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Abstract 
We introduce the concept of q-calculus in quantum geometry. This involves 
the q-differential and q-integral operators. With these, we study the basic 
rules governing q-calculus as compared with the classical Newton-Leibnitz 
calculus, and obtain some important results. We introduce the reduced 
q-differential transform method (RqDTM) for solving partial q-differential 
equations. The solution is computed in the form of a convergent power series 
with easily computable coefficients. With the help of some test examples, we 
discover the effectiveness and performance of the proposed method and em-
ploying MathCAD 14 software for computation. It turns out that when q = 1, 
the solution coincides with that for the classical version of the given initial 
value problem. The results demonstrate that the RqDTM approach is quite 
efficient and convenient. 
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1. Introduction 

Every physical theory is formulated in terms of mathematical objects. It is thus 
necessary to establish a set of rules to map physical concepts and objects into 
mathematical objects that we use to represent them. Often times this mapping is 
evident, as in classical mechanics, while for other theories, such as quantum 
mechanics, the mathematical objects are not so intuitive. The background of our 
study is based on the dynamics of closed quantum systems, with intrinsic com-
ponents such as states, observables, measurements and evolution. Quantum 
geometry on the other hand can be traced to the early days of quantum mechan-
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ics. Specifically, if we consider Heisenberg’s commutation relations [1] [2] 

[ ],x p i=                              (1) 

it becomes obvious that the geometry of classical phase space is completely lost. 
When coordinates such as x (position) and p (momentum) on a phase space 
cease to commute, then there can be no such space! Moreover, we discover that 
this operator algebra [3] [4] [5] forms some kind of noncommutative geometric 
space. This is in contrast to algebraic geometry [6] [7], which is built on a cor-
respondence between spaces and commutative algebras. This correspondence in 
particular associates with any given space, the algebra of functions on it, and 
geometric notions are then expressed in a purely algebraic format. This principle 
turns out to be the most logical starting point for a generalized geometry such as 
quantum geometry. While for algebraic geometry, the spaces are affine schemes, 
a correspondence that is closer to differential geometry is given by the Gel-
fand-Naimark theorem [8]. In this case, the spaces are topological spaces and the 
algebras are commutative C*-algebras. 

In 2014, Maliki et al. [9], discussed the notion of q-deformed calculus in 
quantum geometry. Here they showed that the mathematical study of noncom-
mutative geometry is intimately related to the so-called q-calculus, which is a 
generalization of the Newton-Leibnitz classical calculus. 

In this work, we summarize some important q-calculus results which will en-
able us to study non-commutative differential equations, specifically we shall 
employ the reduced q-differential transform method (RqDTM) to solve partial 
q-differential equations.  

1.1. The q-Differential Operator 

For 1 q≠ ∈ , we define the q-differential operator qD  as; 

( ) ( ) ( )
( )1q

f x f qx
D f x

q x
−

=
−

                      (2) 

Note that d dqD x D→ ≡  as 1q → . We make the following remarks. 
1) At the beginning of the 20th century, F.H. Jackson [10] studied this mod-

ified derivative and many of its consequences. 
2) This q-derivative can be applied to function not containing 0 in their do-

main of definition. Then it reduces to the ordinary derivative when q goes to 1.  
3) One can easily check that the q-derivative operator is linear, i.e., 

(a) ( )q q qD f g D f D g+ = +  (b) ( )q qD f D fλ λ=            (3) 

1.2. Basic Notions of q-Calculus  

The mathematical study of non-commutative geometry is intimately related 
to the so-called q-calculus. We begin with the q-differentials of some standard 
functions, then we give a brief introduction to q-numbers, q-factorials and 
q-integrals.  
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1.2.1. q-Derivative of Some Standard Functions 
Following the procedure for computing the q-derivative from first principles, we 
now obtain important results for the q-derivative of the following standard func-
tions such sin x , and ex . 

