel to the substrate, respectively. +e
following definitions are the same.

At the same time, because of the symmetry of the
molecular structure, it is also necessary to consider the
possibility of multiple placements of adsorbed molecules
during research. As shown in Figure 2, five adsorbed modes
of NO2 adsorption are considered. In this way, based on the
detailed consideration of adsorption coordination and
placement modes, all possible stable adsorption structures,
including adsorption energies, stable adsorption sites, and
adsorption geometries (bond length and bond angle) of NO,
N, and O on Mo (110), are finally obtained.

First, let us consider the adsorption of N and O atoms on
the Mo (110) surface. Figure 3 and Table 2 show that there
are four adsorption structures of N adsorption on Mo (110)
surface, namely, MoN (H, μ1-N), MoN (L, μ1-N), MoN (S,
μ1-N), and MoN (T, η1-N). +e corresponding adsorption
energies are −7.02 eV, −6.98 eV, −6.16 eV, and −4.68 eV,
respectively. It is found that the structure of MoN (H, μ1-N)
is the most stable, and MoN (T, η1-N) is less than that of
MoN (H, μ1-N). +e structures of MoN (H, μ1-N) and MoN
(L, μ1-N) have the shortest average distances (h in Table 2)
between the N atom and substrate. It can be concluded that,
the closer the distance between the N atom and substrate, the
stronger the binding.

Let us study the adsorption of O atoms on the Mo
(110) surface. It can be seen from Figure 4 and Table 3 that
MoO (H, μ1-O) is the most stable structure. +e ad-
sorption energies of the four adsorption structures MoO
(H, μ1-O), MoO (L, μ1-O), MoO (S, μ1-O), and MoO (T,
η1-O) are calculated to be −7.71 eV, −7.57 eV, −7.02 eV,
and −6.32 eV, respectively. +ese data show that the ad-
sorptions are strong. +e adsorption of N and O atoms on
the Mo (110) surface behaves similar to the adsorption of
N and O atoms on the W (111) surface and the Fe (111)
surface [1, 2].
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Figure 1: Model of Mo (110) surface (a) schematic diagram of possible adsorption coordination (b) schematic diagram of relaxation and
other parameters.

Table 1: +e structural parameters and vibrational frequencies of
gas-phase NO2 and NO molecules.

NO2 NO
cal Exp[2] cal Exp[5]

r (Å) 1.212 1.193 1.172 1.150
θ (deg) 133.8 134.1
]a (cm−1) 1686 1618 1917 1904
]s (cm−1) 1348 1318
]b (cm−1) 733 750
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Figure 2: Schematic diagram of possible adsorption states of
adsorbed NO2 molecules.
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Eads = −7.02 eV
MoN (H, μ1-N)

Eads = −6.98 eV
MoN (L, μ1-N)

Eads = −6.16 eV
MoN (S, μ1-N)

Eads = −4.68 eV
MoN (T, η1-N)

Figure 3: Adsorption structures of N atom on Mo (110) surface (the upper and lower layers are a top view and side view, respectively, the
same below).

Table 2: Structural parameters of N atoms adsorption on Mo (110) surface.

Site Eads (eV) dN-Mo (Å) h (Å) Δd12/d0 (%) Δd23/d0 (%) z1 (Å) z2 (Å)
MoN (H, μ1-N) −7.02 1.966 1.250 −1.8 1.1 0.121 0.103
MoN (L, μ1-N) −6.98 1.949 1.251 −2.1 1.2 0.038 0.109
MoN (S, μ1-N) −6.16 1.906 1.376 −2.1 1.1 0.152 0.001
MoN (T, η1-N) −4.68 1.732 1.704 −2.2 0.87 0.028 0.108
h is the average binding height with respect to the first Mo layer; Δdij is the average interlayer spacing relaxations between the i and the j layer; Z1 and Z2
represent the buckling in the first and second layer, respectively. +e same definition is used in all subsequent tables.

Eads = −7.71 eV
MoO (H, μ1-O)

Eads = −7.57 eV
MoO (L, μ1-O)

Eads = −7.02 eV
MoO (S, μ1-O)

Eads = −6.32 eV
MoO (T, η1-O)

Figure 4: Adsorption structures of O atoms on the Mo (110) surface.