1.2.2. q-Derivative of the Function ( ) sinf x x=   

By definition, we have 

( ) ( )

( )
( )
( )

( )
( )

( )
( )

3 5 7 3 3 5 5 7 7

3 5 7
2 4 6

sin sin
1

1 1 1 1 1 1
3! 5! 7! 3! 5! 7

s

!
1

1 1 11 1 11
3! 1 5! 1 7!

in

1

q
x qx

q x

x x x x qx q x q x q x

q x

D

q q q
x

q

x

x x
q q

−
=

−

   − + − + − − + − +   
   =

−

− − −
= − + − +

− − −

 



 (4) 

**Note: for typesetting use Dq(sinx) below, similarly for D(sinx). 

Using the fact that 2 1 1 1
1

r
rq q q q

q
−−

= + + + +
−

  

( ) ( )

( )

2 2 4 2 3 4

6 2 3 4 5 6

1 1  sin 1 1 1
3! 5!

1 1
7!

qD x x q q x q q q q

x q q q q q q

∴ = − + + + + + + +

− + + + + + + +
 

When 1q = , we obtain the classical derivative of sin x  function, i.e. 

( ) ( ) ( )2 4 6

2 4 6

1 1 1sin 1 3 4 6
3! 5! 7!
1 1 11 cos
2! 4! 6!

D x x x x

x x x x

= − + − +

= − + − + =





 

1.2.3. q-Derivative of the Exponential Function ( ) xf x e=  

We have by definition; 

( )

( )( )
( )

1e 1 ee ee
1 1

x qxx qx
x

qD
q x q x

− −−−
= =

− −
                  (5)

 

Since 
0

e
!

n
u

n

u
n

∞

=

= ∑ , letting ( )1u q x= −  we have; 

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

1

0 0
2

2

1 1
e 1

! !

1 1 1 1 1
2! !

n n n
nx q

n n
n

n n

x q q x
n n

x xq x q q
n

∞ ∞
− −

= =

− − −
= = −

= − − + − + + − − +

∑ ∑

 

 

( ) ( ) ( ) ( )

( ) ( )

2 3
2 31

1

   1 e 1 1 1
2! 3!

1 1
!

x q

n
n n

x xq x q q

xq
n

− −

+

∴ − = − − − + − −

+ − − +




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( )( )
( )

( ) ( ) ( ) ( )

1

2 1
2 1

e 1 e
    e

1

e 1 1 1 1 1
2! 3! !

x qx
x

q

n
n nx

D
q x

x x xq q q
n

− −

−
−

−
⇒ =

−

 
= − − + − − + − − + 

 
 

  (6) 

From the above expression it is clear that when 1q = , we obtain the classical 
exponential function. We remark that the q-derivative of other standard func-
tions can be obtained similarly. 

1.2.4. q-Numbers and q-Factorials 
We adopt basically the notations in [11]. Thus the set of positive integers is de-
noted by  . Furthermore, throughout this paper K denotes a field of characte-
ristic 0 and ( )K q  denotes the field of rational functions in one parameter q over 

( )K q . ( )K q  is our base field in the q-deformed setting, while K is the base field 
in the classical setting. We define respectively the q-integers, q-factorials and 
q-binomials as follows: 

1) 
 

1

0

1:
1

nn
i

q
i

qn q
q

−

=

−
= =

−∑                                          (7) 

2) 
         

!: 1 2 ; 0 ! 1q q q q qn n= =                               (8) 

3) 
 

   

{ }
!

: , , 0 ,
! !

q

q q q

nn
n m n m

m m n m
 

= ∀ ∈ ∪ ≥ 
− 

                    (9) 

For example, given ( ) nf x x=  then ( )
 

1n
qD f x n x −= .  

1.2.5. Remark 
The properties of the q-integers, q-factorials and q-binomials and their proofs 
are presented in [9]. We also have the following important results on the 
q-differential operator. For 1 q≠ ∈ , and with qD  as defined previously; 

1) ( ) ( )
( ) ( )

1

1
0

1 d
1 ! d

r r
r

q r
r

q
D f x x f x

r x

+∞

+
=

−
=

+∑                              (10) 

2) ( )
( )

( )
( ) ( ) ( )

1 2
1 2

0
1

1

n nn n j j jn n j
q n

j q

nx qD f x q f q x
jq

− −−
− −

=

 
= − 

−  
∑               (11) 

3) ( ) ( ){ } ( ) ( ) ( ) ( )q q qD u x v x v x D u x u qx D v x= +                     (12) 

4) ( ) ( ){ } ( ) ( ) ( ) ( )
( ) ( )

q q
q

v qx D u x u qx D v x
D u x v x

v x v qx
−

=                   (13) 

1.2.6. The q-Integral Operator 
A function ( )F x  is a q-antiderivative of ( )f x  if ( ) ( )qD F x f x= . It is de-
noted by ( ) ( ) qF x f x d x= ∫  and called the Jackson integral [10]. We make the 
following remarks. 
• Similar to classical integral calculus, any given function has multiple 

q-antiderivatives.  
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• Though the q-antiderivative of a function might not be unique, it can prove 
that if ( )0,1q∈ , a function has up to an additive constant one q-antiderivative 
which is continuous at 0x =  [12].  