Table 3: Structural parameters O atom adsorption on the Mo (110) surface.

Site Eads (eV) dO-Mo (Å) h (Å) Δd12/d0 (%) Δd23/d0 (%) z1 (Å) z2 (Å)
MoO (H, μ1-O) −7.71 2.025 1.189 −1.8 0.67 0.164 0.099
MoO (L, μ1-O) −7.57 1.991 1.200 −1.8 0.71 0.085 0.109
MoO (S, μ1-O) −7.02 1.960 1.464 −2.7 0.73 0.178 0.006
MoO (T, η1-O) −6.32 1.734 2.100 −1.4 0.51 0.547 0.057
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3.4. Adsorption of NO onMo (110) Surface. In order to study
the dissociation of NO2 on the Mo (110) surface, it is very
important to explore the interaction between NO and Mo
(110). Similar to the abovementioned studies, four ad-
sorption positions on the surface of Mo (110) are still used
for NO adsorption. It can be seen from Figure 5 and Table 4
that NO/Mo (110) mainly has the following five structures:
MoNO (H, μ1-N), MoNO (T, η1-O), MoNO (T, η1-N),
MoNO (H, μ2-N, O), and MoNO (H, η1-N), where MoNO
(H, μ1-N) is the most stable structure, and its adsorption
energy is −3.75 eV.+e second and third stable structures are
MoNO (H, μ2-N, O) and MoNO (H, η1-N) with corre-
sponding adsorption energies of −3.57 eV and −3.01 eV,
respectively. From these structures, it is found that NO acts
mainly through N atoms with Mo (110) surface.

3.5. Adsorption of NO2 on Mo (110) Surface. NO2 molecule
has a curved structure, and the inner angle of O–N–O is
133.8°. Calculations show that NO2 takes effect mainly
through N atoms on theMo (110) surface, which is similar to
the adsorption of NO. According to Figure 6 and Table 5,
NO2/Mo (110) mainly has the following stable structures:
MoNO2 (T, μ1-N), MoNO2 (H, μ3-N, O, O′), MoNO2 (S, η2-
O, O′), MoNO2 (L, η2-O, O′), MoNO2 (T, η1-O),MoNO2 (T,
η2-O, O′), MoNO2 (L, η1-N), and MoNO2 (S, η1-N). As can
be seen from Figure 6, MoNO2 (T, μ1-N) and MoNO2 (H,
μ3-N, O, O′) are the most and second stable structures, and
the adsorption energies are −3.83 eV and −3.40 eV,

respectively. In both structures, NO2 is obliquely adsorbed
on the surface. MoNO2 (S, η2-O, O′), and MoNO2 (L, η2-O,
O′) are also two stable structures with corresponding ad-
sorption energies of −2.81 eV and −2.60 eV, respectively.

3.6. Deoxidation Process of NO2 on Mo (110) Surface.
Next, we will focus on the deoxidation process of NO2 on
Mo (110) surface. Generally, the interaction between NO2
and Mo (110) surface is carried out according to the fol-
lowing steps:

Step 1: NO2(gas)⟶NO2 (ads)

Step 2: NO2 (ads)⟶NO(ads) +O(ads)

Step 3: NO(ads) +O(ads)⟶N(ads) + 2O(ads)

+e climbing configuration elastic band method is used
to study the decomposition process of NO2 on Mo (110)
surface.+eCI-NEBmethod requires determining the initial
and final states of the reaction. So in the deoxidation process
of the first part (Step 2), the most stable structure of NO2/Mo
(110) is selected as the initial state, that is, MoNO2 (T, μ1-N),
MoNO2 (H, μ3-N, O, O′), and MoNO2 (S, η2-O, O′) as the
initial state of the first step deoxidation process, and the
three structures are named LM1-1, LM1-2, LM1-3, re-
spectively. In order to determine the structure of the final
state NO(ads) +O(ads), it can be seen from the adsorption of
NO and O on Mo (110) surface that they are the most stable
structures at the hollow position. +erefore, NO was placed

Eads = −3.75 eV
MoNO (H, μ1-N)

Eads = −3.01 eV
MoNO (H, η1-N)

Eads = −3.57 eV
MoNO (H, μ2-N,O)

Eads = −2.78 eV
MoNO (T, η1-N)

Eads = −0.92 eV
MoNO (T, η1-O)

Figure 5: Adsorption structures of NO molecule on the Mo (110) surface.

Table 4: Structural parameters of NO adsorption on the Mo (110) surface.

Site Eads (eV) dN-O (Å) θ (deg) dN-Mo (Å) h (Å) Δd12/d0 (%) Δd23/d0 (%) z1 (Å) z2 (Å)
MoNO (H, μ1-N) −3.75 1.457 15.3 1.992 1.226 −1.5 1.1 0.036 0.128
MoNO (T, η1-O) −0.92 1.201 90.0 2.002 2.189 −3.5 1.2 0.279 0.038
MoNO (T, η1-N) −2.78 1.194 90.0 1.878 2.040 −2.9 1.1 0.270 0.051
MoNO (H,μ2-N,O) −3.57 1.394 32.7 2.008 1.260 −0.59 0.63 0.237 0.136
MoNO (H, η1-N) −3.01 1.257 81.9 2.111 1.338 −3.0 1.1 0.122 0.058
θ is the include angel of NO-surf.
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at the hollow position, and O was placed at the supercell p
(2× 2). After calculations, it is found that only one structure
of LM2-1 is stable (the specific structure as shown in

Figure 7). Figure 7 shows the possible potential energy
surface (PES) of the first step deoxidation process
constructed.

Eads = −3.83 eV
MoNO2 (T, μ1-N)

Eads = −2.60 eV
MoNO2 (L, η2-O, O')

Eads = −2.81 eV
MoNO2 (S, η2-O, O')

Eads = −3.40 eV
MoNO2 (H, μ3-N,O, O')

Eads = −1.74 eV
MoNO2 (T, η1-O)

Eads = −2.23 eV
MoNO2 (S, η1-N)

Eads = −2.06 eV
MoNO2 (L, η1-N)

Eads = −2.37 eV
MoNO2 (T, η2-O, O')

Figure 6: Adsorption structure of NO2 molecule on the Mo (110) surface.

Table 5: Structural parameters of NO2 adsorption on the Mo (110) surface.

Site Eads (eV) dN-O (Å) φ (deg) θ (deg) d (Å) h (Å) Δd12/d0 (%) Δd23/d0 (%) z1 (Å) z2 (Å)
MoNO2 (T,μ1-N) −3.83 1.141 107.5 33.6 2.181 1.441 −0.62 1.02 0.120 0.014
MoNO2 (H,μ3-N,O,O′) −3.40 1.372 113.8 41.3 2.113 1.587 −1.06 0.56 0.235 0.088
MoNO2 (S,η2-O,O′) −2.81 1.292 111.2 89.8 2.069 2.134 0.81 1.09 0.208 0.040
MoNO2 (L, η2-O,O′) −2.60 1.298 114.4 90.0 3.129 2.127 −1.95 0.37 0.207 0.106
MoNO2 (T, η1-O) −1.74 1.173 111.6 90.0 1.875 2.177 −1.19 1.04 0.436 0.059
MoNO2 (T, η2-O,O′) −2.37 1.320 106.2 90.0 2.670 1.998 −3.6 1.10 0.216 0.031
MoNO2 (L, η1-N) −2.06 1.310 120.3 90.0 2.220 1.612 −2.02 0.99 0.202 0.099
MoNO2 (S,η1-N) −2.23 1.404 124.6 90.0 2.073 1.255 0.025 0.97 0.171 0.042
φ is the included angle of O1-N-O2, θ is the inner angle of NO2-surf.
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Path 1: As shown in Figure 7(a), the most possible
pathway of the first deoxidation process of NO2 on Mo
(110) surface starts from LM1-2 to LM2-1 via the
transition states TS1 and TS1′. +e heat release in the
whole process is up to 2.79 eV. During this process, it
needs to cross two transition states with energy barriers
of 0.11 eV and 0.50 eV, respectively. +e activated N–O
bond length changes from 1.372 Å in the initial state to
1.419 Å in TS1, then extend to 2.709 Å in TS1′ and
finally to be 2.741 Å in final state LM2-1. +e bond
angle of O–N–O changes from 113.7° in the initial state
to 110.39° in TS1. +e activated oxygen atom gradually
crosses the short bridge position and finally reaches the
hollow position.
Path 2: Another possible pathway of the first deoxidation
process is explored from LM1-3 to LM2-1. +e heat
release in the whole process reaches 3.38 eV. It needs to
cross the transition states TS2 and TS2′. +e potential
barriers are 0.76 eV and 0.73 eV, respectively. +e