• In [8] it is shown that;  

( ) ( ) ( ) ( )
0

1 k k
q

k
F x f x d x q x q f q x

∞

=

= = − ∑∫                (14) 

1.2.7. Properties of the q-Integral 
1) The Jackson integral gives a q-antiderivative ( )F x  which is continuous at 

0x = , and is unique up to additive constant. 
2) Generally, given ( )g x  is another function and ( )qD g x  denotes its 

q-derivative, we have formally  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

0

1

0

1

1
1

r r r
q q q

r

r r
r r

r
r

f x D g x d x q x q f q x D g q x

g q x g q x
q x q f q x

q q x

∞

=

+
∞

=

= −

−
= −

−

∑∫

∑
 

( ) ( ) ( ) ( ) ( )( )1

0
    r r r

q
r

f x d g x f q x g q x g q x
∞

+

=

⇒ = −∑∫         (15) 

giving a q-analogue of the Riemann–Stieltjes integral [12]. As an example of the 
foregoing, let ( ) nf x x= , n +∈ . We have 

( ) ( ) ( ) ( )
 

1
11 1

1
0 0

1
1 1

11

n
j nn j jn n n n

q n
j j q

q xx d x q x q q x q x q x
nq

+∞ ∞
++ +

+
= =

−
= − = − = =

+−∑ ∑∫  (16) 

3) The integration by parts formula of Newton-Leibnitz calculus is interpreted 
in the present non-commutative context as; 

( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 1 2q q q qf x D f x d x f x f x f qx D f x d x= −∫ ∫         (17) 

1.3. Partial q-Derivative of a Multivariable Function 

We define the partial q-derivative of a multivariable real continuous function 
( )1 2, , , nf x x x  with respect to a variable ix  by; 

( )
( )( ) ( )

( ) ( ),
, ,    0,  0,1

1i

q i
q x i

i

f f
D f x q

q x

ε −
= ≠ ∈

−

x x
x            (18) 

( ) ( ), ,0 0
lim

i ii i
q x q xx x

D f D f
= →

  = x x                    (19) 

where ( )1 2, , , nx x x=x   and, ( )( ) ( ), 1 2, , , , ,q i i nf f x x qx xε =x   . 

We adopt subsequently the identity ,

k
qk

q x k
q

D
x
∂

≡
∂

 for the kth order q-derivative 

with respect to kx .  
Our objective in this section is to solve partial q-differential equations using a 

novel q-differential transform method introduced in [13]. 
1) Reduced q-Differential Transform Method (RqDTM) 
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Given that all q-differentials of ( ),u x t  exist in some neighborhood of t a= , 
then let 

( )
 

( )1 ,
!

k
q

k k
kq t a

U x u x t
k t

=

 ∂
=  

∂  
                   (20) 

where the t-dimensional spectrum function ( )kU x  is the transformed func-
tion. Subsequently, the lowercase ( ),u x t  represents the original function while 
the uppercase ( )kU x  stands for the transformed function. We have the fol-
lowing important definition. 

2) Definition 
The q-differential inverse transform of ( )kU x  is defined by; 

( ) ( )( )( )

0
, k

k
k

u x t U x t a
∞

=

= −∑                      (21) 

Substituting Equations (20) in (21) we obtain 

( )
 

( ) ( )( )

0

1, ,
!

k
kq

k
k kq t a

u x t u x t t a
k t

∞

=
=

 ∂
= − 

∂  
∑                (22) 

In the subsequent theorems, we set 0a =  so that ( )( ) ( )( )0k k kt a t t− = − = . 
From the linearity of the q-derivative, we can establish the following fact; given 
( ) ( ) ( ), , ,w x t u x t v x tα= ±  then ( ) ( ) ( )k k kW x U x V xα= ± , α  being a con-

stant. We have the following important theorem. 
3) Theorem: Given ( ), m nw x t x t=  then ( ) ( )m

kW x x k nδ= −  where  

( )
1,       0
0,      0

k
k

k
δ

=
=  ≠

                         (23) 

Proof: By definition (20), we have; 

( )
 

( )
( )

 

( )
( )

 

 

( ) ( )
 

( )

0 0

0

1 , ,
! !