activated N–O bond length changes from 1.372 Å in the
initial state to 1.419 Å in TS2, then extend to 2.709 Å in
TS2′ and finally to be 2.741 Å in final state LM2-1. +e
bond angle of O–N–O changes from 113.2° in the initial
state to 113.1° in TS2. +e activated oxygen atom grad-
ually moves from the top position to the hollow position.
For the second deoxidation process (Step 3), the initial
state is the final state of the previous step, namely, LM2-1
and LM2-2. For the determination of the final state, it is
also necessary to determine the coadsorption of N and 2O.
After calculation, it is found that there are two stable
structures, namely, LM3-1 and LM3-2 (as seen in
Figure 8).
Path 3: Figure 8(a) is the potential energy surface of the
second constructed deoxidation process in step 3. It can
be seen from the figure that the process needs to ex-
perience the transition state of TS3 from LM2-1 to
LM3-1. +e heat release in the whole process is 2.13 eV
and the height across the potential barrier is 0.66 eV. In
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Figure 7: Potential energy surface of NO2 molecule in the first step deoxidation process of Mo (110).
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Figure 8: Potential energy surface of NO2 molecule in the second step deoxidation process of Mo (110).

Advances in Condensed Matter Physics 7



this path, the N–O bond is broken and the atoms of
oxygen and nitrogen are adsorbed at the hollow sites,
respectively.
Path 4: For the second deoxidation process of NO2 on
Mo (110) surface, NO(ads) +O(ads)⟶
N(ads) + 2O(ads), another possible path from LM2-1
via the transition state of TS4 into LM3-2 is exothermic
by 2.32 eV with the calculated barrier of 0.64 eV, as
shown in Figure 8(b). In TS4, the N–O bond is elon-
gated to be 1.83 Å. After the TS4, the dissociating
oxygen crosses the top site, short bridge site, and finally
adsorbs at the hollow site.

In summary, the preferable reaction pathway of
NO2(gas) + slab⟶ LM1-2⟶TS1⟶ LM2-
1⟶TS4⟶ LM3-2 is calculated to be exothermic by
5.11 eV, with the first, second deoxidation activation barriers
of 0.11 eV, 0.64 eV, respectively. +ese results have shown
that NO2 molecule can dissociate completely on the perfect
Mo (110) surface, which is in agreement with the experiment
[33, 34]. It also indicates that Mo (1 1 0) surface exhibits
good catalytic activity to decompose NOx as well as other
gas, such as H2S [54, 55].

4. Conclusions

Based on the density functional theory, the adsorption and
decomposition of NOx (x� 1, 2) on the Mo (110) surface were
calculated by the first principle. +e results show that the stable
structures of NO2/Mo (110) coordination areMoNO2 (T, μ1-N),
MoNO2 (H, μ3-N, O, O′), MoNO2 (S, η2-O, O′), and MoNO2
(L, η2-O, O′). +e corresponding adsorption energies are
−3.83 eV, −3.40 eV, −2.81 eV, and −2.60 eV, respectively. +e
stable structure of NO/Mo (110) are MoNO (H, μ1-N), MoNO
(H, μ2-N, O), and MoNO (H, η1-N) and the corresponding
adsorption energies are −3.75 eV, −3.57 eV, and −3.01 eV, re-
spectively. N and O are easily adsorbed at the hollow site of the
Mo (110) surface, and their adsorption energies are−7.02 eV and
−7.70 eV.+e study on the preferable decomposition process of
NOx (x� 1, 2) on Mo (110) shows that the potential barriers of
the first and second deoxidation processes of MoNO2 (H, μ3-N,
O, O′) are 0.11 eV and 0.64 eV, respectively. All these findings
indicate that the Mo (110) surface exhibits good catalytic activity
to decompose NOx.
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