!
,       

!

1 1
,       0

!

0 0,             

k m n k m nm
q q

k k k
q qq qt t

qm m

q

q q qm n k
t

q

m

m

x t x txW x u x t u x t
k kt t

k
x x k n

k

n n n k
x t k

k

x k n

x k nδ

= =

−

=

   ∂ ∂
   = =

∂ ∂      


⋅ = =


= ⋅ − − +

⋅ ≠



⋅ = >
= −

 
   



     
 

     (24) 

4) Theorem: Given ( ) ( ), ,q

q

w x t u x t
x

∂
=
∂

 then ( ) ( )q
k

q

W x U x
x

∂
=
∂

. 

Proof 

( )
 

( )
 

( )

 

( ) ( )

0

0

1 1, ,
! !

1 ,
!

k k
q q q q

k k k
q qq qq q t

k
q q q

kk
q qqq t

W x u x t u x t
k x k xt t

u x t U x
x k xt

=

=

     ∂ ∂ ∂ ∂
= =         ∂ ∂∂ ∂        

 ∂ ∂ ∂
 = =

∂ ∂∂  

    (25) 
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5) Theorem: Given ( ) ( ), ,
r
q

q

w x t u x t
x

∂
=
∂

 then 

( )
     

( )1 2k k rq q qW x k k k r U x+= + + +              (26) 

Proof 

( )
 

( )

 

   

( )

     
( )

0

1 ,
!

! 1 ,
! !

1 2

k r
q q

k k r
q qq

k r
q q

k r
qq q t

k rq q q

W x u x t
k t t

k r
u x t

k k r t

k k k r U x

+

+

=

+

  ∂ ∂
=    ∂ ∂   

+  ∂
=   + ∂ 
= + + +

 

6) Example 

( ) ( ) ( ) ( )2, , , ,   ,0 1 3q q

q q

u x t u x t u x t u x x
t x

∂ ∂
= + = +

∂ ∂
         (27)

 
Taking the RqDTM of the given partial q-differential equation, we have 

 
( ) ( ) ( ) ( )1

0
1 ,   0,1, 2,

k
q

k k n k kq
n q

k U x U x U x U x k
x+ −

=

∂
+ = + =

∂∑      (28) 

The initial condition becomes 
( ) ( )0 ,0 1 3U x u x x= = + . 

Starting with 0k = , the values of ( )kU x  are computed successively as fol-
lows; 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

( )

1 0 0 0

2 2

2
1

1

1 3 1 3 1 3 3

   4 6 9

q
q

q

q

q

U x U x U x U x
x

x x x
x

U x x x

∂
= +

∂

∂
= + + + = + +

∂

∴ = + +

          (29) 

When 1k = , we have  

 
( ) ( ) ( ) ( )

( )( ) ( )

( ) ( )( )

2 0 1 1

2 2

2 2 3

2 2

2 1 3 4 6 9 4 6 9

2 4 6 9 12 18 27 6 9 1

q
q

q

q

q

U x U x U x U x
x

x x x x x
x

x x x x x x q

∂
= +

∂

∂
= + + + + + +

∂

= + + + + + + + +

 

( ) ( ) 2 3

2

14 9 5 54 54
    

1
q x x x

U x
q

+ + + +
∴ =

+
              (30) 

Following the same procedure, it is easy to compute an expression for 2k = .  
Formally, we have the required solution of the partial q-differential equation 

to be 

( ) ( ) ( ) 2 3
2 214 9 5 54 54

, 1 3 4 6 9
1

q x x x
u x t x x x t t

q
 + + + +

= + + + + + +  + 
  (31) 
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Let us now consider the classical version of the given partial q-differential eq-
uation, namely 

( ) ( ) ( ) ( )2, , , ,   ,0 1 3u x t u x t u x t u x x
t x
∂ ∂

= + = +
∂ ∂

            (32) 

The above is a first order quasilinear partial differential equation easily solved 
by the method of characteristics. The associated auxiliary equations are; 

2

d d d
1 1
t x u

u
= − =                           (33) 

These provide us with two possible integrals given by; 

1t x c+ =  and 2
1t c
u

+ =                       (34) 

1 2,c c  being arbitrary constants of integration. Using the initial condition, we 

have at 0, 1 3t u x= = + . Hence, 1x c=  and 2
1

1 3
c

x
=

+
. It then follows that 

2
1

1
1 3

c
c
=

+
. 

Hence the required solution is  

( ) ( ) ( )
( ) 2

1 31 1    or   ,
1 3 1 1 3 3

t x
t u t x

u t x t x t
+ +

+ = =
+ + − + −

           (35) 

Using MathCAD14, a numerical algebra software [14] to expand the expres-
sion for u in terms of powers of t, we obtain 

( ) ( ) ( ) ( )2 2 3 2, 1 3 4 6 9 7 27 27u t x x x x t x x t= + + + + + + + +        (36) 

We make the interesting observation that when we set 1q =  in (31) we ob-
tain exactly the solution to the classical PDE. 

7) Example. As an example of a second order partial q-differential equation 
we consider the q-diffusion Cauchy problem 

( ) ( ) ( )
2

2, , ,   ,0q q x
q

q q

u x t u x t u x e
t x

∂ ∂
= =

∂ ∂
                (37) 

Again we employ the RqDTM transform. Here x
qe  in the initial data, is the 

q-exponential function defined by 
 0 !

i
x
q

i q

xe
i

∞

=

= ∑ , with q-derivative x
qe . The 

RqDTM transform of the q-diffusion equation, gives the following recursion; 

 
( ) ( )

2

1 21 ,    0,1, 2,q
k kq

q

k U x U x k
x+

∂
+ = =

∂
              (38) 

The initial data given is then written 

( ) ( )0 ,0 x
qU x u x e= =                         (39) 

Now, substituting (38) into (37), we obtain the following ( )kU x  values suc-
cessively 
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( )
 

( )
 

( )
     

1 2 1
1 1 1 1,

1 ! 2 ! 1 ! 2 ! 2 !
x x x
q q q

q q q q q

U x e U x U x e e= = = =      (40) 

( )
 

( )
 

3
1 1, ,

3 ! !
x x
q k q

q q

U x e U x e
k

= =                (41) 

In view of (28), the differential inverse transform of ( )kU x  gives 

( )
 0 0

1,
!

k x k x t
k q q q

k k q

u x t U t e t e e
k

∞ ∞

= =

= = =∑ ∑               (42)

 
which is the analytic solution of the problem (36). Now consider the classical 
diffusion equation is written 

( ) ( ) ( )
2

2, , ,   ,0 exu x t u x t u x
t x
∂ ∂

= =
∂ ∂

               (43) 

By the method of separation of variables, it is easy to show that the solution is 
given by 

( ) ( ) ( ), e e ex t x tu x t X x T t += = =                  (44) 

Comparing with the q-solution ( ), x t
q qu x t e e= , we see that the two solutions 

are in perfect agreement when q = 1, and satisfying their appropriate initial con-
ditions. 

1.4. Conclusion 

In this research article, we introduced the concept of q-calculus in quantum 
geometry. This involves the study of the basic rules governing q-calculus as 
compared with the classical Newton-Leibnitz calculus. Our main objective is to 
employ the results obtained to solve partial q-differential equations. To this end 
we introduced the reduced q-differential transform method which provides the 
solution in the form of a convergent power series with easily computable com-
ponents. With the help of a few examples, we were able to show that the pro-
posed iteration technique is very effective and convenient. It turns out that when 
q = 1, the solution coincides with the classical version of the given initial value 
problem. In conclusion, q-calculus is a non-commutative calculus that general-
izes the Newton-Leibnitz classical calculus. The Reduced Differential Transform 
method for solving differential equations was introduced and extended in this 
work to solve partial q-differential equations, which represent some form of dy-
namics in non-commutative spaces. 
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